
H2020-ICT-732410

RobMoSys

Composable Models and Software
for Robotics Systems

Deliverable D3.4:
Composable software and tooling for motion,

perception and world-model stacks

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N732410.

RobMoSys - D3.4 H2020-ICT-732410

Project acronym: RobMoSys
Project full title: Composable Models and Software for Robotics Systems

Work Package: WP 3
Document number: D3.4
Document title: Composable software and tooling for motion, perception

and world-model stacks
Version: 1.0

Delivery date: December 31st, 2020
Nature: Report (R)
Dissemination level: Public (PU)

Editor: Herman Bruyninckx (KUL)
Authors: Herman Bruyninckx (KUL), Marco Frigerio (KUL), Filip

Reniers (KUL), Nico Hübel (KUL), Enea Scioni (KUL)
Reviewer: Alessandro di Fava (PAL)

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No732410 RobMoSys.

2

Contents
1 Introduction 4

2 Software tools 5
2.1 Property Graph . 5

2.1.1 Design and implementation . 5
2.1.2 Code repository . 7

2.2 Robot Model Tools . 7
2.2.1 Software . 8

3 Deployment architecture 10
3.1 Introduction . 10
3.2 Design and implementation . 10

3.2.1 Algorithm . 10
3.2.2 Composition of algorithms . 14
3.2.3 Activity . 18
3.2.4 Thread . 18
3.2.5 Process . 18

4 Additional works 22
4.1 Educational modules . 22
4.2 Microblx . 23

4.2.1 Code repository . 23

3

1. Introduction
This Deliverable describes the work on the tools that support to model and to compose the fine-
grained software functions and data structures that make up the platform functionalities of
robotic systems. The aim of this Deliverable is to provide a very concrete and technical introduction
to the software tools developed within WP3, and it is targeted to early adopters of such tools.
RobMoSys advocates model-driven development techniques considering composition as a nec-
essary first-class primitive for models, tools and software components. Composability enables
interoperability and re-usability.
RobMoSys adopts the “Unix philosophy”, that is, a tool shall do one thing only, but do it well.
The same philosophy is adopted for the design of models, and the design of the functions and
data structures, which realise some functionality.
This approach towards “minimality” does not prevent the creation of “monolithic” tools or frame-
works,1 that are often expected in specific application domains because they bring the “user
friendliness” of de facto “standardizations” to that domain. The drive for minimality is expected
to help interoperability between such tools, because the development efforts of the common,
re-used parts can be shared.
RobMoSys adds a fundamental extension to the Unix philosophy: if the latter’s universal interface
boils down to not much more than text streams, RobMoSys’ aim is to exploit conformance to a
set of meta-models; in other words, interaction is not just via text, but via text with a formally
modelled meaning (see D2.1, D2.2 and RobMoSys Ecosystem Organization2). The disadvantage
of such “semantically rich” interfaces is the non-trivial effort to design and realise them (hence,
one of the goals in RobMoSys), paid off by the facilitation of tool interoperability.

1The software of a robotic solution is already, de-facto, an integration of multiple technologies and software
libraries. However, most of today’s frameworks that claim to address composability enforces the developer to
make strong technological bindings, adopting a static workflow with limited interoperability with other tools and
approaches, or, worse, leaving the developer the responsibility to address those directly, by manual programming.

2https://robmosys.eu/wiki/general_principles:ecosystem:start

4

2. Software tools
2.1 Property Graph

The property graph is a generic structure for the representation of heterogeneous and linked data.
The graph hosts the entities and the relations that one wishes to represent. Both entities and
relations, in general, have a set of key–value properties representing additional information. The
power of the property graph model lies in it being a very generic mechanism, as any object can be
inserted in the graph and there are no constraints on the relations that can be established among
them.
Such flexibility allows to model and interconnect heterogeneous objects, statically and dynamically,
in ways that need not be pre-determined. Existing models, data objects, etc., can be composed to-
gether into a rich knowledge base. The information that can be modeled in the graph is not limited
to traditional data-record-like items, and it includes, among other things, (symbolic references to)
algorithms; it is then possible to relate, for example, geometric features with the available image
processing algorithms for their detection. Also, composability implies de-composability, meaning
that different subsets of data can be extracted from the graph to serve algorithms with different
inputs; relations in the graph can always be ignored if not relevant, or exploited otherwise.
A natural limitation of the flexibility of property graphs is that they require the user to be aware
about the existence of the relations; in fact, the graph can be explored and searched for connec-
tions, but that comes at the price of higher complexity at the user side.

2.1.1 Design and implementation

This section describes our current implementation of a property-graph library, created to sup-
port the common requirement of knowledge representation in diverse robotics applications. Our
implementation conforms with the primitive meta-models of hypergraphs and entity-relation docu-
mented in the RobMoSys wiki.1 It meets the requirements of multi-robot systems about footprint
size and performance (latency etc.). It provides a property graph mechanism as a library that can
be embedded inside the in-process RAM memory of a realtime motion stack component.
Figure 2.1, also shown in Deliverable D3.2, gives a logical overview of the structure of the library.

1. The bottom layer represents the cgraph C library, which provides the generic mechanism
to construct in-memory graphs supporting node attributes (called “records” in CGraph ter-
minology).2

2. cgraph is hidded behind the property-graph-specific C API exposed to clients. The API
reflects the main concepts of the property graph, by means of operations to construct,
remove, connect nodes and edges, traverse edges, set and get key/value properties. Although
the core API is in C, we provide a convenience wrapper in Lua; the additional functionalities
described in the following are also implemented in Lua and are based on the core Lua API.
Note that this layer still exposes the concrete, low-level elements of the graph: nodes and
edges.

1https://robmosys.eu/wiki/modeling:hypergraph-er
2See https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf and https://www.mankier.com/3/cgraph.

5

https://robmosys.eu/wiki/modeling:hypergraph-er
https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf
https://www.mankier.com/3/cgraph

RobMoSys - D3.4 H2020-ICT-732410

Entity-Relation Modeling

In-memory property graph
data structure library

cgraph

Property graph mechanisms API

1

2

3

4
DSL for describing and composing domains

Domains

geometry kinematic
chains

navigation actuatorsdynamics ...

on property-graph

Figure 2.1: Current implementation design of the property-graph mechanism.

3. Layer 3 is a pure Lua API exposing the concepts of Entity and Relation. Entities and
relations can be created and interconnected. The software still uses the underlying property
graph mechanism to store the data, but the graph-level concepts (nodes and edges) are now
hidden from the user. Both entities and relations can have key-value properties. More on
this part later.

4. The last layer refers to a Domain Specific Language for the definition of the entities/relations
of a specific domain of interest, e.g. Vector in a Geometry domain. The point of such
definition is to impose constraints such as the number and kind of arguments of a relation,
or the acceptable properties for an entity. For example, a 3D vector must have an origin
and an end Point. These constraints are not enforced in Layer 3.
The implementation of this functionality at the current stage consists of an additional Lua
module and a Lua-internal DSL for the domain definition. The interpretation of the domain
dynamically creates an API tailored for it, so that specific creation functions can be used in
addition to the more general functions of Layer 3.

Internally, the implementation of the Entity/Relation layer (number 3 in the figure), enforces the
following policy:

• any Entity gets represented by a node in the underlying graph

• any Relation is also an Entity

• graph edges are used only to connect the (node representing the) Relation with the other
entities that constitute its arguments.

This policy has two main advantages: it automatically enables higer order relations, that is relations
whose arguments are other relations. It enables reuse of the same, single mechanism which deals
with graph node properties, to implement properties for both entities and relations. Figure 2.2
illustrates the graph induced by the creation of a relative-position and relative-orientation relations
between two Cartesian frames (entities), according to described policy: The figure shows four
graph nodes, for the two frames and for the two relations. Actual graph edges are usded to
identify the arguments of the relation, in this case named with_respect_to and of.
Note that users of the core property graph API (be that the Lua or the C API) are not constrained
by this policy and are free to decide when to use nodes and when to use edges.

6

RobMoSys - D3.4 H2020-ICT-732410

frame

Orientation

frame

Position

with_respect_to

with_respect_to

of

of

Figure 2.2: A property graph representing symbolically the relative pose between two frames
.

2.1.2 Code repository

The source code of the property graph implementation is available at the following address:
https://gitlab.kuleuven.be/u0129795/rt-graphkul.git. The project includes a readme
file with installation instructions and dependencies. Numerous simple examples are available to
illustrate the indended behaviour of the API. Most of the time, the property graph created bt these
sample is exported to the de-facto standard dot format, which can be converted to an image for
visual inspection.

2.2 Robot Model Tools

A model of the kinematics/dynamics of the robot is a core requirement of most robotics appli-
cations. There exist various robot model formats developed within different software packages.
Perhaps the most common one is the URDF file format 3 from the ROS ecosystem.
The URDF is a monolithic format supporting in a way a number of aspects of a robot model. If
these aspects (like connectivity, geometry, inertia, attachment of frames/points, sensors, meshes
for 3D visualization, etc.) are modeled separately, and corresponding tooling exists, it is much
easier to support alternative representations for the same information (e.g. how to specify the
relative pose of the frames on the model). Models addressing a self contained concern are com-
posable, and composability is reflected in the tooling. Conversely, a monolithic format leads to
monolithic tools and larger, harder specifications.
The KinDSL format4 focuses only on the aspects strictly required by dynamics solvers, and there-
fore slightly alleviates the issue. It however suffers from the same fundamental limitation, of
imposing a specific way of describing information that could be conveyed differently.
In an ideal scenario, the standardization and the concrete representation of meta models would
enable coexistence and interoperability of a multitude of formats, provided that instances of these
format would include explicit references to the meta models they conform to. The meta models
are a formal representation of the structure and the information content of robot models, for
example the rigid-body and kinematic-tree meta model (according to which a dynamics model is
a set of rigid bodies, connected by joints in specific locations, etc).

3See https://wiki.ros.org/urdf
4https://robcogenteam.bitbucket.io/rmodel.html

7

https://gitlab.kuleuven.be/u0129795/rt-graphkul.git
https://wiki.ros.org/urdf
https://robcogenteam.bitbucket.io/rmodel.html

RobMoSys - D3.4 H2020-ICT-732410

2.2.1 Software

Within RobMoSys, we developed a software library and command line tool designed to support
common operations with robot models, such as comparisons and conversions. Care was taken to
separate the implementation of different aspects of robot models, like connectivity and numbering
scheme (ordering), to make the software capable of dealing with diverse formats. Although we
have not achieved the ideal case of explicitly-represented and programming-language-independent
meta models, this software plays the role of a set of meta models, by checking and enforcing the
appropriate constraints upon loading an input model.
The Robot Model Tools is a command line program written entirely in Python. At the moment
is supports the formats URDF, KinDSL and a series of YAML based models which reflect the
different aspects of models implemented internally. These include:

• connectivity: a purely topological model, which is essentially a set of kinematic pairs

• numbering scheme: an ordering composed with the connectivity model; induces the (choice
of) robot base and the successor/predecessor relations between joints and adjacent links

• geometry: metric information required to localize the main reference frames attached to
the links and the joint axes; these frames can be referenced symbolically when composing
additional models, such as the

• inertia properties: mass, center of mass and moments of inertia for each rigid link of the
mechanism; both the center of mass and the moments must refer to the frame from which
they were measured.

This separation and the possibility to refer symbolically to parts of the robot (like links or joints)
and to other attachment points (like the Cartesian frames or specific points on the links), enables
composability with other models and the extensibility of the tool. For example, meshes for the
3D visualization of the robot can be “attached” to an existing model with a simple reference to
the link name.
The tool comes with an experimental module that connects to an external program called Meshcat,
for 3D visualization in the browser. This module does not bring in additional dependencies or
complications for the core of the tool. It does not require changes in the basic robot models (e.g.
connectivity). The meshes to be used for the visualization are specified with an additional file
that simply refers to the robot model name (i.e. the context) and then includes a mesh file path
for each link. This file is currently in YAML format.

JSON-LD

A development branch of the robot model tools is dedicated to the usage of models based on
JSON and JSON-LD. Such development is motivated partially by the maturity of the standards
and by the expertise of the community behind them (web and internet technologies). The primary
advantage of JSON/JSON-LD however, is the native support for mechanisms facilitating the
explicit representation of meta-model constraints, as advocated by the RobMoSys approach.5 In
particular, the JSON schema and the JSON-LD context. The former allows to enforce some
structure (like the presence of certain attributes) of models; the latter enables a certain degree of

5“Native support” refers to description of the concepts in the standards, and the corresponding availability of
conforming software tools.

8

RobMoSys - D3.4 H2020-ICT-732410

freedom in the choice of terminology inside the models, because different terms can be recognized
to “mean” the same thing.

Code repository

The source code (in the Python language) of the Robot Model Tools is available at the follow-
ing address: https://github.com/mfrigerio17/robot-model-tools. The tool requires a
Python version greater than 3.3. The readme file included in the repository describes the instal-
lation procedure and the dependencies.

9

https://github.com/mfrigerio17/robot-model-tools

3. Deployment architecture
3.1 Introduction

A robotic system is a complicated cyber-physical system. It has to execute and coordinate a
multitude of computations required to realize a task or a behaviour. Such computations include the
processing of low-level sensor inputs and actuator commands, as well as more high-level (semantic)
reasoning (e.g. populating a world model) with the ultimate goal of reaching situational awareness.
The benefits of separating the realization of all these computations in software from the deployment
on a particular computational hardware setup, are described in detail in chapter Meta models
for behaviour: activities, and their interaction and coordination of (Bruyninckx 2020). This
chapter describes a reference software implementation which serves as a template for the control
of any cyber-physical system. It conforms to RobMoSys concepts and models, as described in
the aforementioned reference. It is very flexible, allows composition and it does not impose any
framework lock-in.

3.2 Design and implementation

The deployment architecture differentiates between 4 computational/deployment entity types:

• Process

• Thread

• Activity

• Algorithm

Figure 3.1 shows the strict hierarchical tree of such entities. One application consists of one
process. A process can have several threads, each one having several activities, which in turn
compose together a number of algorithms.

3.2.1 Algorithm

The lowest level of the deployment tree consists of algorithms. An algorithm is the entity that
executes the computations. It consists of data structures and functions.
An algorithm is deterministic. The same configuration and input data will always lead to the same
results, regardless of the context and the number of executions. As a consequence, the functions
of an algorithm need to be pure functions without any side-effects. This is achieved by the fact
that they only act on their own state.
Another important aspect of an algorithm is that it operates in a synchronous context. Syn-
chronicity requires that:

• The sequence of functions programmed in the code of the algorithm is reflected in the actual
order of execution.

• The data is always available at any moment when the functions need it.

10

RobMoSys - D3.4 H2020-ICT-732410

Process

Thread 0 Thread 1

Thread 2 Thread 3

Activity 0 Activity 5

Activity 1 Activity 6Activity 2

Activity 3 Activity 7

Activity 4

Algorithm 23 Algorithm 15 Algorithm 99 Algorithm 51

Algorithm 19 Algorithm 19 Algorithm 1 Algorithm 8

Figure 3.1: Overview of the deployment architecture

11

RobMoSys - D3.4 H2020-ICT-732410

Algorithm X

done

create

destroy

resource configure

running

capability configure

pausing

LCSM

Flowchart / DAGs

entry

completion

completion

completion

exit

no

Condition
yes

entry

completion

completion

completion

exit

yes

completion

completion

no

Condition

exit

entry

completion

entry

completion

completion

exit

entry

completion

completion

exit

yes

completion

completion

no

Condition

exit

entry

completion
no

Condition
yes

no

Condition

entry

completion

completion

completion

exit

entry

completion

completion

completion

exit

Figure 3.2: Structural components of an Algorithm. LCSM stands for Life Cycle State Machine,
which is used to coordinate the behaviour of the algorithm. The flowcharts or Directed-Acyclic-
Graphs model the sequence of the computations.

12

RobMoSys - D3.4 H2020-ICT-732410

The developer of an algorithm does not need to worry about simultaneous access and other race
conditions.
Figure 3.2 shows the building blocks of an algorithm in the deployment architecture im-
plementation. An algorithm is composed of a life-cycle state machine and a collection of flow
charts which concretely model the sequence of computations. When started, an algorithm has to
go through all necessary steps of initialization until it can perform its nominal execution. Like-
wise when an algorithm finishes execution, it can be reconfigured or completely terminated. The
life-cycle state machine makes sure that the algorithm follows the correct sequence of states.

State Description of intended state behaviour
Create Memory allocation of required data structures

Resource Configure Configuration of data structures necessary for own operation
Capability Configure Configuration of properties during active operation

Pausing Idling behaviour
• imediate resume possible
• necessary for dealing with state dynamics

Running Execution of actual algorithm
Destroy Memory de-allocation

Done/Dead The algorithm is stopped,
and can be restarted only by an external entity

Table 3.1: The states of the Life-Cycle-State-Machine.

As will be shown in the sections Activity and Thread, the life-cycle state machine is not reserved to
be only used in algorithms. It appears in every element of the deployment architecture described
in this document. The seven states with their intended state behaviour are listed in table 3.1. A
basic algorithm will go through three phases:

• Initialization: The algorithm starts (Done) and traverses all the way to Pausing.

1. In Create the algorithm allocates all its state structures.
2. In Resource Configure it does a configuration of the resources required for proper

functioning. Most of the time these resources need to be configured only once.
3. In Capability Configure the algorithm capabilities are configured. This boils down

to the initialization of the computational parameters.
4. In Pausing the algorithm waits to become active and start performing its nominal

execution.

• Execution: The life-cycle state machine goes through a full cycle of an execution run.

1. The algorithm goes to Capability Configure to get the latest configuration values
and resets the computational state in case of a previous run of the algorithm.

2. The algorithm subsequently traverses Pausing and reaches Running. Here it will
perform its computations until a predefined stop condition has been attained.

3. When the stop condition is fulfilled, the algorithm returns to Capability Configure
to transfer results and other termination related configurations; finally it goes back to
Pausing.

13

RobMoSys - D3.4 H2020-ICT-732410

• Deinitialization: The algorithm visits the states in reverse order as in initialization: from
Pausing back to Done. In Capability Configure and Resource Configure the algo-
rithm resets everything to safe default values. In Destroy it deallocates the memory and it
eventually stops.

Most state transitions trigger on completion of the previous state. Only some transitions trigger
based on the computations. The stop condition for the execution is an example of such a condition.
For every state in the life-cycle state machine, the algorithm will execute one function or a
sequence of functions which results in the intended behaviour of every state. When creating an
algorithm, one has to specifiy a function per state that will be called whenever the algorithm is
executed. This single function can directly carry out a computation or it can contain a solver to
iterate over an array of functions that have to be called sequentially. In the most general case a
solver can be assigned to serialize a Directed Acyclic Graph (DAG) which encodes the flowchart
of the algorithm. Such a DAG consists of four types of blocks: process blocks, decision blocks,
terminal entry blocks and terminal exit blocks. A process block corresponds to a pure function
that implements an operator. A decision block evaluates a boolean expression to decide which of
its two outgoing branches to follow. A decision block is the only block that allows the splitting
into branches. The entry and exit blocks are the entry and exit points of the DAG, respectively.
The DAG can have multiple entry and exit points. To run an algorithm which is declaritively
specified in a DAG, the solver only needs the entry point in the DAG. When this information is
provided, the solver executes every function in the flowchart until an exit block is reached.
Although the mechanism allows to model even the simplest operation as a process block in the
flow chart, it is intended that the algorithm developer grounds the blocks at a granularity that
makes sense. The virtue of having a declarative model of an algorithm that is “solved” at run-time
into a schedule gives the possibility to alter the control flow during operation without the need
for a full shutdown of the algorithm.

3.2.2 Composition of algorithms
The deployment architecture allows the composition of algorithms. The algorithms are indi-
vidually designed to work within a synchronous context. Each algorithm has its order of function
execution programmatically fixed and its data is always available. A composed algorithm has to
comply to the same constraints to still be called an algorithm. Algorithms are therefore composed
into an event loop for mutually concurrent execution. Whether an algorithm is finished and a
subsequent algorithm can start depends on the data. The exact spot in time when the next algo-
rithm has to start is not fixed in the program code. The developer therefore needs a mechanism
to let synchronous algorithms react to asynchronous interactions with the other algorithms, also
when the timing of the algorithms’ execution is unknown. That mechanism is the architectural
pattern of the event loop.
Figure 3.3 shows an algorithm composing an eventloop with other algorithms (reffered to as sub-
algorithms in this section). An algorithm uses a template of 3 Cs of the Separation of Concerns
to fill up its event loop. These are:

1. Coordinate: trigger coordination mechanisms (finite-state machines (FSMs), petrinets, ...)
which results in a change of status flags and new events.

2. Configure: react to status flags and events to compose the event loop schedule.

3. Compute: execute the composed serialized set of synchronous algorithms.

14

RobMoSys - D3.4 H2020-ICT-732410

The finite-state machine (FSM) and petrinet models contain the bookkeeping information neces-
sary for the coordination of the execution dependencies of the sub-algorithms. Instead of coding
the direct coordination interaction inside the sub-algorithms themselves, the coordination and
synchronization of the control flows is out-sourced to a third party. As a consequence, the sub-
algorithms need not know about each other, and only interact with a “mediating” algorithm via
a protocol based on simple flags. Note that neither the FSMs nor the petrinets are algorithms
themselves. The mediating algorithm that uses the FSM and petrinet models for coordination
must look up the state of the FSM and the marking of the petrinet, at its coordination step.
Readers are referred to the corresponding sections of chapter 2 of (Bruyninckx 2020), for the
Petri Net and FSM terminology in the context of algorithm/activity coordination.
The Coordinate step for filling up the eventloop in Fig. 3.3 triggers first the FSM to determine
the phase in which the algorithm is. There are three phases: initialization, execution and deini-
tialization. Every phase has an associated Petri Net. The FSM in this example is currently in the
execute state which means that the yellow petrinet is active. The green petrinet was previously
active and the red petrinet has not become active yet. Next, the active petrinet is triggered.
When a petrinet is triggered, if all the incoming places of a transition contain a token, the transition
is enabled. When a petrinet is triggered, all enabled transitions are fired. When a transition is
fired, a token is consumed from all incoming places and a token is produced in all outgoing places.
The example in figure 3.3 shows an algorithm which serves as a factory of four sub-algorithms. The
green petrinet takes care of the synchronization of the initialization of the four sub-algorithms.
The yellow petrinet takes care of the nominal execution coordination, and the red petrinet of
the deinitialization of the four sub-algorithms. The nominal execution behaviour is the follow-
ing. When the four sub-algorithms are created and fully configured, they are scheduled by the
mediator. The sub-algorithms are either iterative or execute until completion. In both cases the
sub-algorithms signal with a flag that they are Complete. The algorithm processes a data flow.
When new data becomes available, sub-algorithm 1 and 2 can process it simultaneously, when
both are finished, sub-algorithm 3 and subsequently sub-algorithm-4 process the data.
After Coordination, in Configuration the event loop schedule is composed with schedules based on
the flags set by the coordination mechanisms in Coordination. A schedule is composed of a set of
named functions: a combination of a function and its arguments. A schedule can therefore contain
algorithms (a combination of the generic do_algorithm function and the algorithm configuration
structure), but also any combination of function and arguments.
To determine which schedules to add to or remove from the eventloop schedule, one compares
the add_schedule flag with the active_schedule flag for every schedule that can be scheduled for
the given phase. If these flags are different, the respective schedule is looked up in the lookup
table of all available schedules and added to or removed from the eventloop schedule.
At last, in Compute the eventloop schedule is executed by iterating over this serialized list of
schedules.

Coordination via flag-based protocol

An explicit policy, based on the usage of the petrinet model for scheduling, is adopted to establish
the relation between tokens in the petrinet and status flags to communicate information among
the sub-algorithms. A flag is a variable that indicates the outcome of a boolean expression. The
existence of a token in a place is equivalent to a boolean flag. If a token is in a place, the
corresponding flag is true. When there is no token in that same place, the flag is false. We can
detail this relation further by distinguishing four types of places:

15

RobMoSys - D3.4 H2020-ICT-732410

Algorithm X: Composing eventloop with algorithms

done

create

destroy

resource configure

running

capability configure

pausing

LCSM

Do eventloop

 3. Compute

IDLE

INIT

Execute

DEINIT

Complete

Algorithm 1
Algorithm 2

Algorithm 3

Algorithm 4

idle1

idle2 Complete

Complete

Complete

new data

stop algorithms

algorithms
stopped

idle3

Initialized alg3

Initialize alg3

Initialized alg4

Initialize alg4

Initialize alg1

Initialized alg2

Initialize alg2

Sync init 1

Sync init 2

Sync init 3

Sync init 4

Algorithms
Initialized

Initialized alg1

Deinitialized alg3

Deinitialize alg3

Deinitialized alg4

Deinitialize alg4

Deinitialize alg1

Deinitialized alg2

Deinitialize alg2

Sync deinit 1

Sync deinit 2

Sync deinit 3

Sync deinit 4

Algorithms
Deinitialized

Deinitialized alg1

Schedule 1

1

1

Schedule 2

0

1

Schedule 3

0

0

Schedule 4

0

0

Schedule 5

0

0

Schedule
String name

Add schedule
flag

Schedule
active flag

Schedule 1

Algorithm 1

f_ptr = do_algorithm
args = alg1_conf

Schedule 2

Algorithm 2

f_ptr = do_algorithm
args = alg2_conf

Schedule 3

Algorithm 3

f_ptr = do_algorithm
args = alg3_conf

Schedule 4

Algorithm 4

f_ptr = do_algorithm
args = alg4_conf

Schedule 5

Mediator monitor 1

f_ptr = monitor1
args = alg_mediator_conf

Mediator monitor 2

f_ptr = monitor2
args = alg_mediator_conf

All schedules
Schedule 1Eventloop schedule:

Schedule 1

NEW
Eventloop schedule: Schedule 2

1. Coordinate

2. Configure

State = Execute

State = running

Running state:

Figure 3.3: Structural components of a mediator Algorithm composing different subalgorithms.
Different Petri-Nets (larger squares) are used for coordination of the subalgorithms depending on
the current phase (see the matching colors).

16

RobMoSys - D3.4 H2020-ICT-732410

1. converting sources

2. tracking sources

3. converting sinks

4. tracking sinks

The working principle of all four types is displayed in figure 3.4. If a place is a converting source,
the place is filled with a token when its corresponding flag is true. The flag is subsequently set
to false (a). If a place is a tracking source, the place gets a token when its corresponding flag is
true. Its flag however is only observed. It is not set to false (3.4(b)). Converting and tracking
sinks operate similarly. Now the place is observed to either decide whether a flag should be true
or false. A sink sets a flag to true when its corresponding place has a token. If it is a converting
sink, the token is removed from the petrinet (3.4(c)). If it is a tracking sink, the token is only
observed and is not removed from the petrinet (3.4 (d)).

Converting source:

Flag: true

Converting Source:

Flag: false

(a) converting source

Tracking Source:

Flag: true

Tracking Source:

Flag: true

(b) tracking source

Converting Sink:

Flag: false

Converting Sink:

Flag: true

(c) converting sink

Tracking Sink:

Flag: false

Tracking Sink:

Flag: true

(d) tracking sink

Figure 3.4: All ’port’ types for token to flag and flag to token conversion

Figure 3.5 shows how a petrintet is used for scheduling and how the flag conversion is typically
used. The first type of places used for scheduling are tracking sinks. When a token is in place
Algorithm 1 or Algorithm 2 the corresponding flag is set high to indicate that those algorithms
have to be added to the eventloop schedule. When the token is removed from that place through
firing of the connected transition, the algorithm should be removed from the eventloop schedule.
The second type is the converting source. It communicates the value of a flag to the petrinet
by adding a token in that place. Converting sources in figure 3.5 are Algorithm 1 Complete,
Algorithm 2 Complete and Stop Waiting. The converting source places are always blocking a
transition. In the example, these places are directly tied to flags that indicate the completion of
the current algorithm, or in the case of Stop Waiting a general synchronization condition. The
third type shown here is converting sink. The only converting sink place in figure 3.5 is Notify
start. This is a place to generate a flag to indicate the status in the petrinet which can be used
elsewhere. At last, the fourth type is the tracking source. Place Ready Status of other algorithm
tracks the “readiness” of an other algorithm. The token appears and disappears according to the

17

RobMoSys - D3.4 H2020-ICT-732410

value of the flag that is tracked. This place is used for the synchronization between this and
another algorithm.

Tracking Sink:
Algorithm 1

Converting
Source:

Algorithm 1
Complete

Tracking Sink:
Algorithm 2

Converting
Source:

Algorithm 2
Complete

Converting
Source:

Stop Waiting

Converting
Sink:

Notify start

Idle

Tracking Source:
Ready Status of
other algorithm

...

Figure 3.5: Example of using a petrinet for algorithm scheduling

3.2.3 Activity

An activity has almost the same structure and behaviour as a composed algorithm, described in
the previous section. It also uses an eventloop to serialize the execution of algorithms. The major
difference is that the activity is the interface between the synchronous and asynchronous execution.
It therefore also schedules an explicit Communication step before it does all coordination and
configuration as shown in figure 3.6. In this step it interacts with the other activities via the
provided asynchronous data channels such as stream buffers to receive data, flags and events.

3.2.4 Thread

A thread, in the deployment architecture, is the container in which activities are serialized to
be run on a CPU core. It is the interface between the application-centred activities and algorithms
and the operating system. There are various scheduling policies which are part of the operating
system such as Task Queue, Priority Scheduling, Round-Robin scheduling, etc. In Figure 3.7, a
time-triggered periodic scheduling strategy embedded in a thread component is shown. When the
thread reaches its nominal running state, it composes and executes its eventloop (see figure 3.8)
and sleeps for the remaining time to run at a prescribed cycle time. This thread does not take
into account time overrun, because it cannot preempt the computations when time exceeds the
cycle time. However, that is a condition that can be easily monitored and reported.

3.2.5 Process

The process is the single entry point for the execution of the application. It is responsible for
ownership of the resources that the operating system provides to the application. The process
level is where one can decide what CPU a thread can be assigned (processor affinity) and the
scheduling of CPU time among threads within the application. The process lives in kernel space

18

RobMoSys - D3.4 H2020-ICT-732410

Activity X: Composing eventloop with algorithms

done

create

destroy

resource configure

running

capability configure

pausing

LCSM

Running state:

State = running

NEW
Eventloop schedule:

2. Configure

Do eventloop

 4. Compute

Schedule 9

0

1

Schedule 10

1

1

Schedule 11

0

0

Schedule 12

0

0

Schedule 13

0

0

Schedule
String name

Add schedule
flag

Schedule
active flag

Schedule 9

Algorithm 74

f_ptr = do_algorithm
args = alg1_conf

Schedule 10

Algorithm 35

f_ptr = do_algorithm
args = alg2_conf

Schedule 11

Algorithm 27

f_ptr = do_algorithm
args = alg3_conf

Schedule 12

Algorithm 94

f_ptr = do_algorithm
args = alg4_conf

Schedule 13

Activity monitor 1

f_ptr = monitor1
args = activity1_conf

Activity monitor 2

f_ptr = monitor2
args = activity1_conf

All schedules
Schedule 9Eventloop schedule:

Schedule 10

Schedule 10

2. Coordinate

Complete

Algorithm 1
Algorithm 2

Algorithm 3

Algorithm 4

idle1

idle2 Complete

Complete

Complete

sync computation
other activity

stop algorithms

algorithms
stopped

idle3

1. Communicate
I/O ports -> Incoming Events, Flags and data (buffers / streams)

sync computation
other activity

Figure 3.6: Structural components of an Activity composing an eventloop

19

RobMoSys - D3.4 H2020-ICT-732410

While (NOT stopped) {
 Life-cycle update ();
 if (state == create)
 ...
 ...
 if (state == running) {
 if (t2 < t1 + cycle_time)
 Sleep thread ();
 Compose and do eventloop (thread_eventloop);
}

Thread - Time-triggered

done

create

destroy

resource configure

running

capability configure

pausing

LCSM

Figure 3.7: Structural components of a time-triggered thread

and the ownership belongs to the operating system. The configuration and composability of
processes depends on the operating system in which the application(s) run(s).

20

RobMoSys - D3.4 H2020-ICT-732410

NEW
Eventloop schedule:

2. Configure

Do eventloop

 4. Compute

Schedule 21

0

0

Schedule 22

1

0

Schedule 23

0

0

Schedule 24

1

0

Schedule 25

1

0

Schedule
String name

Add schedule
flag

Schedule
active flag

Schedule 21

Activity 1

func = do_activity
args = act1_conf

Schedule 22

Activity 2

f_ptr = do_activity
args = act2_conf

Schedule 23

Activity 3

f_ptr = do_activity
args = act3_conf

Schedule 24

Activity 4

f_ptr = do_activity
args = act4_conf

Schedule 25

Thread monitor 1

f_ptr = progress_monitor1
args = thread1_conf

Thread monitor 2

f_ptr = progress_monitor2
args = thread1_conf

All schedules
Schedule 22Eventloop schedule:

Schedule 23

2. Coordinate

Thread X: Composing eventloop with activities

Complete

Activity 1
Activity 2

Activity 3

Activity 4

idle1

idle2 Complete

Complete

Complete

start thread

stop thread

thread
stopped

idle3

1. Communicate
I/O ports -> Incoming Events, Flags and data (buffers / streams)

progress monitors
thread

Schedule 25

Figure 3.8: The composition and execution of the eventloop of a thread

21

4. Additional works
4.1 Educational modules
To properly design and implement “realtime components” as building blocks for a robotic system
involves a large learning curve. And often also access to expensive robotics hardware. During the
last year of the RobMoSys project, we have developed an educational platform (Fig. 4.1), that
can be built with a budget of about 500 euros.

Figure 4.1: Assembled educational “mobile robot” platform, as entry-level hardware to showcases
RobMoSys compliant perception and motion stacks.

Still, it contains all essential parts of a distributed robotics control system:

• several computers: Raspberry Pi as “brain”, and Arduinos as “local drivers” for the motor
controllers.

• a CAN field bus, connecting motors and some sensors.

• proprioceptive sensing (encoders and IMU) as well as exteroceptive sensing (ultrasound,
LIDAR (at extra cost)).

Hence, many of the building blocks and architectural patterns can be illustrated with this simple
device. The core educational modules are about how to apply the RobMoSys compliant multi-

22

RobMoSys - D3.4 H2020-ICT-732410

threaded component model, with circular buffers as core mechanisms for asynchronous con-
trol and coordination. Especially the entry-level explanation and implementation of how to deal
with asynchronicity on a professional level is expected to become the “unique selling point” of this
module.
Full documentation and software will be made available publicly. And the modules are further
developed in several courses.

4.2 Microblx
microblx is a lightweight framework to build hard real–time systems based on the composition
of functional blocks. It is designed around a canonical component model with ports for data
exchange, configuration hooks, and a state machine for the management of the “block” life
cycle.1
microblx was an existing software created independently of RobMoSys, by Markus Klotzbuecher
and some collaborators. However, it largely conforms to the RobMoSys approach and best prac-
tices, especially after the improvements developed over the course of a RobMoSys Integrated
Technical Project, COCORF (see deliverable D5.9). Due to its focus on embedded and hard
real-time applications it constitutes a relevant complement to the RobMoSys tools and software
baseline2, and therefore it is mentioned in this document.

4.2.1 Code repository
The main source code repository of microblx can be found here. The implementation of the
RobMoSys “mixed-port” concept for interoperability with other frameworks (ROS in this case)
is available here. A relevant example of the composability feature of microblx is documented
here.

1See the documentation here. © Copyright 2012-2020, Markus Klotzbuecher et al.
2See this page of the RobMoSys wiki.

23

https://github.com/kmarkus/microblx
https://github.com/kmarkus/microblx-ros
https://gitlab.com/kmarkus/microblx-composition-tutorial
https://microblx.readthedocs.io
https://robmosys.eu/wiki/baseline:start

References
Bruyninckx, Herman (2020). Design of Complicated Systems. Tech. rep. KU Leuven. url:

https://robmosys.pages.gitlab.kuleuven.be/.

24

https://robmosys.pages.gitlab.kuleuven.be/

	Introduction
	Software tools
	Property Graph
	Design and implementation
	Code repository

	Robot Model Tools
	Software

	Deployment architecture
	Introduction
	Design and implementation
	Algorithm
	Composition of algorithms
	Activity
	Thread
	Process

	Additional works
	Educational modules
	Microblx
	Code repository

