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Executive summary
Pilot cases showcase the benefits of the RobMoSys approach, by applying RobMoSys method-
ology, models and software tools in concrete industry-relevant cases. Therefore, Pilot cases are
an important instrument for dissemination and adoption of the RobMoSys approach, playing a
fundamental role in the creation of the RobMoSys community. The presence and the commitment
of industrial players in the RobMoSys consortium, such as Siemens, PAL Robotics and COMAU,
helps in that regards, as convincing users and developers of advanced robotics systems.

During the project, the core partners created Pilot “skeletons” conforming to the proposed method-
ology and built out of the basic building blocks developed in the project. These Pilots are examples
of different robotic applications and use cases with different focus proposed by the partners ac-
cording to their own individual background, motivation and requirements. The RobMoSys project
is very ambitious regarding the number of application domains and user stories that the RobMoSys
approach addresses, from the development of single software components, up to the creation and
the configuration of complex and predictable software systems. To have a better overview on
the features that each pilot covers a coverage matrix of the Pilot cases has been compiled. This
matrix was also used as an instrument to guide the focus of the different Pilot applications. In an
effort to assess the benefits of the RobMoSys approach in the context of the consortium Pilots,
the so-called "Goal-Question-Metric (GQM)" approach was used. In this approach a set of goals
is first defined. Then, for each goal, a set of questions is specified to asses the achievement of
the goal. To answer these questions, a set of metrics is used. Once the goals, questions and
metrics have been specified, a benchmarking plan was elaborated to asses the overall benefit of
the approach in the context of each Pilot.

Interactions with the academic partners, the main developers of RobMoSys models and tools
(i.e., the RobMoSys software baselines), was strong throughout the project. In this sense, the
Pilot cases were the main drivers of the motion, perception and world model stacks, pushing
concrete requirements and priorities on functionalities and the tools, which were necessary for the
realization of each case. In particular, the world model was subject of several discussions, since
it happens to be the most common stack in all Pilots. A result of these interactions is a better
design of a composable world model stack. In the same vein, Pilot partners have spent significant
efforts as early adopters of the RobMoSys software baselines, from which they started to build
Pilot skeletons, that is, a refinement of the Pilot cases, defined in the first report on Pilot cases
(Deliverable D4.1), in terms of models and meta-models to use.

Finally, Pilot cases served as reference and starting point for most of the Integrated Technical
Projects (ITPs) in the second round of ITPs. Many ITPs build upon the Pilot cases and skeletons
developed by the consortium, using, for example, models already available.

The most important result of the Pilot cases is that they clearly showcase the composability
of models developed applying the RobMoSys approach. Many Pilot cases explicitly targeted
this important aspect of system development from the beginning. But more convincing are the
demonstrations of composability that took place spontaneously during the project. An example
is the utilization of the Behavior.Tree.CPP framework, developed by one of the ITPs in the first
round by several ITPs in the second round, and even by the Pilots of the core partners.

This Deliverable presents the final report on the development of each pilot case, handled by
industrial and academic partners of the RobMoSys consortium.
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1. The RobMoSys Approach and Pilot
Cases: an Overview
Pilots are application-centric systems aimed to demonstrate the use of the proposed model-driven
methodology through the development of full applications. Pilots span different domains and
different kinds of applications (and hence requirements), centered around the core applications of
“navigation” and “(mobile) manipulation”.

During the project, the core partners created Pilot “skeletons” conforming to the proposed method-
ology and built out of the basic building blocks developed in the project. These Pilots are examples
of different robotic applications and use cases with different focus proposed by the partners ac-
cording to their own individual background, motivation and requirements.

The project Pilots evolved together with the technical developments of the project. While some of
Pilots follow the RobMoSys approach from the initial design and implementation, others involve
legacy systems that are not RobMoSys conform.

Five different Pilots have been developed during the project and each Pilot considers one or more
different use cases that focus on different aspects of the RobMoSys approach. Section 1.1 presents
an overview of the focus of the different project Pilots and use cases, and the remainder of this
report describes in detail each individual Pilot.

In addition to the description of the application scenario, setup, focus and technical details, each
Pilot also proposes several key performance indicators aimed at evaluating then benefits of the
RobMoSys approach in its own context. Section 1.2 introduces the approach that was followed
for the benchmarking of the approach in the context of the Pilots.

The Pilots not only demonstrate and validate the use of the RobMoSys approach, they are also
the basis for some of the project’s Integrated Technical Projects (ITPs). The Pilots provide
specifications of appropriate levels of interfacing conforming to the RobMoSys approach for the
ITPs to build upon or extend.

1.1 Pilot Coverage Matrix

The aim of having different pilot scenarios is to show the multiple benefits of the RobMoSys ap-
proach, and to ensure that the approach is generic enough to be adopted by different stakeholders
operating in different (robotics application) contexts. To have a better overview on the features
that each pilot covers, a pilot coverage matrix is presented in Tab. 1.1. The coverage matrix
highlights which roles, metamodels, robotic domains are used in each pilot, which tools are
used and up to which level of composition the pilot targets to. In particular, RobMoSys features
can be found in every pilot scenario, but the aim of the coverage matrix is to indicate the major
features (or selling points) which have a major impact on the concrete pilot. The coverage matrix
was also used as an instrument to guide the focus of the different Pilot applications by helping to
indentify white spots and areas of large overlap. The coverage matrix was continously updated
during the run of the project as new technical features and results from the ITPs became available,
and the focus of the Pilot cases changed.

• Ecosystem Roles such as Component Supplier and System Builder involved in the
development of the robotic application, as described in the relative RobMoSys wiki page;
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• Metamodels that are fundamental for the pilot development. Even if all RobMoSys meta-
models are needed for the development of any robotic application, each pilot focuses the
attention on a subset of those, which are necessary for the specific problem addressed by
the considered scenario;

• Robotic Domain Models, as the concrete models employed for the development of the
robotic applications. Those models are various, and it is simply reported a convenient
grouping of those. More details will be discussed in each pilot case in the following chapters.

• Composition. This denotes the type and level of composability required by the pilot, and
it strongly differs from pilot to pilot. For example, some pilot focuses on the building of
a fully-fledged application, employing existing RobMoSys compliant software component
and focusing on the “Task Composition”; other pilots focus instead on the development
of a concrete functionality by means of composition between components or even within a
single software component, and dealing with all possible consequences of a different software
configuration;

• Tools and Software Baseline, as the list of software currently employed (or planned to be
used) for the realisation of the pilot. This aids to identify which pilots can be referred as
“tutorial” of each single tool developed by the RobMoSys project partners (core-consortium
and ITP projects).

To each of the elements described above, the following color code is applied to indicate the focus
and the impact in each pilot/user story:

• Green : the user story focuses directly on the considered element (a feature, a role, a model,
etc.) and it shows its benefits, or the specific functionality/model has even been developed
on purpose for the pilot;

• Cyan : the user story uses the indicated element (a feature, a role, a model, etc), but it is
not major focus of the user story, nor an enabler of the benefits that the user story aims to
cover;

• Yellow : the element (feature, role, model, etc) could be employed for the pilot case, but
currently there is not plan or focus on such an element;

• White/empty : the specific element is not considered or non-relevant for the pilot case.

Further details of each pilot and user story is presented in the following Chapters of this document
(Ch. 2-Ch. 6).

1.2 Key Performance Indicators and Benchmarking

Robotic systems are complex systems and there is no straight-forward way to characterize them
so that two different systems can be compared in a meaningfull way. Comparing the development
(process) of robotic systems is even more difficult since it often requires metrics about the devel-
opment of many different systems for different applications, in different setups and scenarios, and
by many different users in different roles.
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10.5 10 13 10.5 10.5 13 7 13 18.5 9.5 17 20

Ecosystem Roles

Behaviour Developer 7
Component Supplier 6
Function Developer 4

Performance Designer 4
Safety Engineer 2
Service Designer 8.5
System Architect 6.5
System Builder 6

Metamodels

Robotic Behaviour 6
Communication-Object 7.5
Communication-Pattern 7.5
Component-Definition 9.5

Deployment 3.5
Functional Architecture 1

Cause-Effect-Chain and its Analysis 1.5
Platform 1

System Service Architecture and Service Fulfillment 4
Service-Definition 5

System Component Architecture 3

Robotic Domain Models

Motion 0.5
Perception 5

World Models 4.5
Flexible Navigation 2.5

Active Object Recognition 5.5
Digital Data Representation 4.5

Composition

Task Composition 7
Service-based Composition 8.5
Composition of algorithms 2.5

Managing Cause-Effect Chains in Component Composition 2.5
Coordinating Activities and Life Cycle of Software Components 0.5

Tools and Software Baseline
SmartMDSD 6

Papyrus for Robotics 4
Groot 1

BehaviorTree.CPP 4

Table 1.1: Pilot Coverage Matrix. A value is assigned to each color code: Green = 1, Cyan =
0.6, Yellow = 0, White = 0, and the sums of these values are displayed for each row and column
in the matrix.
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In an effort to assess the benefits of the RobMoSys approach in the context of the consortium
Pilots, we follow the "Goal-Question-Metric (GQM)" approach1. This approach has been widely
used for product and process assesment, including improvement assessment. It has also been used
as evaluation framework in the ECSEL JU and the EC funded project AMASS2 as well as in the
first open call integrated technical project eITUS3.
In the GQM approach, a set of goals is first defined. Then, for each goal, a set of questions is
specified to asses the achievment of the goal. To answer these questions, a set of metrics are
defined. Once the goals, questions and metrics have been specified, a benchmarking plan can be
elaborated assesing the overall benefit of the approach being evaluated.
In the following sections, the goals, questions, metrics, benchmarking plan and results for each
individual Pilot are presented. An initial version of the benchmarking metrics and plans was
presented in the previous report. This initial version was then reviewed, refined and finally imple-
mented taking into account the benchmarking plans of all other Pilots, technical progress of the
project and results of the ITPs.

1.2.1 Benchmarking Challenges

During the definition and implementation of the benchmarking plans, several practical difficulties
became evident. The most common issues were the following:

• Most quantitative metrics found such as number of components or number of configuration
parameters are better suited for assessing the resulting system and not so much for assessing
the development process itself. This process is, however, where the focus of the RobMoSys
approach primarily lies.

• Most metrics don’t have an absolute reference value for interpretation. In these cases,
assertions about the benefits of the RobMoSys approach can only be made by comparing the
values against a reference or baseline value. During benchmarking, it was often difficult to
obtain these reference values since this would in essence require developing the system twice:
once following the RobMoSys approach and once following a different approach, keeping
track, both times, of all the data required for computing the metrics. Developing two
systems in parallel or the same system twice was not practicable. Some of the Pilot systems
where either developed using the RobMoSys approach from the beginning or consisted of
hybrid systems where only a component of the system was developed using the RobMoSys
approach on top of existing components.

• In addition to the difficulties in obtaining reference values for the metrics, another pitfall
faced was the choice of baseline approach to compare the RobMoSys approach against. For
a fair comparison the reference approach must be selected appropriately, considering the
aspects of the approaches that will be compared. The selection of the baseline approach
is not only a theoretical challenge but also a practical one since for some of the Pilot
applications the baseline system was fixed from the beginning.

Despite the weaknesses of the benchmarking strategy, its strength is that it helps in assessing
the advantages of the RobMoSys approach in a focused way, by clearly stating the scope of the

1R. van Solingen, E. Berghout: The Goal/Question/Metric Method: A Practical Guide for Quality Improvement
of Software Development, McGraw-Hill (1999)

2https://www.amass-ecsel.eu
3https://robmosys.eu/e-itus
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evaluation by clearly defined goals. It is of key importance to keep the context of the goal and
the focus of the application in mind when interpreting the benchmarking results.
To further support the benchmarking results and in complement of the quantitative metrics, we
include in this section a selection of testimonials about the RobMoSys approach collected through
the execution of the project as a qualitative level metric. A more complete list of testimonials can
be found in the RobMoSys webpage4:

• "The methodology of RobMoSys allows us to improve how we build and assemble systems
with components. This goes beyond the limitations of most software middleware used in
robotics, which gives little support to help integrators figure out how to combine components
effectively.", Lorenzo di Natale, IIT

• "We are proud of being part of RobMoSys as you become part of a bigger ecosystem which
can improve the impact of your work. Compared to other research formats and projects,
RobMoSys is more demanding, but at the same time more effective.", Matteo Matteucci,
Politecnico di Milano

• "The Intralogistics Industry 4.0 Robot Fleet Pilot is already conforming to RobMoSys and
is supported by the SmartMDSD Toolchain. That allowed us to directly showcase our
ITP contributions to RobMoSys in that complex and industry-relevant application with no
additional effort.", Cristina Vicente-Chicote, Universidad de Extremadura

• "I am quite impressed with the maturity of the RobMoSys tools (here SmartMDSD Toolchain).
I can recommend it to grasp the practical consequences of RobMoSys and apply the concepts
in an effective way. Even in the first steps, you will understand the power of the approach
and how you can gain from RobMoSys: It makes the composition of systems easier and I
see the benefit of separation of roles. I feel at home with RobMoSys now.", Bouke Krom,
TNO Netherlands Organization for Applied Scientific Research

4https://robmosys.eu/testimonials/
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2. Flexible Assembly Cell (Siemens/TUM)
2.1 Summary

The primary focus of this pilot is the development of the basic functionality for a minimal applica-
tion. This setup allows us to realize the “flexible assembly cell” scenarios, showcasing the benefits
of the RobMoSys approach. Specifically, these scenarios aim to show how task-level coordination
and composition is employed in an industrial use case. The main efforts allow us to progress in
the definition and the selection of the models employed in the Pilot case, the development of the
Pilot scenario, and exposure of basic (legacy) functionalities implemented in proprietary, industrial
environment.

2.2 Pilot Scenario and Use Cases

Modern automation devices such as advanced robotic arms, perception systems and high-end
industrial PCs do not rely on simple I/O signals for communications as their predecessors did,
but they provide full-fledged, high-level application programming interfaces to access the device’s
features and functionality. This is also due to the fact that modern automation devices are
now complex systems by itself, composed by a multitude of subsystems for motion and sensing.
Therefore, developing modern automation systems means developing individually more complex
devices and functionality that can be utilized in a wide range of different application scenarios.

Complex devices and functionality must be combined with other existing devices, providing an
overall set of functionalities to perform a given task in a flexible way. Those complex “systems of
systems” must be reliable, not only from the functionality point of view, but also regarding non-
functional features of the overall solution: real-time capabilities, latencies, semantic compatibility
of the shared data, traceability of each step in the industrial process just to mention a few.

This Pilot focuses specifically on highly-flexible industrial automation. It showcases the devel-
opment and programming of advanced automation systems that can perform a large range of
different tasks with high demands on performance an adaptability.

The Pilot Scenario

The stage of this Pilot is the ongoing industrial revolution largely driven by the increasing demand
for flexible automation. This revolution is characterized by constantly increasing numbers of
product variants, constantly decreasing product life cycles and constantly decreasing lot sizes.
End-to-end automation using classic approaches is not always feasible in this context, leading to
low degrees of automation in many phases of production. One of the phases still executed mostly
manually is discrete manufacturing where automation, using classical approaches, is not cost-
effective for large number of product variants due to the associated high engineering costs. One
of the target systems of this Pilot is a flexible assembly cell for manufacturing different complex
components. The cell has a high degree of autonomy and does not rely on special-purpose tools
or sensors.

Flexible intra logistics and material transport is another fundamental requirement for a flexible
production. Classical solutions such as conveyor systems cannot fulfill the increasing demand for
flexibility. Constant reconfigurations of the shop floor and material flow are becoming increasingly
common. The second target hardware in this Pilot is a mobile manipulator system for flexible
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material transport. The system consists of a an advanced robotic arm for material handling on
top of a mobile platform. The system can use its sensors for navigation and does not require fixed
tracks on the floor for navigating - collision free - from one location to another.
One final but important aspect of our Pilot scenario is the interaction with existing "legacy"
systems. A large number of automation scenarios extend or closely interact with existing systems.
In this so-called "brownfield" scenarios, new systems (and approaches) must take into account,
coexist and very frequently even rely on systems that are already in operation and cannot be easily
modified. For Siemens, as the leading European provider of factory automation products, systems
and solutions, the seamless interaction with legacy system is one of the most relevant aspects of
system development.

Use cases

Two use cases are considered: task programming and the problem of replacing a hardware or
software component. In the first use case, the “user” plays the role of the Behavior Developer,
who specifies different assembly tasks using reusable and composable task blocks, without knowing
the details of the software and hardware components that will be ultimately used for realizing the
task. That is, this first use case focuses on Task-Level Coordination and Composition.
In the second use case, the “user” plays the role of the System Builder, who replaces a software
component. For example, the possible causes of the replacement of a software component are
due to a replacement in the equipped hardware, or a different implementation choice of the same
functionality. After the replacement of a software component in the system, there is the need to
check whether both functional and non-functional requirements are still met: this is addressed in
this second use case.

2.3 Setup Description

Figure 2.1: Hardware components of the flexible assembly cell setup: two advanced robotic arms,
each equipped with a 2D camera for perception and a gripper for object manipulation.

The setup for this Pilot consists of two systems: (i) a flexible assembly cell and (ii) an advanced
mobile manipulator. Figure 2.1 depicts the hardware setup of the flexible assembly cell system
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Figure 2.2: Exemplary flexible assembly cell task: mounting top-hat rail modules on a control
cabinet. The left image depicts an example control cabinet with three different modules of
two different types. The image group on the right shows the results of the object detection
functionality.

used in this Pilot which consists of two advanced robotic arms, each equipped with a 2D camera
for perception and a gripper for object manipulation. The cell is also equipped with a 3D camera
for monitoring the work space. The intended application of this cell is a discrete assembly.
Concretely, we consider the task of mounting top-hat rail modules on a control cabinet such as
the one depicted in Figure 2.2. The task consists in clipping the modules on the rail. The type
and number of modules, as well as their positions on the rail is part of the task specification. The
modules are initially located in storage positions and the rough initial position of the top-hat rail
is also known in advanced. The task consists in picking the right modules in the right order and
clipping them on the rail. The perception system is used for accurately determining the poses of
the modules and the rail. The right-hand side of Figure 2.2 shows the results of the model-based
object detection component currently in use.

The hardware setup of the machine tending system is depicted in Figure 2.3. It consists of a mobile
manipulator including a mobile based with an advanced robotic arm equipped with a 3D camera
for perception and a gripper for object manipulation. A CNC milling machine is also part of the
setup. The intended application of this mobile manipulator is a machine tending task where the
mobile manipulator has to (1) fetch a work piece from their storage location (2) feed the machine
with the work piece (3) retrieve the processed work piece from the machine (4) and bring it to a
possibly different storage location . Just as in the flexible assembly application, the initial location
of the work piece is only roughly specified. In this setup, the 3D camera is used for accurately
determining its pose. Furthermore, a navigation system is used to move the mobile base from one
location to the other using laser and odometry data for localization. To communicate with the
milling machine OPC UA is used as basic interaction with the CNC control unit, for example, for
running the milling program.

For realizing both the machine tending and the flexible assembly applications, most of the basic
functionalities are realized directly in the programming environment provided by the hardware
manufacturers. Those functionalities are then exposed as components of the software system as
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Figure 2.3: Hardware components of the machine tending cell setup: mobile based with an
advanced robotic arm equipped with a 3D camera for perception and a gripper for object manip-
ulation.

Figure 2.4: Machine tending task. The mobile manipulator has to feed the CNC milling machine
and run the appropriate program. Afterwards, the processed work piece is retrieved from the
machine and transported to a storage location

described in Section 2.5. This choice has been made to show how the RobMoSys approach can
deal with industrial, off the shelf hardware, and related proprietary/legacy software. Furthermore,
third-party libraries (some of which are proprietary) are also used to implement functionalities such
as object detection, motion planning, object manipulation and mobile robot navigation.

2.4 Pilot Focus and Coverage of RobMoSys Features

The main focus of this Pilot is to show composition of software and hardware components for
industrial production, in particular, composition at the task level. The first use case concerns task
programming. In this context, the main RobMoSys Ecosystem Role is the one of the Behavior
Developer. The Behavior Developer can specify or program a task, such as assembly (or machine
tending) using the functionalities provided by an existing component-based architecture and a se-
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lection of existing software components that realize it. These functionalities are accessible through
Skill Interfaces. Skills are the building blocks available to the Behavior Developer to program the
robotic application. Concretely, skills abstract a particular subset of software components in the
component-based architecture (and its configuration) that realize a specified functionality. This
abstraction allows us to separate the concrete component-based implementation (and the rela-
tive choices) with respect to the task definition, which is now independent from implementation
aspects.
The motivation is that the Behavior Developer does not need to know the details about the software
and hardware components that will be employed to ultimately realize the robotic application,
delegating those choices to the System Builder. Moreover, the same task specification can be
performed by another robotic system, consisting of different components (software and hardware),
but having analogous capabilities.
The list of skills (i.e. the Skill models) available to the Behavior Developer for programming the
tasks are part of the Digital Datasheet of the system. Following the RobMoSys work flow:

• a Domain Expert defines the set of relevant skills in the form of Skill Definitions models;

• the Component Supplier provides the Skill Realizations that implement the previously de-
fined Skill Definitions;

• a System Builder composes multiple components, ensuring that the resulting (software)
component composition provides the required set of skills;

• finally, the Behavior Developer can select and compose the skills required for realizing the
task at hand.

In this first use case we demonstrate how a user in the role of the Behavior Developer can program
different applications by composing tasks from a catalog of available skills.
The Behavior Developer role relates directly to the Robotics Behavior Metamodel. This model
defines structures for modeling the sequence of tasks the system must execute in order to re-
alize a given application. These tasks can be organized hierarchically, but at the lower level of
the hierarchy the tasks are actually executed by orchestrating subordinate software components.
Skills serve as the interface between the software components and the tasks. Behavior models
represent the functionality of the system on a symbolic level. They define how a certain task is
archived by coordinating and configuring the software components of the system thus making use
of the functionality realized within the components. The skill models use an explicated coordi-
nation/configuration interface to interact with the components in the system. This interaction
includes, for example, run-time configuration using modeled parameters, activation of the activ-
ities within the component and control of the component’s life-cycle. Given that the focus of
this first use case is to demonstrate task-level composition, the Robotics Behavior Metamodel is
one of the most relevant models for this use case. By demonstrating how the Behavior Developer
combines tasks to realize an application we show how the Behavior models make composition
possible.
The machine tending application should have a Domain Model on its own and in general intersect
and depends on several robotic Domain Models. In our particular scenario we limit ourselves to
the Motion, Perception, World Models and Flexible Navigation domains. However, contributing
to these domains is not the focus of this use case. The Skills Definitions for (mobile) manipulation
and machine tending required for realizing the application of this use case are only required for
the implementation and are not meant to extend existing domains nor to propose new ones.
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This first use case focuses on Task-level Composition of behaviors. Tasks can be executed in
sequence or in parallel (horizontal composition) and can build hierarchies (vertical composition).
Task hierarchies ca be static (i.e. scripted) or be computed dynamically by a symbolic planner,
for example. In this use case tasks (hierarchies) are static. The Behavior Developer explicitly
specifies the sequence of tasks that realizes the desired application. This includes sequences for
dealing with contingencies. In this use case, Behavior Trees where used to script the tasks. Other
relevant composition types and aspects such as Service-based Composition, Managing Cause-
Effects Chains in Component Composition and Coordinating Activities and Life-Cycle of Software
Components are not in the scope of this use case.
For developing the RobMoSys-conform models and software components required for realizing the
application in this use case, the SmartMDSD toolchain was chosen as integrated development
environment. In addition to a relatively large software baseline of existing RobMoSys-conform
models and software components, the SmartMDSD toolchain offers convenient features such as
automatic code generation and deployment. For defining and executing the Behavior Trees that
realize the applications, the BehaviorTree.CPP framework was used with Groot as a graphical
frontend for a userfriendly definition of the execution logic.

2.5 Technical Details

In this section we discuss the technical details of our two demonstrators that highlight the different
user stories. We first discuss a machine tending scenario, which highlights the importance of
separation of concerns, the reduction of complexity with expressive models, explicit representation
of parameters, and encapsulation within different modules.
Secondly, we highlight the flexibility of the model driven approach, discussing the replacement of
a component within our existing system. This easy exchange of components not only facilitates
experiments and the evaluation of new algorithms, but also enables even small groups to contribute
to an open platform and gain access to large markets.

2.5.1 User story: Task-oriented programming

In todays industrial applications, the use of autonomous machines is oftentimes too complex to
setup due to the large number of components to pick from and the difficulties to parametrize
them. In this user story, we discuss the model driven approach of RobMoSys for the task-oriented
programming, which encapsulates and models behaviors to facilitate the composition of new
systems from existing modules.
Fig. 2.5 depicts the system component architecture diagram, as modeled in the SmartMDSD
Toolchain. The system consists mostly of mixed-port components such as the ComponentSkillLocateMaterial,
ComponentSkillPick and ComponentSkillMovePlatform components for accessing the base
system functionality of the system. The ComponentTaskController component realizes the
machine tending application by orchestrating the components implementing the system skills.
For some of the devices employed, a ROS interface has been previously developed, as part of “code
legacy” of the RobMoSys partner leading this Pilot (Siemens). To speed up the development
time, in this first phase the ROS interface is used to provide access to these functionalities for the
machine tending and flexible assembly applications, since those have been previously implemented.
This is not a limitation of the Pilot itself, given the focus that the Pilot considers (ie, composition
at task level, task programming). Besides, this Pilot also shows how RobMoSys can handle and
“play nicely” with legacy code, even if the RobMoSys benefits will be limited by the capabilities
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Figure 2.5: System component architecture diagram. The system consists largely of mixed-port
components that provide access to the system functionality realized in ROS (legacy). An executive
control component executes the application by orchestrating the other components.

and the design of the existing code base (eg, verification of non-functional properties, limited
reconfigurability/composability, etc). However, some software components may be replaced with
native RobMoSys components to highlight the benefits to the overall system that the RobMoSys
approach enables.

In order to access to those base functionality from RobMoSys tooling and components over ROS,
mixed-port components (with ROS) were implemented. A software component for the specification
and execution of the machine tending task is used. An alternative realization using a Behavior
Tree has been implemented as well.

In details, mixed-port components access the functionality implemented in ROS and provide a
service for this functionality that can be then used by other RobMoSys components, acting as
a bridge between the ROS and RobMoSys-based systems. The base system functionalities are
grouped as skills, allowing both systems to interact on the same level of abstraction.

Although each mixed-port component could directly interface with its corresponding ROS coun-
terpart, in the current realization of the system, a single ROS service was used for accessing all
the skills implemented in ROS. Through the parameters passed to this ROS service, the intended
skill is then identified and executed within the ROS system. Fig. 2.6 depicts the structure of
the ComponentSkillLocateMaterial and the ComponentSkillPick components, as modeled
in the SmartMDSD Toolchain. As expected, the structure of the two components is identical.
Only the names of the component Modes, the parameters and the results differ. For example, the
parameter of the ComponentSkillLocateMaterial consist of the id of the type of object to be
located whereas the parameter of the ComponentSkillPick consists only of the id of the object
to be picked.

In the current system, the management of most world model data takes place within the ROS
system. For instance, the content of the result of the ComponentSkillLocateMaterial com-
ponent is the id of the object that was located. The actual (6D) pose of the located object, for
example, remains within the ROS system and is never translated into a RobMoSys object to be
used by other RobMoSys components. The ComponentSkillPick component then uses the id of
the located object. The association between the object id and its pose takes place within the ROS
system. The RobMoSys component responsible for the orchestration of the other components
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Figure 2.6: Structure of the ComponentSkillLocateMaterial and the ComponentSkillPick

mixed-port components for bridging the ROS and RobMoSys systems.

is the ComponentTaskController component. This component triggers all other components
with the correct parametrization and at the right time. Due to the standardized modeled inter-
face, more advanced algorithms and user interfaces can be used. This eases the configuration of
complex systems, for example by using a graphical editor to configure behavior trees Figure 2.7.

Figure 2.7: Graphical editor for the complex task specification using a behavior tree.

The approach for managing the world model information described above is just an temporary
work around for the world model. The approach only works in well structured, static scenarios
and doesn’t support for real contingency planing. A World Model component is needed for
managing and providing access to world model information to other RobMoSys components in
the system. For example, the ComponentSkillLocateMaterial component should add as result
of its execution a new instance of the located object into the world model indicating its pose and
other relevant information such as a time stamp. The ComponentSkillPick component could
then directly query the World Model to obtain the pose of the object to pick.

The most important functionality of the world model is to keep track of the poses objects in the
world over time with respect to an associated coordinate frame. For example, the 3D pose of
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the manipulated object. This pose could be represented, for instance as a 3D position with a 3D
orientation where the 3D position consists of 3 values for the x,y and z coordinates of the object
and the 3D position is represented as 3 values for the yaw, pitch and roll of the object.

The navigation system of the mobile platform used for the machine tending application poses inter-
esting challenges for the world model component. The ComponentSkillMovePlatform compo-
nent requires for example a map of the environment for navigating. This map is a two-dimensional
representation of the environment where line-segments are used to represent the obstacles in the
environment. The different locations of interest in the environment such as the storage location
and the location of the milling machine are specified relative to the map as a 2D position with
an orientation. For fine localization, locations have their own associated local map, where other
geometrical features in addition to line segments are used for more precisely estimating the pose
of the platform within the local maps. Clearly, the 6D pose of the objects to be manipulated must
also be included in the world model. So the World Model component needs to model not only
the geometry of the world but also the topology of the world consisting of the system, the map,
the local maps, and the object poses.

As the mobile platform navigates through the environment, its pose in the world model has to be
updated. If an objects is being transported, then the pose of the object has to be automatically
updated with the pose of the mobile platform. Any other component should be able to query
the state of mobile platform, the object being transported, or any other object of interest. And
the query should be possible using different reference frames. Once the transported object is
"detached" from the mobile platform, its pose doesn’t change anymore when the pose of the
mobile platform changes. These are just a few of the functionalities that the world model needs
to realize for this scenario.

Another scenario for this user-story, which highlights the general principle of composability within
the RobMoSys approach can be found in our perception stack. With this scenario a typical human-
robot-interaction situation is presented, where a worker conducts assembly operations with the
help of a robot. The worker places finished items in a designated area for the robot to grasp them in
a specific order. Following, the robot picks each item by using a smart object detection algorithm
and performs inspection in order to check whether the item is correctly assembled. The robot
places the correctly assembled item in a dedicated area, otherwise the robot returns the incorrectly
assembled item back to the worker for additional repair. This scenario represents collaboration
between two EU projects, RobMoSys and HORSE. RobMoSys’ tool Papyrus4Robotics was used
for the perception components, which were integrated in a modular way with the task planning
module from HORSE. This allows easy composition of new scenarios using existing components

2.5.2 User story: Hardware and Software component replacement

In this user story, the replacement of components is required due to different requirements of the
current task or limited availability of components.

The first scenario builds upon the perception pipeline example of our previous user-story. The
RobMoSys approach allows the workers to exchange different perception implementations in order
to adjust for increased accuracy depending on the situation and target items involved. Addition-
ally, RobMoSys allows us for an easy hardware replacement, such that we can use of different
grippers for specific item types. We demonstrate the ease of modifications in human robot col-
laborative workcell for flexible assembly processes. For different types of assembly items a set of
two grippers were used together with the specific perception component. All the software and
hardware components follow the approach of RobMoSys composability, allowing to the user to
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easily adapt for the requirements of the assembly process.

Figure 2.8: Software/Hardware component replacement schematic.

All the components are implemented using the RobMoSys tool Papyrus4Robotics and are available
in the perception stack.
In the secend scenario we replace the controls of the robot because of the limited availability
of one input method. The example application is teleoperation of the flexible assembly cell, as
depicted in Figure 2.9. In the existing setup a joystick (Component A) is available and can be
used to teleoperate the robot. Therefore, the commands of the joystick are converted into a set
of motion constraints, which then are converted into robot axis commands. These conversions
and computations are performed by the constraint control module. The robot axis commands are
send to the robot controller and executed on the robot hardware.

Figure 2.9: The target application for the hardware component exchange is teleoperation. Here,
the robot is teleoperated using a joystick (Component A). When transferring to a different user
without joystick, it is required to replace it with a keyboard (Component B).

A different user of the system does not have a joystick at hand and needs an alternative in order
to be able to teleoperate the robot. Therefore, an exchange of the joystick with a keyboard
(Component B) in combination with the associated driver software modules is required. Without
clear interfaces and abstractions, this steps can only be performed by an expert, which can dive into
the code of the overall system. In order to allow a non-code component exchange, the system
is provided with models using the RobMoSys approach. As tooling, the RobMoSys conform
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SmartMDSD is used.

Figure 2.10: The intial SmartMDSD system model which represents the software view on the
system. The joystick server provides target commands via CommJoystick messages, which are
converted to robot commands in ComponentConstraintBuilder and ComponentRobotConstraintIn-
terface.

In Figure 2.10 the model of the original system with joystick is displayed. Here the Constraint
Control Module is again separated into two different software components, the ComponentCon-
straintBuilder and the ComponentRobotConstraintInterface. The former converts joystick com-
mands into motion constraints. The latter converts these motion constraints into axis commands
and communicates with the robot.

The joystick is connected via the ComponentKeyboardJoystick, which receives the commands from
the joystick and converts them into messages of type CommJoystick. This component is already
part of the SmartMDSD model library and can therefore easily be reused without implementation
effort. The constraint control components and the keyboard interface were newly modeled for the
application at hand. However, with existing code as in the presented example, this is associated
with minor effort.

Figure 2.11: Here the new system model with the new ComponentKeyboardJoystick is displayed.
Due to the reuse of model, e.g., of the the CommJoystick message, the system adaptation is easy
to realize.

Now, with models readily available, the exchange of the joystick can be done by a system designer
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(Tier 3) without touching the code of the system. Only the joystick component has to be removed
and replaced with the keyboard component via the visual editing tool. The result is displayed
in 2.11. It can be seen, that no other change was necessary apart from the component exchange
at the system design level.

2.6 Key Performance Indicators

In this section we present the set of key performance indicators that are to be used for evaluating
the benefits of the RobMoSys approach in the context of this Pilot. Since this Pilot focuses on
task-level programming and composition, the proposed performance indicators try to asses the
effort associated to programming and system composition at task-level.

2.6.1 Goals

At this stage, we focus on the following overall goal of the RobMoSys approach:

SIE-G1 Reduce application programming efforts by increasing the harmonization and interoper-
ability (composability) of the system functionalities.

The reduction of application programming and in general system engineering efforts is, for Siemens,
one of the most promising expected benefits of the RobMoSys approach. Studies show that about
35% of the total cost of robotics systems are associated to the engineering and programming of
the system.

2.6.2 Questions

Based on the overall goal presented in the previous section, the following questions were formulated
to help estimate the level of achievement of the goal in the context of this Pilot. The questions
are formulated from the point of view of the user in the Behavior Developer role.

• Questions related to goal SIE-G1: Reduce application programming efforts

SIE-Q1 How do I choose the right functionality?

One important and time-consuming step during task-level programming is selecting the
appropriate functionality needed for realizing the desired task. Enabling and supporting
the user in the Behavior Developer to decide on the required functionality would lead
to a reduction of the overall programming effort. Related questions would be, for
example: How do I know what system functionality is available, and how can I be sure
that the functionality does what is advertises to do?

SIE-Q2 How can I find out which functionality/component is not performing
as expected?

Another important, and also time-consuming step in task-level programming is verifying
that the selected (functional) components are behaving as expected. This is true not
only for the case of a mal-functioning component or system (i.e. debugging) but also
for analyzing the general behavior of the system and its individual components. A
related question for the user in the role of the Behavior Developer would be: How can
I be sure that my application does what it is intended to do?
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2.6.3 Metrics

The following metrics should help to answer the questions posed in the previous section. As
with many metrics, without a reference value, they are only to be understood as an indicator.
Furthermore, most of them are variations of the same underlying metric of complexity. Even
without a reference value, the reduction of complexity is a valid goal. The appropriate structures
and an adequate separation of roles and concerns as proposed by the RobMoSys approach should
mitigate the problems associated to the complexity of a system.

SIE-M1: Number of functional components

Msie-m1 = Number of available functional components (2.1)

The number of functional components to choose from at the moment of programming an appli-
cation can be used as an indicator of the associated programming effort. The larger the number
of functional components, the larger the number of possible component compositions. This
highlights the importance of appropriate tools for automating the composition and validation of
applications. However, even with the support of such tools, the larger the number of components,
the more numerous the number of choices for the user in the Behavior Developer role.

SIE-M2: Number of configuration parameters

Msie-m2.1 = Total number of configuration parameters (2.2)

Msie-m2.2 = Average number of configuration parameters pro functional component (2.3)

Similar to the number of functional components Msie-m2-1, the number of configuration parameters
relevant for the task of programming an application can be used as an indicator of the associated
programming effort.

Each components has its own set of configuration parameters that specify the behavior of the
realized functionality. The larger the number of configuration parameters, the larger the effort
related to correctly parameterizing the application.

SIE-M3: Number of traceable properties

Msie-m3.1 = Total number of traceable properties (2.4)

Msie-m3.2 = Average number of traceable properties (2.5)

The traceable properties of a functional component are used for monitoring and analyzing the
behavior of the component. The number of traceble properties can be used as an indicator of the
associated programming effort, in particular testing and debugging efforts: the larger the number
of properties, the more complex it is to monitor and analyze behaviors. However, small numbers of
traceable properties don’t necessarily correspond to less programming efforts. Too few traceable
properties can lead to "blind" testing and debugging.
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SIE-M4: Number of different implementations of the same functionality

Msie-m4 = Number of implementations/Number of functionalities (2.6)

It is possible to have more than one implementation of the same functionality. Choosing between
different implementations for the same functionality is another design choice for the users in the
Behavior Developer and System Builder roles. The larger the number of different implementations
of the same functionality the higher the programming efforts.

SIE-M5: Variation between functionally similar components

Msie-m5 =
∑

Different configuration parameters +
∑

Different traceable properties (2.7)

The same functionality ("object detection" functionality, for example) can be realized by different
components. If the configuration parameters and traceable properties of these components where
identical, the user in the Behavior Developer role could simply replace one component with another
without having to change anything else in the system. The larger the number of differences
between the components that realize the same functionality, the more involved is the change.

2.6.4 Benchmark

The benchmarking results according to the Goal-Question-Answer-Metric approach are displayed
in Table 2.1. We will first discuss the user story #1 for task-oriented programming and then
proceed with user story #2 for hardware component replacement.
The user story #1 demonstrates the strengths of the RobMoSys approach for the composition of
new systems on complex industrial tasks. Now, the application of autonomous systems becomes
viable, as the unmanageable number of components and parameters is structured and reduced.
With our metrics we can observe, how the separation of concerns, implemented with our modeling
approach eases the setup of new scenarios. As stated in the last column of Table 2.1, the target of
all scenarios was to reduce the qualitative number of the metrics as good as possible. For the first
scenario, the baseline implementation of column Prior was improved for most metrics. However,
some of the targets are conflicting. For example, less components result in aggregated modules,
which potentially have more degrees of freedom to be parametrized. For sure, the goal is to not
only shift the complexity by this bundling, but to actually reduce it. This is what we can observe
in the first scenario: The total amount of parameters is reduced, however the average number
slightly increases. Thus the complexity is reduced by the RobMoSys approach. It is, however, no
silver bullet and slightly increases the complexity per component.
In the case of the user story #2, where the component exchange is targeted, only low numbers
of components are available. Furthermore, configuration parameters and traceable properties
have not been part of the user story. Therefore, the metrics do not fully reflect the advantages
that the RobMoSys approach displayed in the use case. By employing the model-based software
development approach it was possible to change the system design without a single line of code.
Furthermore, there is a clear separation between the user roles and the interfaces they see. This
reduces the overall engineering effort and prevents to some extent that system design decisions are
taken from an unappropriate user role. Furthermore, it became clear that convenient engineering
tools such as the SmartMDSD toolchain play an important role in proliferating model-based
software and system design in domains such as robotics.
The interpretation of the benchmarking results is only valid withing a well-defined context. In
this Pilot the focus is the reduction of application programming effort (SIE-G1) from the point of
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Goal SIE-G1: Reduce application programming efforts

Question Metric #1 #1 #2 #2 Target
Prior Current Prior Current

SIE-Q1: How do I
choose the right
functionality?

SIE-M1: Number of functional
components

23 4 3 3 Low

SIE-M4: Number of different
implementations of the same
functionality

1 1 2 2 Low

SIE-M5: Variation between
functionally similar components

2 1 None None Low

SIE-Q2: How can
I find out which
functional-
ity/component is
not performing?

SIE-M2.1: Total number of
configuration parameters

46 24 N/A N/A Low

SIE-M2.2: Average number of
configuration parameters per
functional component

2 6 N/A N/A Low

SIE-M3.1: Total number of
traceable properties

138 48 N/A N/A Low

SIE-M3.2: Average number of
traceable properties

6 12 N/A N/A Low

Table 2.1: Benchmarking plan for goal SIE-G1: Reduce application programming efforts.
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view of a user in the Behavior Developer role. A reduction in the number of parameters doesn’t
mean that the parameters are eliminated, it means that the parameter is not visible or relevant
for the user in the Behavior Developer role. These parameter just become then relevant for a user
in a different role. Following the RobMoSys approach doesn’t make the complexity of a problem
disappear. The approach structures and formalizes the problem resolution methodology with the
goal of reducing the overall effort through the whole development life-cycle is reduced. In this
Pilot only a small aspect of the whole is being considered.

Difficulties

The benchmarking process is generally associated with difficulties in mapping the benefits of the
model-based development approach to quantitative properties. The user story #2, for instance,
can be better represented using qualitative statements, such as "no code is needed for the exchange
of a component on system level". Furthermore, the engineering effort has to be set into relation
with the modeling effort and know-how needed. There is only benefit, if the time saved by model-
driven development is less than the effort needed in acquiring the know-how. However, it is hard to
quantify the prior level of know-how of a developer and estimate a percentage of effort reduction
with a statistically relevant number of users. One possible solution to this is to look into the
overall number of users. Because a high number of users that independently decides in favor of a
proposed development methodology means that the methodology provides benefit.
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3. Healthcare Assistive Robot (PAL)
3.1 Progress Summary

During the period M37-M48 the main effort was devoted to the final development of the pilot use
cases on top of the pilot skeleton developed in the past years. The Healthcare Assistive Robot
scenarios were slightly redesigned and adjusted respecting the last pilot progress report, to better
show the benefits of the RobMoSys approach. The role of Behaviour Developer was omitted
due to some difficulties related to the maturity of the Behaviour tools and their use, but also to
better focus on the healthcare scenario. Much work went into configuring the pilot to highlight
the benefits of RobMoSys and extend the core functionalities of the TIAGo robot related to the
healthcare environment under RobMoSys. A benchmarking plan was identified and generated to
evaluate the objectives of the pilot.

An updated version of our docker container with our pilot skeleton and with the basic tools to
work on the RobMoSys framework was released and made available for some ITPs like HRICAR
to easily develop their components.

3.2 Pilot Scenario and Use Cases

This Pilot specifically focuses on robotic adaptation for healthcare scenarios. It showcases the de-
velopment and programming of assistive mobile robots in dynamic and unstructured environments
where the robot has to act, combining several capabilities such as mobility, perception, navigation
and human-robot interaction. Following this goal, the integration and deployment of robots with
various components and different configurations is a central element that involves assistive robots
such PAL Robotics’ TIAGo manipulator1.

Creating assistive robots means not only combining various subsystems but also combining them
into robots that can be adapted to follow the specific requirements of the environment in which
the person lives, as in the examples shown in Figure 3.1. Generally any new hardware and / or new
software from a third party has to be "tuned" and the integration process involves a considerable
effort in terms of person hours and hardware acquisition process. The ability to “compose” and
deploy a new platform by using already developed compliant HW/SW components shortens the
time to market considerably.

Figure 3.1: Examples of TIAGo robot assisting an old man and an old lady respectively.

1https://pal-robotics.com/robots/tiago/
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Scenario

The platform addressed in this Pilot is a TIAGo mobile base manipulator. Figure 3.2 depicts the
TIAGo robot in a standard simulated apartment where two people are present. The TIAGo robot
consists of a wheeled mobile manipulator equipped with odometry, a laser scan, a depth camera,
and a thermal sensor. The different capabilities can be tested in simulation and on the real robot.
The fluorescent red color of the two people in the figure represents a modification made to the
simulated person model options to allow thermal detection of the two people by the sensor.

Figure 3.2: Simulation of TIAGo robot in a standard apartment.

Use cases

Two use cases are considered: Assistive robotic system composition and Replacement of compo-
nents.

In the first use case, the "user" mainly plays the role of the System Builder composing and
manufacturing the mobile manipulator to be used in the apartment where the person needing
assistance lives. In this use case the Component Supplier role is implicitly involved, to provide the
components for the assistive robotic system. The demonstrator prepared consists of an application
where the robot patrols the apartment, executes motions for human-robot interaction and detects
people using different combinations of software and hardware components. As for example the
component that uses the RGBD camera and the deep learning techniques to detect people and
another component that is represented by the thermal camera to improve the detection accuracy.

In the second use case, the “user” plays the role of the System Builder that exchanges components
with the same functionality. The demonstrator prepared consists of an application where the robot
navigates in the apartment using the automatic navigation components that are then exchanged
for the manual navigation components as is without the need to make additional changes.

3.3 Focus and Coverage of RobMoSys Features

The pilot aims to show the ease of building systems through the composition of software and hard-
ware components to complete assistive robotic systems and the ease with which this approach
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brings to replacement of components. This pilot focuses on the Service Based Composition of
the RobMoSys approach and primarily covers the System Builder role. In the first use case the
Component Supplier role is also implicitly involved, to provide the components for the assistive
robotic system. The pilot covers some metamodels and robotic domain models related to all
aspects of mobile assistance in a healthcare setting as indicated in the Pilot Coverage Matrix
above (Table 1.1). The pilot provides valuable information on the accessibility and the usability of
the RobMoSys technology through the SmartMDSD toolchain2. This Integrated Software Devel-
opment Environment (IDE) for system composition in an enterprise robotics software ecosystem
ensures full compliance with the RobMoSys methodology when using this pilot.

The pilot’s motivation is that a new robot has been commissioned for a new apartment where the
person that needs assistance lives. The System Builder wants to provide the best combination of
components that meets the requirements for the specific apartment. This pilot is based on three
different tiers for the composition of the system:

• Tier 1. Basic structures independent of the robotic domain. Mainly, the concept of com-
position of services, the concept of component, and the composition workflow.

• Tier 2. Defines the structures within service robotics. In this scenario, the people recognition,
the localization and the mapping are used.

• Tier 3. This is where the PAL contribution is made. Specific services that provide recognition
of people, arm movements and robot patrol in an apartment. Here, as a Component
Supplier, the user is in charge of providing the software and hardware components to meet
the requirements, while as a System Builder, the user selects various components that
perform the necessary services and combines the basic components.

The RobMoSys composition relies on the Component-Definition and the System Component Ar-
chitecture metamodels. Service definitions act as link between roles and activities. The key aspect
here is that the services decouple interactions so it is possible to compose components free of
interference. The TIAGo healthcare application depends on several Robotic Domain Models. In
our particular scenario, the appropriate domains consist of the Perception and Flexible Navigation
domains. However, in this pilot the existing domains were not extended.

A bridge to the TIAGo base was implemented in order to access the low-level functionalities of the
RobMoSys tools. Where possible, the bridges were replaced with the RobMoSys conformant ROS
Mixed Port to communicate with the existing legacy TIAGo robot system which is 100% ROS
compliant. The pilot is open to the possibility of adding the role of Performance Designer to add
the management of non-functional properties analysis and to the role of Behaviour Developer to
advance with the coordination of tasks, selecting and composing the skills necessary for the task.

3.4 Technical Details

The platform involved in the pilot is a TIAGo robot equipped with a mobile base, a lifting torso, a
head and an articulated arm with a dexterous hand, such as the one depicted in Figure 3.3. This
robot integrates a PAL 7 DoF arm equipped with a 6 axis force torque sensor and an end-effector:
a PAL humanoid hand, a PAL parallel gripper or a third party gripper. The torso includes a
prismatic column, a pan-tilt head with a RGB-D camera and a thermal camera mounted on top

2https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
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of the head. TIAGo features the following characteristics: 70 kg weight, 15 degrees of freedom,
110 up to 140 cm of height, a footprint of 54 cm of diameter. The mobile base has a differential
drive with max speed of 1 m/s and operates in indoor environments. The laser range-finder on
the mobile base of TIAGo has 3 versions: 5.6 m, 10 m and 25 m range. Several human robot
interfaces are integrated like a speaker and a stereo microphone. Also a GPU can be attached to
the robot if needed to enhance the computational power.

From the control software point of view, PAL provides several off-the-self functionalities. The
available controllers allow to command the wheels in velocity, the head and torso in position and
the arm in position and effort mode (sensorless torque control). If provided with the force/torque
sensor it can be controlled with admittance control as well.

For the navigation stack, TIAGo provides a path planning with self-collision avoidance, mapping
and self-localisation. From the Human-Robot Interaction point of view there are several function-
alities available such as arm and gestures motions creation, people and face recognition.

Figure 3.3: TIAGo main components.

Application development and deployment can be easily done from a standalone Docker virtual
machine built specifically by PAL that contains everything needed:

• Ubuntu Xenial 16.04

• Gazebo 7 simulator

• SmartMDSD toolchain updated to v3.12

• ROS Kinetic

• PAL TIAGo packages and configurations

• machine learning libraries and datasets (TensorFlow models)

In the following sub-sections relevant technical details about the use cases of the healthcare pilot
development are presented.
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Figure 3.4: System Component Architecture view for the first use case.

Figure 3.5: System Deployment view for the first use case.

Use case 1: Assistive robotic system composition

Figures 3.4 and 3.5 depict the System Component Architecture and the System Deployment
diagrams, respectively, corresponding to use case 1, as modelled in the SmartMDSD toolchain.

In the first use case PAL has developed several components that model the bridge with the legacy
system:

• RGB-D camera + Deep learning people detection

• Thermal camera + OpenCV people detection

• Motions and gestures creation specifying the arm joints goals to be reached

To speed up development time, components are bridges made by PAL like ROS interfaces, to
access existing legacy code for the TIAGo robot. It also shows how RobMoSys works finely
with legacy code that has been previously implemented, even if the benefits of RobMoSys are
diminished by the capabilities and design of existing code. However, some components can be
replaced with native RobMoSys components as in our architecture where we are using RobMoSys
flexible navigation components3, replacing our navigation stack that is developed in ROS within
the TIAGo framework. The ComponentTIAGoBaseBridge allows communication with the TIAGo
base to obtain the information from the laser sensor, the base position and the velocity and send
the velocity commands to the robot.

3https://robmosys.eu/wiki-sn-01/domain_models:navigation-stack:start
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These bridge components implement the operation modes of the component to be activated and
deactivated when needed and also the instantiation of some trigger parameters to receive the
command to be executed. The coordination interface is integrated in the new robot console that
we created extending the existing component.

In the current structure, the management of the world model data is carried out within the ROS
system. As, for example, the association of the people id and the pose in the world, or the
association between the motion id and the joints configurations of the arm, head and torso is
done at ROS level combining our play motion package4, the tf ROS package and the controllers
developed in TIAGo with the ros control package5.

Summarizing, these are the functionalities developed for the use case:

• ComponentTIAGoBaseBridge is the bridge with the TIAGo base to get the information from
the laser sensor, the base position and velocity, and to send to the robot velocity commands.

• ComponentTIAGoInferenceBridge does the people detection given a compressed image, us-
ing the deep learning algorithms based on the TensorFlow models, as shown in the Figure
3.6.

• ComponentTIAGoHeatDetectorBridge does the people detection using the image from the
thermal camera and the OpenCV algorithms. The output of the people detection algorithm
indicates the color of the temperature gradient of the person detected, as shown in the
Figure 3.6.

• ComponentTIAGoRobotConsole calls the coordination interfaces to run the navigation demo,
play motion demo and people detection demos.

• ComponentTIAGoPlaymotionBridge executes the motions expressed inside the robot by
joints configurations. It can be used, for example, to orientate the TIAGo head to detect
people or to greet the person with an arm motion.

Figure 3.6: Simulation example of people detection with the deep learning component (in the
center) and the thermal detection component (on the right), respectively.

4http://wiki.ros.org/play_motion
5http://wiki.ros.org/ros_control
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Use case 2: Replacement of components

The demonstrator prepared for the second use case consists of an application where the robot
navigates in the apartment using the RobMoSys flexible navigation stack, already introduced in
the first use case, for autonomous navigation. In the following scenario there is the need to manual
navigate the robot in the apartment for different purposes, for example for the map creation or
to make the robot reach a particular location in the apartment. Then the autonomous navigation
components are exchanged by the manual navigation components as is without the need to make
complex adaptations of the configuration and the composition of the robot by the System Builder.

Figure 3.7 shows the System Component Architecture diagrams for the two scenarios, the au-
tonomous navigation and the manual navigation respectively, as modelled in the SmartMDSD
toolchain.

(a) Autonomous navigation

(b) Manual navigation

Figure 3.7: System Component Architecture views for the two scenarios of the second use case.

The ComponentTIAGoBaseBridge, also used in the first use case, allows communication with the
TIAGo base to obtain the information from the laser sensor, the position and velocity of the base,
and send the velocity commands to the robot. This component is used in both the autonomous and
manual scenarios, while the navigation components are easily interchanged. In manual navigation,
only the input is used to send the robot velocity commands, the other input and output ports
are hidden in the diagram. For the autonomous navigation the ComponentTIAGoRobotConsole is
also present, to call the coordination interface of the autonomous navigation components to allow
the robot to patrol the apartment through a certain number of previously defined waypoints.
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Figure 3.8: Internal view of the ROS Mixed Port component for the joystick.

In the manual navigation, the RobMoSys conformant joystick navigation component uses the ROS
Mixed Port component to communicate with the physical joystick that is attached to the robot
and that is made accessible by a topic in the ROS legacy system of the robot. Figure 3.8 shows
the internal view of the ROS Mixed Port component for the joystick. The port on the left named
_joy is the communication point with the ROS ecosystem to access the topic to get the values
of the joystick.

This use case was tested both in simulation and on the real robot, even if the real robot tests were
executed with a shared ROS master communication between the robot and the computer running
the SmartMDSD toolchain due to the difficulties to deploy the RobMoSys framework inside the
robot. The difficulties mainly are due to the current status of the SmartMDSD toolchain where
the process of deployment of the components inside the real robot is still not well defined, future
versions of the toolchain will work in this direction. Figure 3.9 shows two snapshots taken from
the execution of the tests in simulation and in the real robot at the PAL office.

Figure 3.9: Snapshots taken from the execution of the tests in simulation and in the real robot at
the PAL office.

3.5 Key Performance Indicators and Benchmarking

The performance indicators for the first use case will measure the effort reduction for the com-
position and manufacturing of an assistive robotic system that fulfils the functional requirements.
This gain is especially highlighted in the second use case where the productivity is measured using
the RobMoSys approach for components replacement.
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3.5.1 Goals

The overall goal for the TIAGo healthcare Pilot is:

PAL-G1 To demonstrate that a component in a robotic system can be replaced by another
component as-is by increasing the interoperability and the composability of the system
functionalities.

The reduction of deployment and in general system engineering efforts is, for PAL, a big expected
benefit of the RobMoSys approach due to the fact that we have different robotic platforms with
different sensors, hardware devices and different software modules that can be used. This high
variability in building the systems leads to a huge effort every time that a component has to be
replaced by another one.

3.5.2 Questions

The questions are used to characterise the way in which a goal can be assessed, and correspond
to issues that are expected to have major impacts on the achievement of the goal presented in
the previous section. In the context of this Pilot, the questions are formulated from the point of
view of the user in the System Builder role, where the Component Supplier is implicitly involved
to provide the components for the assistive robotic system.

• Questions related to PAL-G1: Components replacement & system composability

PAL-Q1 How can the effort for deployment of an assistive robotic system
based on a new component be reduced?

One important and time-consuming step during the deployment of a robotic system
is putting together the appropriate components needed for realizing the desired robot
duties. Enabling and supporting the user in the System Building to integrate the
required modules, provided by the Component Supplier, would lead to a reduction of
the overall deployment effort. Related questions would be, for example: How can the
effort in designing an assistive robotic system supporting different configurations be
reduced?

PAL-Q2 How can the use of mixed-ports reduce the effort to port an existing
system inside the model driven architecture?

Another important, and also critical step in selecting a new framework of robot deploy-
ment is how to port the existing modules and legacy code avoiding to rewrite everything
from scratch. This takes into account the benefits of having a framework based on a
model-driven architecture like RobMoSys, but trying to reuse as much legacy code as
possible, especially at the beginning when the framework is new and few components
are available.

3.5.3 Metrics

This section describes the metrics used for answering the questions posed in the previous section.
The formulas are intended to better explain what the metric is trying to measure. As with many
metrics, without a reference value, they are only to be understood as an indicator. Even without
a reference value, the reduction of complexity is a valid goal. The appropriate structures and an
adequate separation of roles and concerns as proposed by the RobMoSys approach should mitigate
the problems associated with the complexity of a system.
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PAL-M1: Number of RobMoSys functional components

MPAL-m1 = Number of available RobMoSys functional components (3.1)

The number of functional components to choose from the RobMoSys framework at the moment
of deploying a robot system can be used as an indicator of the associated deployment effort.
The larger the number of functional components, the larger the number of possible component
compositions. This highlights the importance of appropriate tools for automating the composition
and validation of systems. However, even with the support of such tools, the larger the number
of components provided by the Component Supplier, the more numerous the number of choices
the user has in the System Builder role.

This metric can be used as an indicator of the associated deployment effort when to port an
existing system too. The larger the number of implementations of the several functionalities
existing in the RobMoSys framework less effort has to be done to create mixed-ports to reuse the
legacy code.

PAL-M2: Number of configuration parameters

MPAL-m2 = Average number of configuration parameters per component (3.2)

Similar to the number of functional components MPAL-m1, the number of configuration parameters
relevant for the components to build a robotic system can be used as an indicator of the associated
programming effort. Each component has its own set of configuration parameters. The larger the
number of configuration parameters, the larger the effort related to correctly parameterizing the
system.

PAL-M3: Variation between functionally similar components

MPAL-m3 =
∑

Different configuration parameters +
∑

Different inputs and outputs (3.3)

The same functionality ("navigation" functionality, for example) can be realized by different com-
ponents. If the configuration parameters and inputs and outputs of the components were identical,
the user in the System Builder role could simply replace one component with another without
having to change anything else in the system. The larger the number of differences between the
components that realize the same functionality, the more involved is the change.

PAL-M4: Capability to apply different roles in a transparent way for users

MPAL-m4 =

∑
Different configuration parameters +

∑
Different inputs and outputs

Number of functional components
(3.4)

This is a measure of the separation of the System Builder role. How many configuration parameters
and inputs and outputs the System Builder has to set with respect to the number of functional
components available in the system, without knowing the details of the implementation of each
component. The larger the number of settings for the components, the more the System Builder
is involved in the details of the component implementation, which is the role of the Component
Supplier.
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PAL-M5: Number of functional modules existing in the legacy code

MPAL-m5 = Number of available functional modules existing in the legacy code (3.5)

The number of functional modules available in the legacy code at the moment of porting a robot
system deployment to the RobMoSys model driven architecture can be used as an indicator of the
associated effort. The larger the number of functional modules existing, the larger is the effort
to port them in the new framework. This highlights the importance of appropriate tools like the
mixed-ports component for automating the composition and validation of systems communicating
between different frameworks. The easier it will be for the user in the System Builder role to
deploy a robot system without starting everything from scratch but reusing the legacy code as
much as possible.

PAL-M6: Number of steps needed for a mixed-port to reuse legacy code

MPAL-m6 = Number of configuration parameters needed for a mixed-port +

Number of code lines needed to translate the messages between the two framework
(3.6)

The number of configuration parameters relevant for the use of a mixed-port that is needed to
reuse legacy code existing in another framework can be used as an indicator of the associated
deploying effort in the new model driven framework. The larger the number of configuration
parameters and lines of code needed to translate the messages and the communication port logic
between the two frameworks, the larger the effort related to correctly reuse as much as possible
the legacy code.

3.5.4 Benchmark

The table 3.1 presents the final version of the benchmarking plan to assess the overall benefits of
the RobMoSys approach in the context of this Pilot. The Prior column represents the status for
our robotics platforms in the beginning of the RobMoSys project. The Current column represents
the KPIs that we actually achieved in the Pilot and the Target column represents the target goals
that we wanted to reach with the RobMoSys approach. The assessment is done in a qualitative
way using three levels: Low, Medium, High, and a combination of them where needed. The
reasons behind it are related to the benchmarking challenges described in the next sub-section
and also to the fact that it is difficult to come up with a number when we are grouping together
components of different functionalities in the metrics and also when we are measuring qualitative
aspects like the variation and the capability of a component.

As shown in the table, the RobMoSys approach brings a lot of benefits in this Pilot, especially for
the interoperability and the composability of a robotic system starting from several components
or replacing existing components to address new configurations. Some weaknesses can be found
in the deployment of the system inside the real robot and in the availability of components for the
several functions that an assistive robot like TIAGo encounters in a healthcare environment. While
for the first issue it is just a matter of maturity of the tools, the second issue will be addressed the
more the RobMoSys community get bigger. Such as, with the increase of component developers,
more components will be available, avoiding the porting of any legacy code from the existing
framework and facilitating the reuse of existing components.
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Goal PAL-G1: Components replacement & system composability

Question Metric Prior Target Current

PAL-Q1
PAL-M1: Number of RobMoSys func-
tional components

None High Medium-Low

PAL-M2: Number of configuration
parameters

High Low Low

PAL-M3: Variation between function-
ally similar components

Medium Low Low

PAL-M4: Capability to apply different
roles in a transparent way for users

Low High High

PAL-Q2
PAL-M5: Number of functional mod-
ules existing in the legacy code

High Low High

PAL-M1: Number of RobMoSys func-
tional components

None High Medium-Low

PAL-M6: Number of steps needed for
a mixed-port to reuse legacy code

High Low Medium-Low

Table 3.1: Benchmarking plan for goal PAL-G1: Components replacement & system composability.

Benchmarking Challenges

The benchmarking process is generally associated with challenges and difficulties in mapping the
benefits of the model-based development approach to quantitative properties. It is quite difficult
to come up with expressive key performance indicators for this pilot because we want to measure
whether RobMoSys processes lead to better system in terms of effort reduction and productivity
that are important key factors for a System Builder like PAL Robotics. Many of the achievements
are at a qualitative level more than a quantitative one and they are about whether introducing a
model-driven approach to shape a robotics ecosystem based on separation of roles and composition
has been populated with convincing showcases. However, it is hard to quantify the prior level of
know-how of a developer and estimate a percentage of effort reduction with statistically relevant
numbers. One possible solution to this is to look into the overall number of components and roles
transparency. Because a high number of them means that the methodology provides benefit.
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4. Modular Educational Robot (COMAU)
4.1 Progress Summary

The main focus of this pilot is the development of the setup for a basic educational application
through the integration of RobMoSys components and showing the benefits of its overall approach.
In particular the pilot is addressed to showcase the flexibility and modularity of the system via
composition of software components in order to build a complete running application in an easier
and faster way with respect to standard methodologies. During the period M37-M48 the main
effort focused on the final implementation of the pilot use case accordingly to of the pilot skeleton
defined during the project.

4.2 Pilot Scenario and Use Cases

Scenario

The fast growth of the robotics market in the last decade has been able to increase its popularity
also outside of industrial environments, acquiring notoriety within other markets, such as archi-
tectural installations and as tools for educational purposes. The availability of low-cost hardware
platforms and SW platforms allowed the diffusion within industrial and manufacturing fields able
to create interest, culture, and competence in a very fast-growing market. Taking into consider-
ation the educational market can be strategic not only from a prospective point of view but also
for the most variety kind of approach it can suggest. Assembly, mechanic, electronic, Information
Technology are only few of the possible fields to be taken into consideration. Most important
applications where robotics can be applied into educational environments are pedagogic and tech-
nical. The first one uses interaction with very simple robots to develop cognitive attitudes. The
second one more focused to develop competence in HW and SW. Based on the second point
we adapt the development of a modular and scalable platform mainly dedicated for educational
scopes starting from the basic to more advanced applications.

Use cases

The pilot case is based on the open architecture of e.DO platform, a new robot developed for
educational purpose that uses a ROS node to connect the Smartsoft environment with the robotics
framework.
Different uses-cases have been taken into account Developing customized software functionalities
on different levels:

• Basic coding (scratch programming) using task composition

• Emulation of industrial lines to speed up the integration

• Implementation and test of advanced control algorithms

4.3 Focus and Coverage of RobMoSys Features

The pilot combines the SmartMDSD Toolchain and the existing software infrastructure of the
e.DO robot addressing the RobMosys approach in this new robotics platform and enables teachers
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Figure 4.1: e.DO platform

and students on performing and designing complex robotics applications. The objectives are to
enable:

• Developers to easily design new educational applications

• Students to develop their own functionalities

• Users to extend the robot capabilities with new hardware

• Users to easily integrate the robot with a user interface

In particular, in the pilot A communication trough SmartMDSD Toolchain has been established
between an external programing device (such as joystick or inertial sensors) and the e.DO robot

Figure 4.2: User interface for the e.DO platform
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permitting easy and fast programming features as well as an high level of reconfigurability of
the system. A specific component called edotranslater manages the communication with a client
server protocol among e.DO and input device.

Figure 4.3: System architecture of the Pilot application

4.4 Technical Details

In the pilot the e.DO platform is used: it is a modular manipulator with a payload of 1kg, and
composed by 6 motorized axes. The modular design enables the implementation of alternative
kinematic structures with the same motorized units. The main control unit of the e.DO is com-
posed by a Raspberry Pi3 mother-board. ROS melodic, GAzebo 7 and SmartMDSD toolchain are
used in the pilot as well as OpenCV function for detection tasks.

4.5 Key Performance Indicators and Benchmarking

A set of key performance indicators to evaluate the benefits of the RobMoSys approach in the
context of this Pilot have been defined. The main focus of this Pilot is on task-level programming,
and the related KPIs are associated to programming level.

4.5.1 Goals

The overall goal for the Modular Educational Pilot is:

COM-G1 Increase the robot programming ease of use and improve the flexibility of e.DO platform
by model-driven approach

The reduction of efforts needed for programming and setup of the system is for COMAU, a
very important benefits of the RobMoSys approach. This implies a reduction of overall cost of
installation of robotics systems.

4.5.2 Questions

The following questions have been formulated in order to evaluate the level of achievement of the
goal in the context of this Pilot. The questions are formulated from the point of view of the user
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• Questions related to goal COM-G1: Increase the robot programming ease of use

and improve the flexibility of the system

COM-Q1 How could a model driven approach by task composition reduce
programming efforts?

The possibility to select the appropriate functionalities to achieve the specific task
would be an advantage for the user in terms of time consumption and efforts on pro-
gramming step. The system would be able to support the user on the task composition
phase allowing the definition trough the model driven approach of a set of functionality
available on the system

COM-Q2 How can flexibility using mixed port decrease set-up effort?

The model driven architecture and the use of mixed port feature will enable a flexible
and simple porting of already existing code and modules on a new robot system allowing
the user to reuse available resources and reduce the overall set-up effort of the system.

4.5.3 Metrics

COM-M1: Effort of programming and training phase

MCOM-m1 = Time effort taken on the programming and training phase (4.1)

Time effort on depends and the user profile but assuming that the pilot is addressed mainly to not
skilled users the minimal amount of time for programming and training phase will be evaluated
considering a comparison with standard programming modality

COM-M2: Number of functional components available and reused

MCOM-m2 = Number of functional components available and reused (4.2)

This metric indicates how many components could be available and could be reused in different
applications and tasks thanks to the use of RobMoSys approach

COM-M3: Configuration steps needed for a mixed-port

MCOM-m3 = Number of configuration steps needed for a mixed-port (4.3)

The number of configuration steps and lines of code needed for the use of a mixed-port translating
messages between different framework can be used as an indicator of the effort for the deployment
of a new model driven.

4.5.4 Benchmark

The pilot is able to demonstrate the advantage of Robmosys approach in the scenario of educational
platform on task-level programming. The metrics show an overall reduction of time efforts during
programming phase and an increased availability of reusing components as showed in the table.
The pilot is able to demonstrated the advantage of Robmosys approach in the scenario of educa-
tional platform on task-level programming. The metrics show an overall reduction of time efforts
during programming phase and a increased availability of reusing components
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Goal COM-G1: Increase the robot programming ease of use and improve the flexibility of the
system

Question Metric Current Target

COM-Q1: How a model driven
approach by task composition
could reduce programming
efforts?

COM-M1: Effort of program-
ming and training phase

Medium-Low Low

COM-M2: Number of func-
tional components available
and reused

Medium-Low High

COM-Q2: How flexibility using
mixed port could decrease
set-up effort?

COM-M3: Configuration steps
needed for a mixed-port

Medium-Low Low

COM-M2: Number of func-
tional components available
and reused

Medium-Low High

Table 4.1: Benchmarking plan for goal COM-G1: Increase the robot programming ease of use and
improve the flexibility of the system.
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5. Human Robot Collaboration for As-
sembly (CEA)
5.1 Progress Summary

In the past period, the focus of the pilot was to:

• Extend the tools functionalities and build more RobMoSys-conformant models based on the
pilot through the ITPs contribution

• Extend the pick-and-place task to build an assembly task

• A new release of the virtual machine with an updated version of Papyrus for Robotics, ROS2
and the pilot and ROS2 stack for ISybot.

• a benchmarking plan to assess the pilot’s objectives

5.2 Collaboration with the ITPs

The pilot has been used as concrete application scenario to foster the collaboration with several
RobMoSys Integrated Technical Projects (ITPs).

• Mood2Be1. Exporter from Papyrus for Robotics behavior tree models to the XML format
supported by BehaviorTree.CPP.

• eITUS2. Components’ faults modeling and code-generation to support safety analysis through
simulation-based fault injection

• SafeCC4Robot3. Improve the modeling interface to integrate methodological guidance for
the development process and supporting contract-based validation approaches.

• SCOPE4. Exporter from Papyrus for Robotics models of skills, behaviors and system archi-
tecture to the SCOPE toolchain for the analysis of correct task execution.

• ForSAMARA5. Extension of task-based hazard and risk analysis according to the project
needs

• Miranda6. Modeling and code-generation for a field trial application of an inspection robotic
rover in the context of a nuclear site.

• Planning4Papyrus. Guidelines for improving Papyrus for Robotics with PDDL Planning.

• Human-Robot Cooperation (HRC). Guideline for including human-robot coproduction and
human skills in RobMoSys.

1https://robmosys.eu/mood2be/
2https://robmosys.eu/e-itus/
3https://robmosys.eu/safecc4robot/
4https://robmosys.eu/scope/
5https://robmosys.eu/forsamara/
6https://robmosys.eu/itp-2-2-2/
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5.3 Pilot Scenario and Use Cases

In the context of human-robot collaboration, the operator interacts with the robot with no fences
and influences the task execution. Thus, taking into account the context and more generally the
environment for task definition is both mandatory and challenging at the modeling level.

Human-robot collaboration raises also important safety requirements related to the robot, the
tool, the task and the environment. Therefore, easy task definition (to hide low-level details) and
to ensure task reusability, safety and more particularly risk assessment are key features that this
pilot aims to realize for reducing risk occurence. The collaboration between our pilot and other
ITPs helped to extend Papyrus for Robotics tools with more advanced features that allow easy
orchestration of the task.

Scenario

The pilot demonstrates task and system definition for a human-robot collaboration use case:
assembly through RobMoSys tools, mainly Papyrus for Robotics. The interaction between the
robot and the operator is direct (with no fences) for teaching an assembly task to the robot.
The robot then operates automatically. The assembly task relies on the developments made in
the last period of RobMoSys for a pick-and-place task (described in the deliverable D4.2). In
these previous developments of our pilot, we used ISybot collaborative robot. We applied the
same models and approach to Franka Emika robot with more modules to showcase models and
components reusability and consolidate the assembly skills defined for the robot.

Use cases

Use case 1: Context-aware robustness for an assembly task

Deliverable D4.2 described a use case focused on a pick-and-place task. That use case demon-
strated the interaction between four distinct roles of participants in the RobMoSys ecosystem,
as shown in Figure 5.1: (i) domain experts, who defined a set of robot skills to realize the ap-
plication, namely grasping, ungrasping and moving ; (ii) component developers, who defined a
concrete robot component that could realize the skills from the above skill set; (iii) behavior de-
velopers, who described the pick-and-place robot task as a behavior tree, based on the skills from
the same skill set; and (iv) system developers, who created the system specification in terms of an
instance of the robot component and the pick-and-place task assignment. D4.2 showed how the
building blocks provided by the different participants could be composed together using Papyrus
for Robotics to deploy and run the complete application using the ISybot collaborative robot arm.

In this deliverable we extend the pick-and-place use case with more skills to describe an assembly
task. We change the robot that performs the task (from ISybot to a Franka Emika one) to
demonstrate robustness and reusability enabled by the RobMoSys approach. In this use case, the
domain experts define an additional set of robot skills to realize the application, namely inserting
and screwing, and include Human-Machine Interface (HMI) skills, namely alerting human opera-
tors. Component and behavior developers extend the respective models to realize the new skills
in a robot component and use them in the task description in form of behavior tree, respectively.
At run-time, the task is executed and its constraints are checked continuously based on the en-
vironment actual data. In case of deviation or unexpected behavior, the orchestrator orders the
robot to go to a safe position and raises an event through the HMI to call for human intervention.
Once the error fixed, the human indicates that the intervention is finished and the orchestrator
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Figure 5.1: Collaboration between roles supported by Papyrus for Robotics. Each arrows means
that the source role provides models for the target role. The figure includes links to additional
documentation resources for each role.

continues with the next planned actions. This use case will be used for the benchmark of this
pilot.

Use case 2: Task-based Risk Assessment and validation of risks’ mitigation

In the second use case we demonstrate the interaction between system developers and safety
engineers (Figure 5.1). System developers provide information about the operational scenario for
the task, the agents and the involved objects. Safety designers use Papyrus for Robotics to apply
Hazard Analysis and Risk Assessment (HARA) techniques to the task specification, following
guidelines conforming to safety standards. For each action in the task, safety designers list all the
relevant hazards and compute the risk indices. After having computed the risk criticality, safety
designers provide risk reduction measures for each hazard associated to an action. Finally system
developers validate and put in place the necessary safety measures and deploy the system.

5.4 Focus and Coverage of RobMoSys Features

The pilot was initially intended for the use with ISybot collaborative robot7 and we extended its
usage with another collaborative robot with the same capabilities: Franka Emika8

This pilot focuses on task specification, reusability and monitoring, and safety functions. We
built upon the simple pick-and-place task developed in the last period to develop an assembly use
case. We use a new gripper for manipulating objects like gears, screws, washers, etc., while in the
first use story for pick-and-place we used another gripper meant for manipulating paper 5.2. The

7https://www.isybot.com/
8https://www.franka.de/
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Figure 5.2: Franka Emika and ISybot grippers

operator interacts with the robot for teaching the task to the robot. Then the robot executes the
assembly task. Papyrus for Robotics tool was also enriched with new functionalities, through new
developments fed by the collaboration with ITPs.

5.5 Technical Details

The pilot is fully supported by Papyrus for Robotics toolchain9, a Papyrus10-based domain spe-
cific modeling language for robotics. Papyrus for Robotics features a modeling front-end which
conforms to RobMoSys foundational principles of separation of roles and concerns.
For more information, see the following resources:

• Pilot description in the RobMoSys Wiki11

• A wiki page12 and a video13 that show some of the mentioned previous models with skills
modeling for robotic behavior featuring the pilot and agile risk assessment

• A description of the robotic task and its execution with the behavior tree in simulation14.

5.5.1 Technical description of system and task

Figure 5.3 shows the setup of the assembly task. The robot has a number of different objects
to assemble on a fixed axis on a plate. The robot has to apply the relevant strategy for the
manipulated object. For instance, we consider here 2 objects that are nuts and metal washers.
For each object, a specific skill has been developed for grasping, insertion and screwing. However,
the way the skills are implemented is decoupled from the behavior tree (BT) definition.
Figure 5.4 shows the behavior logics for the assembly task.
The task demands the execution of specific procedures to initialize and prepare the robot. The
actual assembly task description prescribes a set of skills calls to perform an assembly task (these

9https://www.eclipse.org/papyrus/components/robotics/
10Papyrus is an industrial-grade open-source Model-Based Engineering tool, see https://www.eclipse.org/

papyrus/
11https://robmosys.eu/wiki/pilots:hr-collaboration
12https://wiki.eclipse.org/Papyrus/customizations/robotics/hara
13https://youtu.be/fNbgmT0NQYc
14https://wiki.eclipse.org/Papyrus/customizations/robotics/demos/pick-and-place
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Figure 5.3: Assembly task setup

spaces are known and assigned as input parameters through programming by demonstration func-
tionality to the BT leaves representing concrete actions). These skills are implemented inside the
module Robot Skills Service that communicated directly with the robot controller. The manner
that the skills are implemented is not of interest here, we only need to know that the skills are
available and that they propose the necessary strategies for the objects present in the task. So the
objects positions are known by the robot. The orchestrator triggers the first action of the robot
for inserting a metal washer on the axis with the adapted strategy. Once the insertion is done, the
next action for screwing a nut on the axis is launched. If a problem occurs (e.g object lacking or
action failure), the orchestrator asks the robot to go to a safe position and a message is displayed
for the operator via an HMI so that he can intervene to fix the problem.

5.5.2 Models

The first use case considered for our pilot builds upon the pick-and-place application with the
ISybot collaborative robot arm described in D4.2.
For the pick-and-place we modeled 3 skill definitions, namely Grasp, Ungrasp and MoveTo, with
the corresponding (3) coordination service models and 4 data types, representing the coordination
information between the task and the service level15. In addition, we defined three Tier 3 models:
1 component definition representing the ISybot, with 3 coordination ports, each one providing

15https://robmosys.eu/wiki/general_principles:separation_of_levels_and_separation_of_

concerns
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Figure 5.4: Assembly task orchestrator

a coordination service to realize the corresponding skill from the skill set above; 1 behavior tree
model describing the pick-and-place task as a sequence of skills from the same skill set; and finally,
1 system model where the ISybot component is instantiated and the task assignment is specified.
From this base, we created 3 new skill models (including their coordination services) representing
the additional skills for the assembly task; 1 new robot component model (RobotSkillServer)
representing the Franka Emika arm and 1 HMI component (AdaptiveHMI), each one providing the
right coordination interfaces to realize all the skills (the 3 from the pick-and-place task, plus the
3 new skills for the assembly task); 1 behavior tree model describing the assembly task including
the new skills and reusing a number of pick-and-place sequences from the initial base model.
Finally, the system model was now composed of the 2 component instances and the assembly task
assignment. Figure 5.5 shows some of the described models.

5.6 Key Performance Indicators and Benchmarking

In this section, we present the KPIs that are specific to CEA pilot. In order to identify the relevant
metrics for this pilot, we followed a Goal-Question-Answer-Metric approach.

5.6.1 Goals

CEA-G1: The goal of this pilot is to demonstrate how the RobMoSys approach increases the
quality and robustness of robotics applications and enables fast adaptation and reuse of the
deployed solutions in different contexts (different robots, tool upgrades, etc.).

5.6.2 Questions

In order to achieve the goal cited above, the following questions were formulated to help estimate
its level of achievement in the context of this Pilot.

• CEA-Q1: How can we ensure the reusability of the system?

• CEA-Q2: How can we reduce the programming efforts?
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Figure 5.5: (Part of) Models of assembly task

• CEA-Q3: How can we increase the system robustness at run-time?

5.6.3 Metrics

In the following, we discuss the possible answers and the metrics that should help to measure
them. For CEA-Q1 about system reusability, we can consider the following answer:

• CEA-Q1-A1: Ensuring the reusability of the system by defining easily-configurable compo-
nents and generic interfaces

Regarding CEA-Q2 about the reduction of programming errors, code generation will ease the
system programming by reducing the programming effort:

• CEA-Q2-A1: The automatic generation of component codes from models with systematic
application of best-practice naming/programming conventions reduces erros, programming
effort and improves code readability and maintenance.

For CEA-Q3 about system robustness at run-time, we can consider the following answers:

• CEA-Q3-A1: System supervision: the system state at run-time is continuously updated

• CEA-Q3-A2: Deviation detection: if the system does not behave as expected, the error
should be detected and reported to the system supervisor.

Based on CEA-Q1-A1, CEA-Q2-A1, CEA-Q3-A1 and CEA-Q3-A2, the following metrics have been
identified. The metrics described in D4.2 were adjusted to the new pilots needs and objectives.
Of course, the metrics corresponding to CEA-Q1-A1 only consider the parts of the two tasks,
pick-and-place and assembly, which are functionally similar, i.e., robot motion, grasp and ungrasp
capabilities. The metrics corresponding to CEA-Q2-A1, CEA-Q3-A1 and CEA-Q3-A2 consider all
the components.

50



RobMoSys - D4.3 H2020-ICT-732410

CEA-M1: Percentage number of reusable skill and task models

This metric will allow determining how many behavior models can be reused despite the changes
that the deployment of the different use cases require. Models considered in this metric include
the robot skills and the BT specifications of pick-and-place and assembly tasks.

MCEA-M1 =
Reused skill models + Reused BT models

Total behavior models
(5.1)

CEA-M2: Variation between similar robot component models

This metric allow us to measure the effort done by a System Builder in replacing a robot component
with a functionally similar one. It accounts the number of component differences, in terms of input
and output ports, including port types, such as coordination interfaces for coordination ports and
component services for service ports, and configurable parameters (if any). The larger is the
computed number, the higher is the effort of the System Builder.

MCEA-M2 =
∑

Different configurable parameters +
∑

Different inputs and outputs (5.2)

CEA-M3: Reduction of the effort spent in programming

The effort depends on the user profile. It is difficult to standardize as it depends on the user
background and expertise in programming. We decided then to choose a metric that, for each
component, accounts for the number of generated lines of code (LoC) of C++ header/body
files, build files and message, service and action definition files against the total number of LoC
(including the code written manually by the component developer). We consider simple heuristics
to account for the additional modeling effort implied by the use of an MDE approach: we consider
that the effort of modeling a component port, a parameter and an activity corresponds to the
effort of writing 2-5 LoC, depending on the programmer experience. The metric is as follow,
where C is the set of all the components. The larger is the computed number, the higher is the
reduction of the effort spent in programming, which also implies less maintenance efforts.

MCEA-M3 =
1

|C|

∑

C

Generated LoC − LoC due to modeling effort

Total LoC
(5.3)

CEA-M4: System ability to report the state of task execution

This metric allows us to measure the system ability for following the task execution and reporting
the components’states at runtime.

MCEA-M4 =
Reported states by components

Total reportable states of components
(5.4)

CEA-M5: System ability to report an error to the operator

This metric allows us to measure the system ability to communicate an error to the operator at
run-time with RobMoSys tools. The metric is as follow, where Low indicates the system ability to
at least display a text message via the HMI; Medium indicates the system ability to display a text
message through the HMI and performs a basic behavior adaptation during task execution; and,
finally, High indicates a full integration of advanced notification mechanisms about the system
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Goal CEA-G1: Increase the robustness, reuse and fast adaptation of robotics software systems

Question Metric Prior Target Current

CEA-Q1: How can we
ensure the reusability of
the system?

CEA-M1: Reusable skill and task
models

Low 80% 100%

CEA-M2: Variation between
similar component models

High ≤ 2 0

CEA-Q2: How can we
reduce the programming
errors?

CEA-M3: Reduced effort spent
in programming

Low Medium [35%,67.5%]

CEA-Q3: How can we
increase the system
robustness at runtime?

CEA-M4: Ability to report the
state of task execution

80% > 80% 100%

CEA-M5: Ability to report an er-
ror to the operator

Low Medium Medium

Table 5.1: Benchmarking plan for goal CEA-G1: Increase the robustness, reuse and fast adaptation
of robotics software systems.

state to the operator (via a set of dashboards, etc.) and real-time, seamless adaptation of task
behavior.

MCEA-M5 = Low / Medium / High (5.5)

5.6.4 Benchmark

Benchmarking results

The benchmarking results according to the Goal-Question-Answer-Metric approach are displayed
in Table 5.1. The Prior column represents the status of our robotic software platforms in the
beginning of the RobMoSys project. The Current column represents the KPIs that we actually
achieved in the pilot and the Target column represents the target goals that we wanted to reach
with the obmosys approach.

For what concern system reusability, prior to RobMoSys the lack of clearly identified architectural
patterns for task-plot16 and component17 coordination caused little reuse and high variation in
our software models, even for functionally similar use cases. The RobMoSys approach enabled the
complete reuse of skill and task models for this pilot (CEA-M1). Also, the variation index CEA-M2

resulted to be the lowest possible (0), because the only different parameters and ports in the
Franka Emika robot component with respect to the ISybot component are those that enable the
realization of unique skills in the assembly task (i.e., those skills that couldn’t be reused, because
not available in the pick-and-place task).

For what concerns the reduction of programming errors in robotic software, the quantitative
analysis for this pilot follows from the values in Table 5.2. For the two components AdaptiveHMI

and RobotSkillServer, the 1st column represents the number of generated LoC in the C++
body and the 2nd column represents the number of manual LoC added by component developers.
The latter realize the (in-component) binding between the “outside” interface of the component

16https://robmosys.eu/wiki/general_principles:architectural_patterns:robotic_behavior
17https://robmosys.eu/wiki/general_principles:architectural_patterns:component-coordination
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Body files Header files Service files Build files
Generated Manual Generated Generated Generated Manual

HMI 166 28 225 10 190 7

Skill Server 422 192 381 45 199 7

Table 5.2: Generated and manually added LoC for the C++ header/body files, service and build
files of components AdaptiveHMI and RobotSkillServer.

(coordination/data-flow interface) and the component-specific internals (algorithms). The number
of generated LoC of C++ header files and that of generated service definition files (ROS2 message,
service and action files) are in columns 3 and 4, respectively. No manual modifications have been
needed for these files. Finally, column 5 represents the number of generated LoC in the build
files and column 6 the number of manual LoC added by component developers to compile and
link the component code against the functional layer provided by algorithm developers in binary
form. According to CEA-M3, the achieved index of reduction of programming errors and efforts is
between 35% and 67.5%, depending on the user background and expertise in programming.
Finally, for what concerns increasing the system robustness at run-time, prior to RobMoSys our
robotic software systems were already able to report information about the state of task execution,
e.g., running states and state transitions for tasks expressed as finite state machines (CEA-M4).
The missing information (estimated to 20% of the total information that could be available for the
system) was about the component states, due to a lack of clearly identified patterns for managed
components18. The RobMoSys approach enabled the complete tracing of the component states
execution. In addition, when a part was not found during the execution of the assembly task, the
system was able to report an error to the operator through a textual message displayed in an HMI
and performing a basic behavior adaptation by moving to a safe position and waiting for human
intervention (CEA-M5).

Benchmarking challenges

The benchmarking process is generally associated with difficulties in mapping the benefits of the
model-based development approach to quantitative properties. The assembly task, for instance,
is a more complex version of pick-and-place one. It is then hard to quantify the prior level of
each of the KPIs. It is also hard to quantify the know-how of a user and measure some of
the KPIs because some of them depend on the use expertise and best practices application (like
programming effort, modeling effort, and number of models and components). It is also difficult
to estimate a percentage of effort reduction without a statistically relevant number of users. In
order to have significant results, an empirical study would have been interesting.

18https://robmosys.eu/wiki/composition:component-activities:start
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6. Intralogistics Industry 4.0 Robot Fleet
(THU)
6.1 Progress Summary

In this reporting period, a particular focus was put on the uptake of this pilot by projects outside
of RobMoSys. Thereby, the scenario not only received a lot of extensions, but it also served as a
testbed for the accessability and the applicability of the RobMoSys approach via the SmartMDSD
toolchain. This gave a lot of insights into the maturity level of systems built with the SmartMDSD
toolchain, the maturity level of the SmartMDSD toolchain itself, and in particular insights into
how well the envisioned benefits and advantages of the RobMoSys approach already show a real
positive effect for the users. A major effort was to include the feedback from real-world scenarios
with high technology-readiness levels into the latest release of the pilot and the SmartMDSD
toolchain and to come up with further use cases of RobMoSys in the context of this pilot.

6.2 Pilot Scenario and Use Cases

The Intralogistics Industry 4.0 Robot Fleet Pilot is about goods transport in a company, such as
factory intralogistics. It features the delivery of a set of orders by a fleet of collaborating robots.
This pilot is not just a single and specific application. Rather, it is a complete testbed for manifold
aspects of RobMoSys as the individual hardware assets and software assets can be used to build a
number of different systems and applications. At first, the pilot was meant to showcase RobMoSys
benefits in particular by the example of robotics navigation (e.g. performance of goods delivery
and according non-functional requirements). Meanwhile, it comes with a manipulation stack and
an object detection stack that are also fully RobMoSys compliant.

Figure 6.1: The Intralogistics Industry 4.0 Robot Fleet Pilot.

The pilot has been described in detail in the previous version of this deliverable, D4.1 - First Report
on Pilot Cases. Examples and videos of the pilot in action are accessible via the RobMoSys wiki1

1https://robmosys.eu/wiki/pilots:intralogistics
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Figure 6.2: Excerpts of the Intralogistics Industry 4.0 Robot Fleet Pilot.

and can also be found on the YouTube channel of THU2. The pilot includes a set of different
robots and stations that interact:

• transfer stations at which small load carriers (boxes, trays) are picked up/delivered to

• transfer stations at which items/goods are picked up/delivered to

• robots to pickup, transport, and deliver small load carriers

• robots for mobile manipulation to do order picking of goods into small load carriers

The pilot is physically located at THU and may be used on site or remotely. It consists of
hardware (e.g. fleet of robots, robot platforms from different vendors, different laser rangers,
different RGBD-sensors, UR5 manipulator, and transfer stations with conveyor belts for handling
small load carriers) and models (e.g. domain-specific models of services, skills, tasks, software
components).
In the previous reporting period, the models were already fully conformant to RobMoSys and most
of them already came with executable software (i.e. software components, task plots, deployments
provided via the RobMoSys conforming SmartMDSD toolchain).
Now there is a full set of models, corresponding executable software and real-world scenarios
available that are composed out of these building blocks and that all are based on the latest
SmartMDSD toolchain release. An excerpt of the pilot is available in simulation for off-site use.
The pilot has been directly adopted by 7 out of 28 RobMoSys Integrated Technical Projects (ITP)
as is partially documented in the RobMoSys wiki 3:

• Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain
(MOOD2BE ITP)

• Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)

• Using the YARP Framework and the R1 robot with RobMoSys (CARVE ITP)

• Advanced Robot Simulations for RobMoSys (AROSYS ITP)

• QoS Metrics-in-the-loop for better Robot Navigation (MIRoN ITP)

2https://www.youtube.com/user/RoboticsAtHsUlm/videos
3https://robmosys.eu/wiki/community:start
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• Guidelines for improving SmartMDSD with DDS and QoS attributes for communication
(SmartDDS ITP)

• OPC UA for RobMoSys (OPC UA ITP)

RobMoSys compliant contributions to this pilot were also done (and are still being done) by the
following projects that are independent from RobMoSys:

• BMBF LogiRob - Multi-Robot-Transportsystem im mit Menschen geteilten Arbeitsraum
(National Project, Germany)

• BMWi PAiCE SeRoNet - Plattform zur Entwicklung von Serviceroboter-Lösungen (National
Project, Germany)

• ZAFH Intralogistik - Kollaborative Systeme zur Flexibilisierung der Intralogistik (Federal
State Project, Germany)

Since every FESTO Robotino robot is delivered and operated with RobMoSys compliant SmartSoft
components, all Robotino robot owners worldwide are users of at least parts of this pilot and rely
on the flexible navigation stack4

Scenario

Figure 6.3 shows examples of scenarios in which the Intralogistics Industry 4.0 Robot Fleet Pilot
has been used. These range from simulation over lab environments to tests at sites of end-users.

Figure 6.3: Examples of scenarios in which the pilot has been used.

4https://robmosys.eu/wiki/domain_models:navigation-stack:start
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User stories

The pilot skeleton and the pilot scenarios are built by using the SmartMDSD toolchain that
conforms to the RobMoSys composition structures. This pilot demonstrates the application of
RobMoSys composition structures and of separation-of-roles along various axes ranging

• from domain-specific models at Tier-2 (services, skills, tasks) to concrete assets at Tier-3
(software components, system architectures, task plots, deployments)

• from simulation and lab-deployments to on-site real-world tests and even worldwide shipping
of the flexible navigation stack

• from composing new pilot scenarios by system builders to modifying and configuring existing
ones by the end-user

• from collaboration of different roles in the same organization to different roles spread across
different organizations and different locations and thus selecting components via data sheets
on platforms5

Thus, the pilot covers many of the technical user stories that are outlined in the RobMoSys Wiki6

but also user stories related to ecosystem infrastructure (brokerage platforms for services and
assets), interactions along separation-of-roles and user stories related to the toolchains (in this
pilot the SmartMDSD toolchain). We highlight some unique system-level user stories that are
showcased via this pilot:

Hardware / software component replacement: As system builder, I received an order for a
new mobile robot application. The new application is quite similar to an already existing
one. Thus, I want to reuse as much as possible of the already existing solution. In order to
make a perfect match to the new requirements (e.g. reuse navigation skills, reduce costs,
add person following skills), already fitting skeletons and components shall be kept and the
effort shall go into targeted replacements, removals and additions of components and into
rearrangements of task plots. I expect that the size of changes (and thus the effort) is in
relation to the similarity between the already existing use case and the new one.

Middleware-agnostic systems and mixed middleware systems: Depending on the application
environment, there are different requirements for the underlying middleware (performance,
throughput, security, customer specifications, e.g. ACE, DDS, OPC UA). As system builder,
I want to be able to fulfill these requirements by just configuring the assignment of middle-
wares to system parts at any time during deployment (without having to go into the system
again or even interact with developers of the used components for changing source code
and recompiling).

Mastering system level properties: As system builder of a transport robot with an onboard
camera for navigation, I need to convincingly explain to the hospital that privacy require-
ments are fulfilled and cannot get violated (e.g. that raw camera images never leave the
robot system). Furthermore, I must check whether the robot is able to react in time to dy-
namic obstacles such as persons (i.e. the data processing chains and corresponding response
times from laser data to motion control commands fulfill the specified requirements).

5https://www.robot.one/, https://www.xito.one/
6https://robmosys.eu/wiki/general_principles:user_stories
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Digital data sheets for component selection: As system builder, I got a contract to provide
a mobile robot for goods transport in a company. I need to select from offers of different
navigation skills those components that adequately match the given requirements, that is
technically (such as being able to handle 3D sensing of the surroundings for the navigation)
as well as economically. I want to use these components directly, without a need for interac-
tion with the component developer, and thus a data sheet shall provide all the information
I need to know in order to correctly configure and use the component in my setting.

Migration path and connecting to brown-field installations: As system builder, I got a con-
tract to provide a flexible transport solution based on a mobile robot that is already available
at the customer. The mobile robot just talks ROS and shall be reused although all the new
skills shall be composed out of RobMoSys technology in order to endup with economically
feasible efforts. The new application has to seamlessly interact with the customer’s existing
infrastructure (transfer stations for small load carriers talking Industry 4.0 standard OPC
UA).

Semantic configuration by the end-user: The reason for the purchase of a fleet of robots was
their promise for being easily adjustable to different flow of goods and to different layouts. Of
course, I want to do these configurations by myself in order to most flexible in responding to
my shortly changing needs. I do not want to make an IT project out of these reconfigurations.

It is also important to clearly point out for which kind of user stories this pilot has not been used
yet - no user stories related to safety have been applied to this pilot yet.

6.3 Focus and Coverage of RobMoSys Features

The pilot is fully supported by the SmartMDSD Toolchain7, an Integrated Software Development
Environment (IDE) for system composition in a robotics software business ecosystem. This ensures
full conformance to the RobMoSys methodology when using this pilot.

The pilot covers most ecosystem roles (despite the safety engineer), most metamodels, robotic
domain models related to all aspects of mobile manipulation with a fleet of robots, and composition
ranging from software components over task level coordination to systems-of-systems.

The pilot is intended to showcase the ease of system building via composition of software compo-
nents to complete robotics applications. This also includes the deployment in real-world scenarios
and on-site configurations by the end user. It is important to understand that the pilot is not
only thought for internal use by RobMoSys core partners and by RobMoSys ITPs, but also for
use in other projects that want to exploit RobMoSys technology. Thereby, the pilot gives valuable
insights into the accessability and the usability of the RobMoSys technology via the SmartMDSD
toolchain and the already achieved technology-readiness-level in the processes and the achieved
technology-readiness-level in the outcoming systems.

The following are implemented use cases to illustrate the benefit of RobMoSys. More information
on the following material is available within the RobMoSys wiki.

Software components and system composition: e.g. composition of previously developed soft-
ware components and/or exchange of software components to address new needs:

7https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
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• see the excange of a hardware and software component demonstrated using the industry
4.0 pilot8

• see how PAL Robotics modifies the pilot to use the software with its TIAGo robot9

• there are different combinations of simulators (Gazebo, Webots), robots (Pioneer
P3DX, PAL Robotics TIAGo, FESTO Robotino, Segway), distance sensors (SICK,
Hokuyo, Intel Realsense) and different navigation components such as AMCL, GMap-
ping, Cartographer

Middleware-agnostic systems and mixed middleware systems:

• see the change of the middleware on a per-servicce basis (ACE and DDS mixed mid-
dleware system)10

Ecosystem collaboration including the different roles that participants can take:

• see how the system builder and the behavior developer can interact11

Mastering system level properties: (extra-functional) properties, dependency graphs for com-
posed components:

• see how the RoQME ITP monitors non-functional properties on this pilot12

• see by the example of this pilot how the SmartMDSD Toolchain assists in understanding
data-trigger-chains and how it assists in finding proper cycle times13

• see how dependency graphs manage privacy requirements14

Digital data sheets for component selection:

• see how digital data sheets are integrated into the SmartMDSD toolchain15

• see where the digital data sheet comes to a use16

Task level coordination, skills, robotic behavior:

• see Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain
(MOOD2BE ITP)17

• see Support of Skills for Robotic Behavior18

8https://www.youtube.com/watch?v=e4uC0mEWxCk
9https://www.youtube.com/watch?v=FCvK9dAZXPo

10https://youtu.be/Tvms5MK0m-k
11https://robmosys.eu/wiki/community:behavior-tree-demo:start
12https://robmosys.eu/wiki/community:roqme-intralog-scenario:start
13https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:

cause-effect-chain:start
14https://wiki.servicerobotik-ulm.de/tutorials:start#lesson_8dependency-graph_extensions_

for_smartmdsd_toolchain_smartdg
15https://wiki.servicerobotik-ulm.de/how-tos:documentation-datasheet:start
16https://www.robot.one/search and https://www.xito.one/marketplace.html
17https://robmosys.eu/wiki/community:behavior-tree-demo:start
18https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:

start and https://robmosys.eu/wiki/composition:skills:start
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• see the SmartTCL Hierarchical Task Nets with the Sequencer (ComponentTCLSe-
quencer) and the Knowledge Base (ComponentKB)19

Migration path and connecting to brown-field installations:

• see how to connect to ROS nodes20

• see how to connect to OPC UA devices21

• see how to access components from the YARP middleware (CARVE ITP)22

Semantic configuration by the end-user:

• see how the end-user can rearrange shelves by himself and how he can modify the
workflow23

Uptake in other projects:

• see the BMWi PAiCE SeRoNet production logistics show case24

• see the BMBF LogiRob show case25

• see the ZAFH Intralogistik show case26

Maturity level of the pilot:

• used by Festo and shipped worldwide27

• see scenarios at Transpharm28 and at DaimlerTSS 29 that are now fully RobMoSys
compliant

6.4 Technical Details

For detailed technical information on the pilot skeleton and the pilot applications, see the following
resources:

• Pilot description in the RobMoSys Wiki30

• Flexible Navigation Stack31

• Mobile Manipulation Stack32

19https://github.com/Servicerobotics-Ulm/ComponentRepository
20https://youtu.be/N1oMMIBIx5k
21https://youtu.be/Xi7Irjk8Kyw
22https://robmosys.eu/wiki/community:yarp-with-robmosys:start
23https://youtu.be/5116bGhXBr8 and https://youtu.be/Nzwjb8BaQns
24https://youtu.be/Nzwjb8BaQns
25https://youtu.be/ML_BtZsiPHo
26https://youtu.be/oGKjK7K76Ck
27https://wiki.openrobotino.org/index.php?title=Smartsoft
28https://youtu.be/r4mgPgyYISQ
29https://youtu.be/cggCY-cvdJ8
30https://robmosys.eu/wiki/pilots:intralogistics
31https://robmosys.eu/wiki/domain_models:navigation-stack:start
32https://robmosys.eu/wiki/domain_models:mobile-manipulation-stack:start
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• Software Components for use with the pilot33

• Skills for robotic behavior featuring the pilot34

• Tutorials for the SmartMDSD Toolchain featuring excerpts of the pilot35

• Tutorial for using software components of the pilot with the TIAGo robot base36

Software components are available37 for use with the SmartMDSD Toolchain for immediate com-
position:

• hardware abstraction for several robot platforms and different sensors/actuators

• navigation: mapping, planning, obstacle avoidance, SLAM

• object detection for mobile manipulation

• manipulation: workspace scanning, path planning, trajectory control

• task level coordination: sequencer for hierarchical task nets, knowledge base for world model
coordination

• human-machine-interaction: joystick control, person following, tools for semantic configu-
ration

• components for interfacing to industry 4.0 OPC UA devices and to MES (manufacturing
execution system)

• simulation

Figures 6.4, 6.5, 6.6 and 6.7 are to give an overview on some selected details that are showcased
in this pilot.

6.5 Key Performance Indicators and Benchmarking

The pilot skeleton and the pilot applications based on it are meant to provide easy access to com-
plex and relevant scenarios such that the benefits and advancements of the RobMoSys approach
and of the corresponding technologies can be showcased.
This pilot is a complete testbed for manifold aspects of RobMoSys. At first, the pilot was
meant to showcase RobMoSys benefits in particular by the example of robotics navigation (e.g.
performance of goods delivery and according non-functional requirements). Meanwhile, it comes
with a manipulation stack and an object detection stack that are also fully RobMoSys compliant.
The pilot now comprises several real-world scenarios related to goods transport by a robot fleet
comprising robots with different skills. These are fully built by using the RobMoSys conformant
SmartMDSD toolchain. As the pilot covers a broad set of robotic scenarios (from navigation

33https://robmosys.eu/wiki/model-directory:start
34https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:

start
35https://wiki.servicerobotik-ulm.de/tutorials:start
36https://robmosys.eu/wiki/baseline:scenarios:tiago_smartsoft
37https://robmosys.eu/wiki/model-directory:start
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Figure 6.4: The system composition view of a transportation robot of the Intralogistics Industry
4.0 Robot Fleet Pilot in the SmartMDSD Toolchain for composing a pilot application

Figure 6.5: Overview on robot fleet with transportation robots and a picking robot.
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Figure 6.6: Addressing extra-functional properties, mixed middleware systems and task level co-
ordination with this pilot.

Figure 6.7: Mixed-port components: the pilot talks OPC UA to the transfer stations to handle
small load carriers
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to manipulation, from single robot task control to robot fleet management) and as these have
been successfully implemented and operated in real-world scenarios, this shows the high level of
maturity and usability of the RobMoSys compliant SmartMDSD toolchain and of its support for
the RobMoSys workflow.
It is quite difficult to come up with expressive key performance indicators for this pilot that
addresses so many facets of RobMoSys. Many of the achievements are at a qualitative level
(introducing a model-driven approach to shape a robotics ecosystem based on separation of roles
and composition) and it is about whether the baseline for such an ecosystem has been put into
place, has been populated with convincing showcases, and has been taken up by others:

• we do not want to measure output but we want to measure outcome (which in case of this
pilot is basically about qualitative features)

• we do not want to measure that we just have the pilot up and running and built it somehow.
It is important that we achieved this by applying RobMoSys processes

• we want to measure whether RobMoSys processes lead to better systems (in terms of
different criteria such as effort,reliability, etc.)

• as the pilot is built with the SmartMDSD toolchain, benchmarking the pilot quality is also
always related to benchmarking the SmartMDSD toolchain

6.5.1 Goals

THU-G1 The goal of this pilot is to demonstrate the benefits of RobMoSys.

6.5.2 Questions

Questions related to goal THU-G1: Demonstrate the benefits of RobMoSys:

THU-Q1: What is the coverage of RobMoSys concepts of this pilot?
The achieved results are only convincing in case these have been achieved by applying
RobMoSys concepts. Of course, it does not make any sense to just apply as many concepts
as possible when this is done only in artificial setups via weak use cases. However, just ap-
plying only few RobMoSys concepts would not showcase how well the entirety of RobMoSys
concepts finally really fit together.

THU-Q2: Is the pilot both, focused enough for fast take up and broad enough to showcase
RobMoSys?
If the pilot is too broad, then contributions can take place in well-separated niches and there
is no pressure for testing composition. If the pilot is too narrow, then it might not face
challenges of complex systems-of-systems.

THU-Q3: Are the systems built with this pilot mature enough for significant conclusions?
Just running toy examples is not good enough for bold conclusions. Much more convincing
are use-cases in real-world testbeds outside of your own lab and performed by others.

THU-Q4: How well do the assets provided by independent roles in the ecosystem finally fit
together?
Key for a business ecosystem is that different stakeholders can work independently and
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concurrently. For example, a system builder should not need to get in contact with the
component builders when using their components.

THU-Q5: Has the effort of addressing a new application been lowered by RobMoSys?
The effort needed to address a new application should be in proper relation to its similarity
to an already existing application.

THU-Q6: Do we get better insights into system level properties and can we better manage them?
Basically, the biggest challenge is to master properties of systems-of-systems and RobMoSys
is expected to make a big step ahead here.

THU-Q7: How well does the decoupling of solutions and technologies work?
The pace of technologies is much higher than is the pace of solution principles. The latter
come with high engineering efforts and costs. Thus, exchange of technologies should be
possible without reworking the solution.

THU-Q8: Can the enduser perform reconfigurations without programming?
This is an ultimate test whether the model-driven approach of RobMoSys can bring complex
robotic system-of-systems with all their cross-linking (and often hidden) parameters closer
to the user.

THU-Q9: What is the learning curve of the toolchain?
If the toolchain is too complex and difficult to use, it is too expensive until one can gain
from the advantages of separation-of-roles and of composition. This would be an entry
barrier for many highly motivated experts waiting to get access to a robotics ecosystem.

6.5.3 Metrics

Metric 1: Coverage of

THU-M1.1: RobMoSys concepts in terms of roles, Tier-2 meta-models, Tier-3 assets

THU-M1.2: expected combinatorics: number of alternative realizations per capability (e.g. 3
different kinds of navigation), number of different capabilities (e.g. navigation, localization,
robot, etc.)

THU-M1.3 user groups (beginner, expert, academia, industry, robotics, software, application,
etc.)

Metric 2: Number of

THU-M2.1 user stories demonstrated using the pilot skeleton or the pilot scenario

THU-M2.2 ITPs directly using / contributing to the pilot (internal uptake)

THU-M2.3 projects directly using / contributing to the pilot (external uptake)

THU-M2.4 contacts of the system builder to component providers

THU-M2.5 RobMoSys components and of other components

THU-M2.6 system level properties addressed and successfully showcased
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THU-M2.7 exchangeable technologies

THU-M2.8 different successful use cases

Metric 3: Quality

THU-M3.1 Technology-readiness levels of applications using the pilot skeleton.

6.5.4 Benchmark

In the Flexible Intralogistics Scenario38, each Robotino robot runs 22 RobMoSys compliant soft-
ware components. The mobile manipulation robot runs 20 RobMoSys compliant software compo-
nents. The navigation components are the same on all mobile platforms. In addition, there are 8
more RobMoSys compliant software components for the fleet management.

Answer THU-A1 to THU-Q1: This pilot applies the roles component supplier, system builder,
behavior developer, service designer, system architect. It does not have a focus on the
function developer and it does not apply the role of a safety engineer. The pilot provides
domain-specific content at Tier-2 (definition meta-models) such as digital data representa-
tions, services, skills and tasks mainly for the navigation domain. It also provides domain-
specific content at Tier-2 for (mobile) manipulation and object detection (not as matured as
for the navigation domain). It uses the Tier-2 definition meta-models for Tier-3 realization
meta-models that finally cover the concrete assets at Tier-3 out of which the pilot skeletion
and the related pilot applications are composed. This pilot also covers the workflow along
separation-of-roles and composition (digital data sheet for assets and dependency graphs
for managing system level properties).

Thus, we rate this pilot to have a very high coverage of RobMoSys concepts.

Answer THU-A2 to THU-Q2: Navigation is at the core of robotics and most aspects of robotics
can be illustrated by use cases of navigation. The pilot allows to focus on single robot
navigation but also supports a fleet of diverse robots even in workspaces shared with humans.
As can be seen by the various scenarios implemented on top of the pilot skeleton, it offers
a focused but still highly expandable setting. As can be seen in answer THU-A4, the pilot
also produced a set of components that can be arranged in different combinations in order
to showcase reuse and composition. Of course, there are still plenty of use cases that can
be illustrated by this pilot but have not yet done so far.

Thus, we consider this pilot to be a sound and fitting testbed for RobMoSys use cases.

Answer THU-A3 to THU-Q3: The pilot skeleton is being used in at least three different projects
outside of RobMoSys (BMBF LogiRob, BMWi PAiCE SeRoNet, ZAFH Intralogistik). The
real-world testing covers production logistics as well as order picking. These scenarios do
not just run once in a lab, but many rounds in a realistic setting. Furthermore, each FESTO
Robotino robot comes with a navigation stack onboard that is compliant to this pilot. These
robots are shipped worldwide and are operated worldwide. Since quite some time, we do
not get any negative feedback with respect to the navigation.

Thus, we rate the systems built with this pilot to be mature enough for significant conclu-
sions.

38https://youtu.be/oGKjK7K76Ck
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type of alternatives for a capability number of
capability alternatives

simulation Gazebo, Player/Stage, Webots, FESTO simulator 4

real robots Robotino, PAL Robotics TIAGo, Segway, Pioneer P3DX 4

sensors SICK, Hokuyo, Intel Realsense 4

navigation [mapper, planner, CDL motion control]
[Corridor Navigation, CDL motion control] 3
[person following, CDL motion control]

localization AMCL, GMapping, Cartographer 3

Table 6.1: Combinatorics by the example of navigation.

Answer THU-A4 to THU Q4: One option to look at this is from the role of the system builder.
It is not just about composition of components but also about composition of task plots
and the reuse of task plots with alternative implementations of skills. The pilot skeleton
led to different alternatives that have been combined in different ways (see table 6.1).
Components are not just a 1:1 replacement, but e.g. the navigation components even differ
in their granularity and assignment of services. As can be seen from the scenario videos
on our YouTube channel39, the navigation stack is used in quite different task plots (even
changing between different navigation modes including person following). All the assets
have been built using the Tier-2 domain-specific structures for the navigation stack and
they have been combined to different deployments just “as is”.

As the above combinatorics (“plug festival”) was successful just at the level of the system
builder (and without a need for coordination meetings with component developers), we rate
the guidance of Tier-2 structures by the SmartMDSD toolchain as success.

Answer THU-A5 to THU-Q5: The Robotino robot normally uses a SICK laser ranger for nav-
igation. However, a new application required a less expensive alternative and the robot had
to be equipped with a person following skill. We replaced the SICK laser ranger by an Intel
Realsense RGBD camera which is used for navigation as well as for person following. All
the navigation components had not been modified. The navigation services proved to be
designed such that all the needed sensor data characteristics (variance, viewing angle, etc.)
are self-contained in the communication objects and thus get handled automatically (no
hidden dependencies and magic numbers).

See also THU-A2, THU-A6 and THU-A7 for further aspects of reduced effort in compos-
ing new and in modifying existing applications.

For the first time, we see a significant reduction of effort for coming up with a solution for
an application similar to an existing one (as made possible by composition).

Answer THU-A6 to THU-Q6: We introduced and implemented the concept of dependency
graphs to manage system level properties in a traceable and analyzable way. We applied
that concept to extra-functional properties such as privacy (can I get an image of the camera
onboard the robot from outside the robot?)40, to configure trigger-chains and to decide on
cycle rates of periodic activities. All these configurations are done by the system builder

39https://www.youtube.com/user/RoboticsAtHsUlm/videos
40https://youtu.be/tXEsvgSH9bU
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without recompiling software components and without interaction with the providers of the
used assets.

To the best of our knowledge, this is the first time that there is such a consistent approach
available for system level properties under separation-of-roles and composition underpinned
by concrete real-world scenarios. We rate that as a significant leap forward in managing
system level properties in composable robotic systems.

Answer THU-A7 to THU-Q7: This has been showcased by mixed-middleware systems being
middleware-agnostic. For the first time, the middleware does not need to be specified at
component development time. Instead, it is the system builder who assigns middlewares
according to application requirements. For this, components are not recompiled but they
are just used “as is” and in binary form. This showcased that early binding of semantics - late
binding of technology is achievable as is required for a composition workflow. As working
solutions have been demonstrated by a very demanding use case (middleware agnostic in
conjunction with RobMoSys composition workflows), technology decoupling can be put in
place also for other parts.

We rate that as a huge leap forward in decoupling solutions and technologies in robotics.

Answer THU-A8 to THU-Q8: This has been showcased by rearranging navigation corridors in
factory layouts, rearranging shelves and adding new steps in a workflow41. This all has been
done just by graphical interfaces by the enduser. These tools then properly distributed all
the configuration updates into the world models for immediate impact on the robots. The
robots have not been rebooted but just stopped during the user modifications. This shows
that the RobMoSys approach helps in consistently managing configurations and presenting
them in a user-friendly way. It also shows that there are no hidden parameters somewhere
as otherwise those complex on-the-fly reconfigurations would not have been successful.

RobMoSys significantly helps in enabling users to exploit the promise of adaptability of
robotic systems.

Answer THU-A9 to THU-Q9: We regularly get support requests from students, doctoral can-
didates or post-docs in other labs. Very often, we are surprised not yet having heard before
that they are using the SmartMDSD toolchain. The context of the questions clearly indicate
that they already successfully mastered the role of a system builder without support from
us. They are now trying to build their own first component (wrapping their unique libraries)
and thereby bumped into challenging questions of how to best address specific needs. This
gives a lot of feedback about which kinds of tutorials are still missing (e.g. updated tutorials
for advanced topics related to component internals such as functional composition inside a
component, advanced tutorials for skill modeling), but also shows that there is no hurdle
with respect to standard use cases and with respect to the Eclipse world (SmartMDSD is
fully based on Eclipse).

We also use the SmartMDSD toolchain in robotics courses in our bachelor / master pro-
grams and of course with PhD level research. The currently educated next generation of
students is quite familiar with workbenches like Eclipse. For them, the new aspect is ap-
plying model-driven approaches to robotics. That generation is fluent at the user level in
handling workbenches like Eclipse.

41https://youtu.be/5116bGhXBr8 and https://youtu.be/Nzwjb8BaQns
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The BMWi PAiCE SeRoNet project rolls out the SmartMDSD toolchain in its cascade
funding calls which already led to industrial components42. These lead users from industry
also managed their role with only very few support.

Thus, we consider the learning curve to be adequate and to be manageable, even expecting
that it becomes even easier in the future.

42https://www.xito.one/marketplace.html/
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Goal THU-G1: The goal of this pilot is to demonstrate the benefits of RobMoSys.

Quest. Metric Prior Target Current Grade

THU-
Q1

THU-
M1.1

basic coverage
of component
builder, system
builder

all almost all ++

THU-
Q2

THU-
M1.2

one implemen-
tation per type
of capability

≥ 2 per
type of ca-
pability

at least 3 per capability (see table
6.1)

++

THU-
M2.1

— ≥ 3 at least the 6 ones outlined in this
report

THU-
M2.2

— ≥ 1 7

THU-
M2.3

— ≥ 1 3

THU-
Q3

THU-
M3.1

— ≥ 4 mobile manipulation (or-
der picking): TRL 4,
navigation stack (Robotino): TRL 9

++

THU-
Q4

THU-
M1.2

one implemen-
tation per type
of capability

≥ 2 per
type of ca-
pability

5 different capabilities each with
at least 3 alternative implementa-
tions allows combinations by system
builder (see table 6.1)

++

THU-
M2.4

many (even at
source code
level)

few (not
at source
code level)

none (just reuse and configuration of
binary)

THU-
M2.5

— ≥ 10 22 RobMoSys components on
Robotino, 20 RobMoSys compo-
nents on Larry (mobile manipula-
tion), 8 RobMoSys components for
fleet coordination, core navigation
components identical on all robots

THU-
Q5

THU-
M1.2

one implemen-
tation per type
of capability

≥ 2 per
type of ca-
pability

combinatorics available

++

THU-
M2.4

basically al-
ways restart
with compo-
nent builder

start at
system
builder

no need to go back to com-
ponent builder (system composi-
tion/modification in less than 1 hour)

THU-
Q6

THU-
M2.6

not systemati-
cally

≥ 1 3 by THU +
2 by ITPs (RoQME, MIRoN)

++

THU-
Q7

THU-
M2.7

not demon-
strated yet

≥ 2 3 (ACE, DDS, OPC UA) ++

THU-
Q8

THU-
M2.8

— ≥ 1 3 (rearranging navigation corridors,
rearranging shelves, adding new steps

++

THU-
Q9

THU-
M1.3

homogeneous diverse diverse ++

Table 6.2: Benchmarking plan for goal THU-G1: The goal of this pilot is to demonstrate the
benefits of RobMoSys. 70


	The RobMoSys Approach and Pilot Cases: an Overview
	Pilot Coverage Matrix
	Key Performance Indicators and Benchmarking
	Benchmarking Challenges


	Flexible Assembly Cell (Siemens/TUM)
	Summary
	Pilot Scenario and Use Cases
	Setup Description
	Pilot Focus and Coverage of RobMoSys Features
	Technical Details
	User story: Task-oriented programming
	User story: Hardware and Software component replacement

	Key Performance Indicators
	Goals
	Questions
	Metrics
	Benchmark


	Healthcare Assistive Robot (PAL)
	Progress Summary
	Pilot Scenario and Use Cases
	Focus and Coverage of RobMoSys Features
	Technical Details
	Key Performance Indicators and Benchmarking
	Goals
	Questions
	Metrics
	Benchmark


	Modular Educational Robot (COMAU)
	Progress Summary
	Pilot Scenario and Use Cases
	Focus and Coverage of RobMoSys Features
	Technical Details
	Key Performance Indicators and Benchmarking
	Goals
	Questions
	Metrics
	Benchmark


	Human Robot Collaboration for Assembly (CEA)
	Progress Summary
	Collaboration with the ITPs
	Pilot Scenario and Use Cases
	Focus and Coverage of RobMoSys Features
	Technical Details
	Technical description of system and task
	Models

	Key Performance Indicators and Benchmarking
	Goals
	Questions
	Metrics
	Benchmark


	Intralogistics Industry 4.0 Robot Fleet (THU)
	Progress Summary
	Pilot Scenario and Use Cases
	Focus and Coverage of RobMoSys Features
	Technical Details
	Key Performance Indicators and Benchmarking
	Goals
	Questions
	Metrics
	Benchmark



