
H2020-ICT-732410

RobMoSys

Composable Models and Software
for Robotics Systems

Deliverable D4.1:
First Report on Pilot Cases

This project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement N732410.

Ref. Ares(2017)6375630 - 27/12/2017

RobMoSys - D4.1 H2020-ICT-732410

Project acronym: RobMoSys
Project full title: Composable Models and Software for Robotics Systems

Work Package: WP 4
Document number: D4.1
Document title: First Report on Pilot Cases
Version: 1.0

Delivery date: 31 December, 2017
Nature: Report (R)
Dissemination level: Public (PU)

Editor: Enea Scioni (KUL), Daniel Meyer-Delius Di Vasto
(Siemens)

Authors: Daniel Meyer-Delius Di Vasto (Siemens), Alessandro Di
Fava (PAL), Sergi Garcia (PAL), Andrea Ivaldi Stefano
(COMAU), Ivan Lazzero (COMAU), Enea Scioni (KUL),
Herman Bruyninckx (KUL), Selma Kchir (CEA), Den-
nis Stampfer (HSU), Alex Lotz (HSU), Christian Schlegel
(HSU)

Reviewer: Gaël Blondelle (EFE)

This project has received funding from the European Union’s Horizon 2020 research and innovation
programme under grant agreement No732410 RobMoSys.

2

Executive summary
The vision of the RobMoSys project is to adopt the context of model-driven software development,
and to create better models, as the basis for better tools and better software, in turn allowing the
development of better robotic systems. To this end, models should be complete, which is a very
challenging task, and practically impossible to realize within the context of a single project and a
domain as broad as robotics.

The RobMoSys approach proposes model composability as a primary mean to solve this impasse:
each model addresses a different domain or concern of the software development in robotics; other
models can be defined as a composition of existing ones, redefining the scope of the domain or
context subject of the modeling effort. This leads to model completeness within the scope of the
modelled domain, in which each specific model can be changed, improved or replaced, without
hitting compatibility issues. Tools and software that support those models must adhere to the
same composability principle; each tool provides a specific functionality that is reusable (and us-
able) in all contexts in which the reference model is used. The set of models, tools and software
implementations that are conformant to the RobMoSys modelling approach defines models and
software baselines that guarantee software quality, flexibility and composability for all robotic sys-
tems developed with them.

Within the scope of the project, two major targets are scheduled, the first one focussing on the
platform, and the second one on the pilots. The latter are our means to illustrate and bench-
mark our models-software-tools methodology, by demonstrating how to make systems, in selected
application domains, with the developed generic platform primitives. Since it is not formally
possible to prove completeness of (sets of) models, and since it is not pragmatically possible to
prove reusability (of models and code) in all application domains, a way to validate the achieve-
ment of the RobMoSys objectives is to let the industrial-partners of the RobMoSys consortium
(Siemens, PAL and COMAU) drive the development of concrete industry-relevant cases, in
collaboration with the academic partners. In addition, academic partners propose other scenarios
that are considered “hot” research topics by the robotics community. Finally, the RobMoSys
approach adopts model-driven software design techniques to ease the development of robotic so-
lutions for the different “users” of the RobMoSys software baseline, based on the observation
that well-formed and formalized models are the most ideal form of documentation.

Although the pilots will only become active in the second part of the project, a lot of preparation
activities have already been realized, of which this Deliverable provides the (intermediate) sum-
mary after one year into the project. So, the definition and the development of the pilot cases
play a major role in the modeling efforts and the realization of the RobMoSys software baseline
(WP2 and WP3), by spotting in advance possible issues and limitations.

3

Contents
1 The RobMoSys Approach and Pilot Cases: an Overview 6

2 Flexible Assembly Cell (Siemens) 10
2.1 Pilot Scenario . 10

2.1.1 Goals . 10
2.1.2 Addressed User Stories . 12

2.2 Models . 14
2.3 Software Components . 16
2.4 Ethical Issues . 17
2.5 Planning . 17

3 Healthcare Assistive Robot (PAL) 18
3.1 Pilot Scenario . 18

3.1.1 Goals . 19
3.1.2 Addressed User Stories . 20

3.2 Models . 21
3.3 Software Component . 22
3.4 Ethical Issues . 22
3.5 Planning . 22

4 Modular Educational Robot (COMAU) 23
4.1 Pilot Scenario . 23

4.1.1 Goals . 24
4.1.2 Addressed User Stories . 25

4.2 Models . 26
4.3 Software Component . 27
4.4 Ethical Issues . 27
4.5 Planning . 27

5 Human Robot Collaboration for Assembly (CEA) 29
5.1 Pilot Scenario . 29

5.1.1 Addressed User Stories . 29
5.1.2 Goals . 31

5.2 Models . 32
5.3 Software Component . 32
5.4 Ethical Issues . 33
5.5 Planning . 33

6 Intralogistics Industry 4.0 Robot Fleet (HSU) 35
6.1 Pilot Scenario . 35

6.1.1 Addressed User Stories . 36
6.1.2 Goals . 37

6.2 Models, Views, and Roles . 37
6.3 Software Components . 38
6.4 Ethical Issues . 38

4

RobMoSys - D4.1 H2020-ICT-732410

6.5 Planning . 38

5

1. The RobMoSys Approach and Pilot
Cases: an Overview
The aim of the RobMoSys project is to enable the development of better robotic systems by
addressing core issues at different stages of the software development process, from the design
of the information architecture until the implementation of each single functionality. This ap-
proach includes model-driven development techniques that allow composition of robotics systems,
for models as well as for software. The software (functionalities and infrastructure) of a robotic
application is developed by composing existing software building blocks together. Each building
block delivers a functionality that addresses one specific concern (e.g., a motion algorithm, a
robotic behaviour, a communication service, etc). These building blocks can be composed to
realize advanced functionalties, and this is possible if each building block has a formal model that
describes its interfaces and properties.

RobMoSys is a unique project in the sense that it not only strives for the above-mentioned com-
posability of software, but also of the models that formalize the behaviours implemented by the
software. That means that RobMoSys develops not only the tools to configure software compo-
nents to conform to models, but also to compose models into composite models, for which the
tool-based software confguration then produces, by design, correctly integrated software compo-
nents that realise the composite model.

To this end, RobMoSys defines a set of Tier-1 meta-models, the RobMoSys composition structures
(cf. D2.1 as a first partial result of the WP2 that will evolve during the remaining execution-time
of the project). The aim of these meta-models is to define those elements that make a software
component composable, independently of the tool, functionality, middleware or software imple-
mentation used to realize those.

Software components carry functionalities, and to be truly composable, those functionalities must
be modeled as well. Therefore, there is a need of Tier-2 models and meta-models, aimed to de-
scribe various functionalities that lie in different domains of a robotic ecosystem: motion control,
perception and world model. Those models describe the basic building blocks of a robotic system,
and it is the scope of WP3 to develop them (cf. D3.1).

Finally, models are useful in practice only if a set of tools that support them exist: the RobMoSys
project proposes a software baseline, that is, a collection of software tools that complies to the
RobMoSys Tier-1 and Tier-2 meta-models. In addition to software component interoperability,
tools interoperability is another concern that the RobMoSys project is addressing; the conformance
to a set of common metamodels is a necessary first step in that direction. This allows to have
not one single tool that addresses the full-scale problem of developing robotic systems, but a
set of tools, each one specialized for the development of a specific aspect of the robotic system.
Therefore, there is no single user of the whole software baseline, but instead several users, with
different expertises, who develop different aspects of a robotic application with the aid of dedicated
tools. In the RobMoSys ecosystem, several roles have been defined already (cf. described in D2.1).

However, it is almost impossible to formally prove the benefits of the envisioned approach, so

6

https://robmosys.eu/wiki/modeling:composition-structures:start
https://robmosys.eu/wiki/domain_models:motion-perception-worldmodel:start
https://robmosys.eu/wiki/general_principles:ecosystem:roles

RobMoSys - D4.1 H2020-ICT-732410

there is a need of concrete pilot cases, focusing on different contexts in which robotic technology
may be applied.

During the first year of the project, and in particular during the last six months, the RobMoSys con-
sortium has been working on specifying pilot applications, as examples of full robotic applications,
to illustrate vendor-neutral and environment-neutral composition of systems. This deliverable
serves as progress report and presents the initial version of these pilot applications as result of
task T4.1 - Pilot Design (M6-M12).
The RobMoSys project uses pilots to demonstrate the use of the approach through the development
of full applications with robots. Pilots span different domains and different kind of applications.
Moreover, the pilots can be used by project contributors for bootstrapping the design, developing,
testing, benchmarking and demonstrating their contribution. A high level of interaction between
the development of pilot cases and tool developers is fundamental, to make sure that both models
and implementations meet the expected results.

From a technical perspective, the (non-exhaustive) list of benefits that must be validated by the
pilot cases is:

• simplifying the deployment, the setup and the configuration of software (and any software
changes related to the hardware);

• limiting the possibility of errors introduced in the software, in different stages of the devel-
opment process, from the design of the information architecture until the concrete imple-
mentation of each single functionality;

• better focus of the developers of the robotic system, since their “role” in the development
process is clearly defined;

• ease of use by simplifying the integration and usability of software components;

• composable and replaceable components;

• predictable and traceable properties;

• reliably quality of service;

• certifiable systems.

These above-mentioned technical benefits directly lead to commercial benefits:

• reduction of initial development time, resulting both in reduced setup costs and shorter time
to deliver the product solution to market;

• reduction of maintenance costs;

• reduction of investment costs since systems can be easily re-configured for performing dif-
ferent tasks.

Table 1.1 provides an overview of the applications that have been currently specified, while a
detailed description can be found in the following chapters. Each pilot case focuses on particular
aspects of the RobMoSys approach, that is, a first set of Tier-1 and Tier-2 models are targeted

7

RobMoSys - D4.1 H2020-ICT-732410

Table 1.1: Overview of the proposed pilot cases.

Pilot Name Leading
Partner

Pilot Focus Description

1 Flexible Assembly Cell Siemens Task-oriented robot
programming, skill
model definitions
(robotic behaviour)

A flexible assembly cell composed by two
robot manipulators. The pilot validates
models and tools support for describing
robotic behaviours, enabling easy and
fast programming of the workcell to as-
semble custom products.

2 Healthcare Assistive Robot PAL
Robotics

Service-based composi-
tion and reconfigura-
tion of software com-
ponents

An assistive service robot platform. This
pilot investigates the creation of ded-
icated interfaces and the replacement
of software components by composition
and validation of component specifica-
tions.

3 Modular Educational Robot COMAU Robot modeling and
functional composition
of motion stack al-
gorithms, reconfigura-
tion of software com-
ponents

An educational platform for learning
robotics and other subjects through
robotics. Motion functionalities
must be composable and easy ac-
cessible/configurable to ease the
development of different educational
applications.

4 Human-Robot Collaboration
for Assembly

CEA List Safety, world model A robotic system certified to collabo-
rate with human operators and share the
work environment.

5 Intralogistic Industry 4.0
Robot Fleet

HSU Service-based composi-
tion, testbed and tuto-
rials

A fleet of mobile platforms in a logistic
scenario. This pilot is used to validate
improvements in the software baseline,
and as a tutorial for 3rd parties projects.

for the validation and they collaborate in a close development cycle with WP2 and WP3. This
allows the RobMoSys consortium to balance the workload in smaller, topic-based task-forces.
The consortium will also consider the involvement in the development plan of the future third-
party partners that will carry RobMoSys-funded projects. Moreover, the pilot cases consider real
scenarios from different business contexts, and this diversification helps to show the applicability
of the RobMoSys approach in multiple contexts.
Nevertheless, each pilot case will make use of other RobMoSys models and tools to support the
various functionalities needed for its realization, and not only the ones indicated in Table 1.1. In
that sense, the partial results of a pilot case will be transferred to the others, serving as an example.
For instance, the world model (Tier-2) is a fundamental model of “pilot 4”, since querying a world
model instance is a requirement for performing safety analysis and runtime context-awareness of a
robotic system with human operators. At the same time, a world model is also required by “pilot
1”: safety requirements for an autonomous flexible assembly cell are lower than for a collaborative
robotic system, but a world model (and its software realization) is needed for achieving the desired
flexibility. In this context, it is fundamental that the world model can support different “views”
to suit the different functionalities/algorithms needed to realize the assembly task.
At M12, the RobMoSys consortium identified several common topics of interest to address common
modeling efforts and tools development, which are orthogonal to the pilot cases:

• Task-oriented robot programming: this topic regards meta-models and models to describe
robotic behaviours, and the tool support to realize those, in strong relation with WP2

8

RobMoSys - D4.1 H2020-ICT-732410

(Tier-1) and WP3 (Tier-2);

• Service-based composition and configuration, as a primary tool for software composition
of heterogeneous functionalities; this is strongly related to WP2 (Tier-1) and the software
baseline development;

• Functional composition: this topic regards the modeling of algorithms and the composition
of those, providing user feedback to the development of the motion stack (WP3);

• World model specifications, to ensure the development of an application-independent world
model (Tier-2, WP3) by considering all the requirements provided by the pilot cases.

The common topics of interest above-mentioned are designed to enable frequent interactions
between academic and industrial partners during the second year of the project (M12-M27), and
they are subjet to changes depending on the results and the pilots need. Besides, this also promotes
third-party contributions to each specific topic.
More in general, during the next year (M12-M27) the RobMoSys consortium will provide spec-
ifications of appropriate levels of interfacing conforming to the RobMoSys meta-meta-models,
meta-models and models, and create a minimal pilot “skeleton” application on a designed pilot
hardware platform. More complete modeling, tooling and software to showcase pilot applications
is the goal of the second Open Call (M33–M45).

The following chapters of this document describe in details the concrete pilot cases driven by the
project partners.

9

2. Flexible Assembly Cell (Siemens)
2.1 Pilot Scenario

The ongoing industrial revolution is largely being driven by a constantly increasing demand for
tailored production. Nevertheless, the costs associated with the engineering and (re)configuration
of today’s production systems makes automation only cost-effective for high-volume standardized
production. The rise of advanced automation devices is also changing how production systems
are conceived. The new generation of automation devices, like autonomous robotic systems
and high-end controllers, is no longer based on simple I/O signal communication but provides
a full-fledged, high-level application programming interface to access the device’s features and
functionality. System development means not only building several, individually more complex,
sub-systems but also combining them into production systems that can perform a large range of
different tasks with high demands on performance and adaptability.

Figure 2.1: Flexible assembly cell consisting of two robotic arms, each equipped with a 2D camera
for perception and a gripper for object manipulation. The cell is also equipped with a 3D camera
for workspace monitoring.

2.1.1 Goals

The objective of this Pilot is to validate the RobMoSys methodology by applying it to a discrete
manufacturing task within a highly-flexible assembly cell. The assembly cell has a high degree of
autonomy and it does not rely on special-purpose tools or sensors. It consists of two robotic arms,
each equipped with a 2D or 3D camera for perception and a gripper for object manipulation. The
cell can produce different types of products, with only small (re)configuration effort. The cell
operator should be able to specify different assembly tasks using reusable and composable task
blocks without having to know the details of the underlying hardware and software that will be
employed to realize the task. The pilot will validate the adopted methodology in different phases of
the life-cycle manufacturing design, that is the system design (the design of the flexible assembly
cell), the task design (that is product-dependent) and the online monitor and (re)configuration of

10

RobMoSys - D4.1 H2020-ICT-732410

Figure 2.2: Simulation environment for the flexible assembly cell.

the task under execution at runtime. To evaluate the benefits of the RobMoSys approach, some
performance indicators have been identified. An indicator is the easiness of integration of new
task blocks in an existing solution, which is a requirement to adapt the cell to a newly customized
product to be assembled. Another indicator is the robustness of the assembly execution, which
must be guaranteed by an efficient execution monitoring. The next section describes further user
stories within the context of the pilot, while the following is a first description of the flexible
assembly cell scenario.
The assembly cell is constituted by several components. Table 2.1 list some of the components
that constitute the assembly cell pictured in Figure 2.1. Each component offers one or more
functionalities, which are available through a service interface. A particular configuration and
activation of certain components is used to realize a concrete skill. At runtime, the execution
of a skill realizes a specific (sub-)task for the assembly process. Besides, skills can rely on other
skills to form a hierarchy of functionalities. For example, the camera components (left, center
and right) offer the grab camera image services that are then used by other components to
implement the detect object skill, thus determining the relative pose of an object of a given type.
To be executed, this skills must be configured, for example, with object to find (or its type),
and optionally an initial guess on the location of the object. In the same vein, the definition
of the skill should be independent on which camera(s) to use: At the skill interface level, we
don’t specify which camera(s) to use; depending on the type of object (and its initial guess) the
system decides autonomously which camera(s) to use to better determine the pose of the object.
The gripper components (left and right) offer the close gripper services that are then used to
implement the grasp object skill, and the arm components (left and right) offer the move arm
services. This service, together with the grasp object and detect object skills are needed for
realizing the higher-level pick object skill.

11

RobMoSys - D4.1 H2020-ICT-732410

Table 2.1: Assembly cell components.

Component Offered service Dependent skill
Left camera Grab left camera image Detect object
Right camera Grab right camera image Detect object
Center camera Grab center camera image Detect object
Left gripper Open left gripper Grasp object

Close left gripper
Right gripper Open right gripper Grasp object

Close right gripper
Left arm Move left arm Transfer object
Right arm Move right arm Transfer object

The example above points out that different services, potentially running on different components,
might be needed for implementing a skill. This requires relevant information (e.g. the geometry of
the object to be picked by the pick object skill) to be shared timely and consistently between the
interacting services and corresponding components, potentially running different operating systems
and communicating over a network connection. The synchronization of information within a skill
can have rather relaxed time constraints (e.g. querying a cloud-service for object detection or
grasp-pose computation) but can also require more real-time constraints (e.g. manipulating an
object with both the left and right arm). In short, this highlights the need of an explicit world
model that describes how the information on the flexible assembly cell environment are stored –
including geometric relationships (e.g, poses), semantic information (e.g., “utility” of the objects)
– and a mechanism to query and share them.
The set of modeled skills constitute a catalog that is used to specify the (sub-)tasks of the robotic
system. In the case of an assembly cell, the task consists in assembling a product as specified by
the corresponding assembly instructions. This instructions consist of a high-level description of
the process, for example: insert part 1 with part 2, screw part 1 to part 3, and so on. The insert
operation can be implemented as a skill, that relies, for example, on the pick object skill that
in turn relies on the grasp object and detect object skills. This means that all the information
required by the grasp object skill has to be derived, directly or indirectly, from the information
available in the insert skill. Whenever the system has to be (re)configured for producing a new
product, the operations in the assembly instructions have to be matched to the skills available in
the skill catalog. Then the information paths for providing the relevant skills with the required
information have to be specified. In this way, the system can really be (re)configured as opposed
to (re)programmed, with the main benefits that: (i) the configuration can be easily validated
in advance (because it is domain-specific and less variable than general-purpose code), and (ii)
the underlying implementation is created and tested by experts in the domain of the specific
functionality delivered.

2.1.2 Addressed User Stories

The following user stories are concrete instantiations of the general user stories described in the
RobMoSys wiki [9] in the context of the proposed flexible assembly scenario.

12

RobMoSys - D4.1 H2020-ICT-732410

Composable commodities for robotic assembly systems with traceable and assured prop-
erties. As system builder, I would like to compose a robotic assembly system and write assembly
applications for different products out of commodity building blocks with traceable guaranteed
fulfillment of my requirements.
To achieve the flexibility and the precision required in my application, I would like to compose
different hardware components, such as sensors (2- and 3-D cameras), robotic arms (UR5, KUKA)
and grippers (2- and 3-finger), and quickly replace those if a change in the application is required
for the assembly of a different product.
Moreover, I would like to compose different existing software components that provide different
functionalities, such as object detection, grasp and motion planning, and replace them easily
depending on my application requirements.

Description of building blocks via model-based “datasheets”. As a system builder, I would
like to select from available motion planners for the arm the one which best fits my requirements
and expectations.
I would like to check via a sort of datasheet (i.e. a digital model) whether a motion planner
works for the number of degrees of freedom of the robotic arm used in my system, or whether
the resulting motions are compatible with the API and data communication constraints imposed
by the controller of the arm. In case of API incompatibility, I would like a tool that assists me to
adapt the software consistently, preventing the introduction of bugs in the deployed code. I would
like to import the motion planner into my system design to perform online reachability analysis.
I would like to extract from my system design the specification of a motion planner such that
someone else can apply for providing a tailored software component according to my needs.
I would like to use the motion planner as a gray-box, and use it “as-is” and only adjust it within
the variation points expressed in the datasheet without the need to examine or modify source
code.

Replacement of component(s) One of the robotic arms in the assembly cell is defective, and
the very same arm model is not available anymore (deprecated, discontinued, or only the next
version available). The reparation costs may be very demanding with respect to a replacement,
which may have the advantage of being competitive in terms of power efficiency, and possibly
offered with competitive price by another vendor.
As a system builder, I would like to check whether the system can still perform its current task as
specified (e.g. cycle times, workspace, etc.) when a robotic arm with different kinematic structure
than the original one is employed (e.g., 1 degree of freedom less, different reachable workspace,
different payload). I would like to know how to configure the new arm for the very same task. The
same holds in case that a specific software component is not available for the replaced hardware
component, e.g., a motion planner library with the same functionalities that target the kinematic
model of the employed robot arm in place of the defective one.
As a system builder, I would like to know which constraints and which “white open spots” in the
design of my system arise when a functional component (such as a motion planner) is replaced
with another one, and the required configuration to perform the very same task specification.

Composition of components I would like to know about the required resources (e.g. CPU
load, memory usage, network communication) of a composition of various software components,

13

RobMoSys - D4.1 H2020-ICT-732410

such that I can identify potential resource allocation conflicts, for example, when executing dif-
ferent algorithms simultaneously, such as an object detection algorithm and a motion planner.
In particular, I would like to know if the object detector is consuming resources even when the
application does not required that particular functionality.
Furthermore, I would like to know about the consistency of the overall settings in order to increase
the trust into the system. I would like to know that critical paths are transformed from design-time
into run-time monitors and sanity checks.

Determinism As a system builder, I would like to guarantee that the execution of an assembly is
performed in the very same way, independently from the change of one or both robotic arms, the
employment of different perception systems (3D cameras or 2Dcamera), the change of computing
unit or online uncertainties inherent to the assembly task. .
I would like to know that the intended functional dependencies and intended processing chains are
finally realized within my system composition. For example, I would like to determine accurately
the 6D pose of each object subject to a manipulation task, in order to grasp and move them
with the manipulator. I would like that relevant functional dependencies are still valid even after
replacing one of my on-board computers by a different one.

Task modeling for task-oriented robot programming As a system builder, I would like a
catalog of reusable and composable task blocks for robotic assembly (e.g. grasp, transfer, release,
insert object) that I can use to specify assembly programs for different products.
I would like to model the various constraints of the assembly process explicitly, such that those
are managed automatically when the overall task is defined as a composition of other sub-tasks,
allowing concurrency in their execution but still avoiding conflicts. A typical example is the conflict
between the motion of a robot arm that is occluding the field of view of a camera, causing a fault
on the object detection algorithm.
From the addressed user stories above, few generic user wishes and functional needs show up:

• ease replacement of hardware component, tacking the software issues inherent with such a
change;

• ease replacement/deployment of (software) component to adapt the flexible cell with the
most appropriate set of algorithms to solve a particular assembly task;

• modelling the task and the behaviour of the robotic application by means of a task spec-
ification that defines the constraints that the execution must satisfy, decoupling from the
underlying software components that perform its execution;

• a way to verify the compatibility with any change of the software components that realise
the required functionalities and the task specification to be realised.

2.2 Models
This pilot scenario focuses on the robotic behaviour and the modelling of the assembly task. For
such a complex pilot, all Tier-1 and Tier-2 models are required; however, the Robotic Behaviour
Meta-model is the Tier-1 that mostly regards this pilot case. The aim of the Robotic Behaviour
Meta-model is to describe structures for modeling the dependencies between sub-tasks, such that
those are executed sequencially or concurrently, depending on the runtime environment conditions.

14

RobMoSys - D4.1 H2020-ICT-732410

Therefore, the goal is to define and model reusable and composable task “blocks” for robotic
assembly, where each task block represents the implementation of a particular assembly step
(e.g., grasping, releasing and transferring a workpiece in the workcell). The final application is
then built as a composition of existing task blocks with an appropriate configuration set.
To this end, the pilot scenario will rely on several Tier-2 models under development under WP3
flagship (basic building blocks):

• geometric primitives and their relationships used as a core to describe the robotic system
that composes the flexible assembly cell;

• models of each robotic hardware that composes the flexible assembly cell, based upon the
above-mentioned geometric relationships. This models will be used by the underlying com-
ponents that provides motion functionalities (e.g., motion control, kinematics and dynamics
computations, motion planning);

• perception models, including those models that describe the characteristics of the objects
manipulated by the robotic manipulators. To this end, both spatial and semantic informa-
tion must be described, such as the pose, color, functional utility, affordances, assembly
attachments of an object;

• the “task model”, that is a model that specify the task by means of the models described
above. The task model is then embedded in a “task block”, and executed by a specific solver
(that is, the algorithm that implements a valid control strategy to perform the desired task).
The envisoned “task block” is configurable (some values might not be available at design
time, but at runtime) and composable (a “task-block” composed by other “task-blocks”).
At runtime, this “task block” is handled as described by the Robotic Behaviour Metamodel.

• meta-models for algorithms, such that each algorithm implemented within a component
can provide a sort of “datasheet” to aid the system builder to select the most appropriate
component for the application.

In addition to the above, there are other recurrent Tier-1 meta-models in pilot scenario, such as:

• Component-Definition Metamodel, to demonstrate development and composition of soft-
ware components;

• Service-Definition Metamodel, to demonstrate service-based composition of software com-
ponents;

• Digital Data Representation meta-model, to specify the format of the data exchanged be-
tween the software components.

For example, the replacement of an hardware component requires the development of a novel
driver component (software), or the deployment of an existing software component in place of the
current one. In most software solutions, this change causes modifications in other components
as well, due to the different component behaviour and the different “messaging system” (e.g.,
different datatypes exchanged between the driver component and other software components).
This issue is partially tackled already by the digital data representation meta-model (e.g., the
Communication-object meta-model in the SmartSoft toolchain): by means of this model it is
possible to generate the necessary code to serialise, deserialise and check the various constraints

15

RobMoSys - D4.1 H2020-ICT-732410

with which the datastructure must comply, independently from the target language used in the
component implementation.
Moreover, the Digital Data Representation must be enriched with the model that describes the
semantics of the exchanged information. This approach differs with respect to a classical system
design, where the developers agree in advance on the usage of a datatype and its semantic meaning
for the whole application. In fact, by explicitly modeling the semantic meaning, it is possible to use
different digital data representations when those are compatible, that is, when they have the same
semantic meaning. This required modeling is domain-dependent, hence Tier-2. In particular,
most of the semantics attached to the data exchanged in this pilot scenario regard geometric
primitives and their relationships, used to define the model of the robot, motion models and the
environment. Basic examples are positions, orientations, poses and velocities (in two and three
dimensional space) of objects and the robotic end-effector. Besides, the same semantics is a
building block towards the definition of a task specification embedded in a task “block”.
Finally, Tier-1 meta-models such as the component-definition meta-model and the service-definition
meta-models are necessary to completely model the behaviour of each component, thus validate
the compatibility of a possible composition that realises the software architecture of the flexible
assembly cell. The final composition must comply to several constraints for the runtime, including
resource usage, and a smart allocation and reconfiguration of the resources when needed.

2.3 Software Components

To realise this pilot case, several software components and functionalities must be provided. A
first step in this direction has been already accomplished, by proposing the RobMosys Compo-
sition Structures, and the current software baseline already provides the necessary tools to build
component-based solutions that complies to it.
Since the purpose of this pilot is to show the benefits of the RobMoSys approach to develop
flexible and task-oriented applications, a set of fundamental software components is the one that
implements the coordination of multiple task blocks, which must conform to the Tier-1 Robotic
Behaviour Metamodel. The current software baseline already provides an initial implementation
(e.g. SmartTCL), and it is the purpose of this pilot to evaluate any extension or alternative with
respect to the enabling of task-oriented programming.
Each task block model should have at least one respective solver, that is, a composition of
components that hosts those functionalities to allow the realization of each task-block for the
pilot case. Each solver should be able to compute the control input for the robotics platform,
thus generating a motion, starting from the task description and the contextual information of
the flexible assembly cell, such as the objects in the workspace.
In addition, a working flexible assembly cell requires a world model (and relative implementa-
tion), to store object poses (updated by perception), semantic information of the objects (e.g.,
affordances, geometric properties, etc), current state of the robots and more. The data stored
in the world model is served to provide contextual information necessary for the grounding and
the execution of each task specification. Again, the data must conform to previously defined
meta-models, and most of them will be based upon geometric primitives and relationships.
Finally, other required software components are the ones that provide perception facilities. In
the context of this pilot, perception functionalities will be limited with respect to the current
state-of-the-art, mainly exploiting and integrating functionalities available by third-party libraries.
In this way, the pilot also shows how to integrate existing algorithms in a full-fledged application

16

https://robmosys.eu/wiki/modeling:composition-structures:start
https://robmosys.eu/wiki/modeling:composition-structures:start

RobMoSys - D4.1 H2020-ICT-732410

by means of the RobMoSys approach, that is, producing an explicit model of the component,
where the composability is limited to the library APIs. In the perception components, the various
operations are exposed as service-definition which may vary due to the nature of the sensor, the
perception algorithm and the requirements of the task. For example, the service provided by an
object-detection component can comply with a blocking request-reply pattern, while the same
component may provide an object-tracking service asynchronously.

2.4 Ethical Issues
The principal ethical issue identified for this pilot is about human safety. The assembly cell used
for this pilot application is a physical system with mobile components that may cause harm to
humans in the immediate proximity, for example, pinch and impact injuries, caused by unexpected
system behavior or human errors. An assembly cell is classified as a “machine” in the standard ISO
12100 [1], and a corresponding risk assessment is performed to derive risk reduction measures.
These measures include, but are not limited to, safeguards, emergency stop functions, reduced
speed control, reduced force control, operational modes, axis limiting, appropriate hazard markings
and operating personnel training.

2.5 Planning
The next step consists in identifying a basic set of reusable and composable task blocks for robotic
assembly (e.g. grasp, transfer, release, insert object) that can be used to specify assembly programs
for at least two different product variants. This tasks will then be modeled in conformance to the
Robotic Behavior Metamodel.
After that, the concrete set of software components from the motion, perception and world
modeling stacks will be identified. Also, the skills required for the interaction between the software
components and the task-plots will be specified and modeled.

17

3. Healthcare Assistive Robot (PAL)
3.1 Pilot Scenario

The world is aging rather rapidly. According to the World Health Organization (see [11]), we soon
will have more older people than children and more people at extreme old age than ever before.
As both the proportion of older people and the length of life increase throughout the world, key
questions arise. Will population aging be accompanied by a longer period of good health, a sus-
tained sense of well-being or will it be associated with more illness, disability, and dependency?
Can we act to establish a physical help that might foster better health and wellbeing in older age?

The new generation of autonomous mobile manipulator is trying to give a big contribution to this
trend. Creating assistive robots means not only combining several sub-systems but also combining
them into robots that can be adapted to follow the specific physical constraints that the elderly
person is facing and the requirements of the environment where the person lives.

Let’s take for example an elderly person, named "Granny Annie", living in an ordinary apartment
or in a room in a care institute. Granny Annie is suffering from typical problems of aging people.
She has some physical constraints: hard of hearing, loss of vision and reduced mobility. The
TIAGo [3] mobile manipulator will be used as an assistant for the Granny Annie.

Figure 3.1: TIAGo mobile manipulator robot.

18

RobMoSys - D4.1 H2020-ICT-732410

3.1.1 Goals
The objective of this pilot is to validate the RobMoSys methodology [4] in the field of assistive
robotics. To this end, two key cases have been selected as subject of further investigations.

First case. The first case is related to general aspects of a mobile manipulator. In particular, the
scope of this case is to illustrate the validity and the benefits of the RobMoSys approach when the
robot provider needs to replace a hardware component for a new order of a TIAGo robot. Such
as the needing of a different laser depending on the environment and cost requirements.

The RobMoSys roles involved in this case are mainly:

• As a system builder, I would like to replace an element from the exiting robot hardware
(laser) with another component that best fits the requirements and expectations (provided
quality, required resources, offered configurability, price and licensing, etc.);

• As a performance designer, I would like to check that the replaced hardware (laser) respects
the overall system performance.

To reach these aims, the System Builder will base his work on the System Configuration and the
Deployment Views of RobMoSys. Instead, the more relevant view for the performance designer
will be the Performance View.

To make the case more concrete, let’s consider some typical issues that arise when changing a
laser scanner in a mobile system. In this context, the maximal usable range of the laser is probably
the property that causes the most prominent issue. In fact, the maximal range has to be adequate
for the environment in which the system will be operating. In addition, the error characteristic of
the measurements has to be considered as well. For example, the characterization of the range
error of some laser scanners is constant, for others it grows linearly with the measured distance,
and for others it grows exponentially. This might have a significant effect depending on the type
of feature used by the navigation system (e.g. line based, grid based, etc.).
In addition to the range readings, another source of variability is the remission values that can be
used to identify reflecting surfaces. However, these remission values are usually device-specific,
for example, only binary values are provided, or with a different resolution.
Another important property to consider is the scan frequency, since this often limits the maximal
speed of the system. For example, a frequency of 10 [Hz] means that the system will travel 0.1
[s] between each laser measurement. This means that at 1.0 [m/s] the system will travel 0.1 [m]
without observing its environment: this not only affects the parameterization of the navigation
system (e.g., path planning, collision avoidance) but also influences the safety of the robotic
system.
The communication interface of the laser is also another common source of variability when
changing a laser scanner, influencing the bandwith, and as a result, the throughput of the per-
ception capability. For example, some laser scanners provides a RS-232 serial interface, others
an Ethernet-based communication, etc. Besides, if an adapter is required, the properties of the
data transmission may be alterated as well (e.g. by buffering the data leading to incorrect timing
behaviors).
To summarise, replacing hardware components (as a laser scan) influences the overall perfor-
mances and behaviour of the robotic system, and this pilot addresses the modeling, the software

19

RobMoSys - D4.1 H2020-ICT-732410

reconfiguration and validation of the robotic system after an hardware replacement.

Second case. A second case is more related to specific aspects of the assistive robotics field.
For example, the robot has to work with people with a specific physical constraint, such a blind
person or someone who is hard of hearing. The scope of this case is to illustrate the validity and
the benefits of the RobMoSys approach when the robot provider wants to compose the robot with
a new interface component that best fits the person’s needs. The interface will be used to give
commands to the robot in order to execute specific functionalities, for example “navigate in the
house”, “check the lights”, etc.

The RobMoSys Roles [7] involved in this case are mainly:

• As a system builder, I want to create a new TIAGo robot with the interface that best fits the
person needs. I want to use the new interface component “as-is” and only adjust it within
the variation points expressed in the data-sheet without the need to examine or modify
source code.

• As a component supplier, I want to create a new interface component for the robot to
become part of as many systems as possible to ensure return-of-investment for development
costs and to make profit.

To reach these aims, the System Builder will base his work on the System Configuration and the
Deployment Views of RobMoSys (see [10] for a complete list of RobMoSys Views). Instead, the
more relevant view for the component supplier is the Component Development View.

3.1.2 Addressed User Stories

The current pilot tries to make concrete some of the user-stories [9] that the RobMoSys consortium
makes available to illustrate the full scope of the project. The user-stories addressed in this pilot
are described in the following paragraphs.

Replacement of components The pilot project will benefit from the replacement of a com-
ponent dealing with robustness, functional predictability (i.e. “it will work”), performance pre-
dictability (i.e. “how well it works”), fulfillment and adequateness. For example, in the first case
the System Builder needs to use a different laser for the TIAGo robot depending on the envi-
ronment and cost requirements. As a System Builder when I replace the laser I want to check
whether all the relevant system level properties and constraints are matched. I want to be sure
that my navigation component will still work, when I change the device. I also want to know how
I need to configure it for that.

Composition of components The pilot project will benefit from the composition of compo-
nents, making explicit the relevant parameters then help configurability and predictability. For
example, in the first case as System Builder when I want to use the new laser inside the robot I’ll
check the parameters to make the component that will use the laser to be executed at minimum

20

RobMoSys - D4.1 H2020-ICT-732410

appropriate frame rate. I want to know also that when frequency of laser is below a certain fre-
quency, then certain things are done. As another example, in the second case when the component
supplier introduces a new interface on the market, she will specify the component constraints and
parameters thus to be chosen better or not. By expliciting the relevant parameters, the component
supplier will help also the configurability and predictability of her component in as many systems
as possible.

Quality of Service The benefits about quality of service will handle the way to know whether
the amount of resources and the achieved performance (in general, quality of task achievement)
is adequate. It will help to know what kind of impact a decrease in resource assignment has on
the performance of the functionalities of the robot. For example in the first case as a performance
designer I want to know what is the impact of the laser frequency in the system performance both
from the resources consumption side and the navigation achievement side. I want also to make
sure that properties are traceable through the system and are managed through the development
and composition steps. For example in the second case as System Builder when I compose the
robot with a new interface, at deployment time, reservation based resource management should
be supported by the tool.

Determinism The pilot project will benefit from the determinism of system. In the first case,
as a System Builder, I would like to, for example, my navigation system on the mobile robot to
work exactly the same way again when I change the laser ranger.

Free from hidden interference The free from hidden interference is a very delicate field that
RobMoSys will challenge. When extending a system, I want to know that I do not interfere with
the already setup components, already used resource shares. I would like to be sure that deploying
further components onto my system is free from hidden interference or hidden side-effects. As
in the second case the System Builder wants to extend the TIAGo robot with a new interface
to fit the needings of the person with physical constraints. As System Builder I would like that
the explicit relevant parameters and constraints help me to predict and to avoid any possible
interferences.

Management of Non-Functional Properties As a System Builder I would like to use the
interface component as black (gray) box with explicated variation points such that application-
specific system-level attributes can be matched without going into the internals of the building
blocks.

3.2 Models
The most relevant meta-models to be used for the pilot scenario are the following:

• Service-Definition meta-model in order to demonstrate interaction between the different
software components.

• Component-Definition meta-model to demonstrate the development of software compo-
nents.

• Robotic Behaviour Metamodel for task level composition.

21

RobMoSys - D4.1 H2020-ICT-732410

• Architectural Pattern for Stepwise Management of Extra-functional Properties to manage
system-level requirements considering physical constraints as time and space.

3.3 Software Component
The software components to be used in this pilot are the motion stack containing the semantics
of the kinematic chain, the perception stack to gather information from the environment and the
world model stack to store a concrete representation of the environment.

Assistive robotics require an easy-to-use, intuitive and meaningfully way to interact with humans.
Ideally, the assistive robots should be able to communicate verbally in several languages but also
they should provide non-verbal but human sensing faculties such as sight, smell, taste, and touch.
The use of a human robot interface stack in this pilot is kindly recommended.

3.4 Ethical Issues
Similarly to pilot 1 “Flexible Assembly Cell” (cf. Ch. 2), the principal ethical issue identified for
this pilot is about human safety. The mobile platform considered in this pilot is also classified as a
“machine” (cf. ISO 12100 [1]), and the same approach to risk assesment and reduction measures
holds, so the measures are almost identical. However, in the case of a mobile robot, the area
where the robot will be operating has to be clearly and visibly marked. Furthermore, it has to be
guaranteed that the robot does not move outside the designated area.

3.5 Planning
The next steps consist in identifying a basic set of ideal blocks for the assistive manipulation that
can be used to design the two key cases of the pilot. Then the concrete set of software components
from the motion, perception and world modeling stacks will be identified.

After that, a comparison will be done between the set of blocks pointed out in the previous step
and the existing blocks of the TIAGo robot to check which one is reusable and composable for
this pilot in conformance to the Robotic Behavior Meta-model.

Another parallel step will be to specialize the development environments and tools to use from
the available ones in the RobMoSys tool baseline.

22

4. Modular Educational Robot (COMAU)
4.1 Pilot Scenario

Robotics market has fast grown in popularity going out from pure industrial environments and
acquiring notoriety within other markets, such as architectural installations and as tools for ed-
ucational purposes. The availability of low cost hardware platforms and SW platforms allowed
the diffusion within industrial and manufacturing fields able to create interest, culture, and com-
petence in a very fast growing market. Taking into consideration the educational market can be
strategic not only from a prospective point of view but also for the most variety kind of approach
it can suggest. Assembly , mechanic, electronic, Information Technology are only few of the
possible fields to be taken into consideration. Most important application where robotics can be
applied into educational environments are pedagogic and technical. The first one uses interaction
with very simple robots to develop cognitive attitudes. The second one more focused to develop
competence in HW and SW. Based on the second point we adapt the development of a modular
and scalable platform mainly dedicated for educational scopes starting from the basic to more
advanced applications.

Figure 4.1: The presence of robotic systems rises the focus of primary school students in didactical
activities.

The pilot will employ the e.DO platform, a robot designed by COMAU for didactical purposes.
The e.DO robot is a modular manipulator with a limited payload of 1kg, and composed by 4 or 6
motorized axes. Each motorized unit has an autonomous mechanical and electronic control that
can be configured considering the application needs. Besides, this modular design enables the
implementation of alternative kinematic structures with the same motorized units.
The main control unit of the e.DO is composed by a Raspberry Pi (Raspbian Jessie 8.0) mother-
board shipped with the “e.DO Control Logic”, an open-source suit of functionalities pre-installed
on e.DO’s SD memory card. The currrent interface to the e.DO motion stack is native ROS,
and the user can also interact by means of a graphical user interface implemented on a table
computer. For advanced users, the open development environment allows to directly enhance the
embedded control system and implement new functionalities, enabling the platform to achieve
complex motions, to perform advanced sequences and to automate real-world processes.

23

RobMoSys - D4.1 H2020-ICT-732410

Figure 4.2: The e.DO manipulator employed as a teaching tool during a lecture.

The pilot will combine the modularity of the e.DO design with the envisioned benefits of the
RobMoSys approach, enabling different type of users to implement and to configure software
functionalities of the motion stack. This is considered crucial in the context of an educational
platform, where the usability needs are different between the “final” users (the students), and
between the subject matters.
Moreover, a pilot demonstrator will include the integration of a 3D printed anthropomorphic robot
hand, attached to the e.DO robot. The software-related issues caused by the change of the end-
effector should be mitigated by the RobMoSys approach, addressing to software integration issue
to control the robot hand, and the configuration of kinematic algorithms to generate appropriate
motions.

4.1.1 Goals
Robotic technology applied to an educational context must be easily accessible to the multiple
final users, whom have different needs and expertise, often very limited, in robotics programming.
The general idea is to enable educators and students to design educational activities and novel
applications that involve a robotic system, by means of the removal of those technological barriers
that create a steep learning curve. The aim of the pilot is to evaluate how the RobMoSys approach
can be employed to enable teachers and students to access and design complex educational robotics
applications with a simple and extendible robot system.
Hence, the main objectives of the pilot are the following:

• Enable developers to easily design new educational applications. The goal is to aid the
developer of educational applications, whether it is a roboticist or an educator, to develop
new educational products. The developer will be able to deliver customized applications
with little efforts, starting from more generic functionalities and exposing only the details

24

RobMoSys - D4.1 H2020-ICT-732410

required for the purpose of the didactical activity. Therefore, the resulting software is a
composition of existing components, and the efforts for the development of a new feature
should be limited.

• Enable students to develop their own functionalities. Within the limits of the educa-
tional product and the scope of the lecture, the students will be able to configure and/or
implement their own features, such as replacing/testing a control algorithm, or defining a
new program to be executed by the robot.

• Enable users to extend the robot capabilities with new hardware. An envisioned benefit
of the RobMoSys approach is to enable the user to easily integrate new hardware, without
any (or minimal) efforts on the software integration. For example, COMAU has designed
a simple end-effector to perform basic pick and place applications with the e.DO platform.
An user can extend the platform capabilities by replacing the provided end-effector with a
customized version. To this end, the customized tool must comply within the mechanical
specifications of the robotic arm, but also to those models that describe the extended
functionalities (e.g., tool actuation, etc) and the software infrastructure (e.g., models of the
communication protocol). By means of software tools supporting such models, the efforts
on the software integration required by the user should be minimal. Besides, the user must
be able to (re)configure the properties of the control algorithm to also consider the hardware
modification.

• Enable users to easily integrate the robot with an user interface. Users can create
their own GUI using web interface to program and move the robots in the most convenient
way for the specific application. This can be achieved by exposing only the models accesible
by the user.

4.1.2 Addressed User Stories

Primary School Educator As a primary school educator, I would like to use robotic technology
as an educational tool to teach transversal topics, such as music or technology history. I would
like to propose a more interactive type of lectures, but I am afraid that the robot platform may be
dangerous to be used by children. Therefore I would like a safe mode, and to configure movements
limits and limited contact forces.

Secondary School Educator As a secondary school educator, I would like to define educational
activities to teach programming skills to my students. Therefore, I would like to focus the attention
of my students to a specific aspect of the programming, addressing the difficulty of developing
programs of real systems.

Technical Educator As a technical educator, I would like to integrate a manipulator arm in my
lab instrumentation to emulate an industrial line. However, my time is limited and learning the
vendor-specific robot language is not feasible, therefore I would like an user-friendly tool to speed
up the integration.

Mechanical Engineer Student As a mechanical engineer student, I would like to extend the
capability of my robotic system by designing a new adaptive end-effector, and integrate the system

25

RobMoSys - D4.1 H2020-ICT-732410

without much knowledge on programming. Therefore, I would like a tool that assists me in the
software integration process.

Academic Student in Robotics As an academic student in the robotics field (M.Sc. student
or Ph.D candidate in mechanical engineering, electronic engineering, computer science or related
fields), I would like to test my own implementation of a control algorithm. To that end, I would
like to have fully access to the control settings, defining my control loop entirely, also at joint level
(e.g., position control, velocity control or torque control). In other occasions, I would like to test
a planning algorithm, closing the control loop at an higher level and relying on existing controllers.
Moreover, I would like to share my results with my colleagues, and to re-use the functionalites
that they realized, validating or extending my own software.

Educational Application Developer As a developer of educational products, I would like to of-
fer different user experiences by means of customized interfaces targeted to a specific educational
profile. However, I would like to build those from the same set of functionalities, and selecting
only the ones that are needed. Depending on the customer’s need, I would like to reducing the
complexity of the application exposing only those domain-dependent configurations that are re-
quired for the educational product. In addition, I would like to add an extra functionality under
my customer’s demand, without a major software re-design.

All the user stories above are from an educational context, which is an element of differentiation
from other pilots. In fact, all the user profiles above-mentioned are not directly represented by
a single role in the RobMoSys ecosystem roles, but the role it is identified in a specific context.
For example, an educator may act as component supplier, within the limits of the tools at his/her
disposal, previously provided by the educational application developer. By means of the same
tools, an educator also acts as system builder when constructing a specific robotic application.

4.2 Models

This pilot has the unique property of employing a robotic system that provides full access to the
low level control and configuration (i.e. the e.DO platform), including the joint actuators. This
allows to focus on the software variability available already at the “low control level” of a robotic
system, which must be configurable/exposed to the higher level, by means of different levels of
abstraction, depending on the context and the user of the platform.
To this end, several Tier-1 meta-models (RobMoSys composition structures) are relevant to this
pilot, such as:

• the communication-object meta-model is used, for example, to define the data exchanged
with a customized end-effector;

• the service-definition and the communication-pattern meta-models are used to define soft-
ware interfaces to the robot capabilities;

• the component-definition meta-model is used to allow composition of the functionalities
shipped in form of components;

• the robotic behavior meta-model is employed to specify the final-user application.

26

https://robmosys.eu/wiki/general_principles:ecosystem:roles

RobMoSys - D4.1 H2020-ICT-732410

Moreover, Tier-2 models and meta-models are also relevant to this pilot, starting from the nec-
essary primitives used for the modeling of the manipulator and its properties. This includes the
models that involve the description of the actuated joint, the kinematic structure and other prop-
erties of the robot. This is a necessary step towards composable building blocks, with special
focus on the composition of motion stack functionalities and control algorithms.
Finally, the combination of Tier-1 and Tier-2 conformant models will guarantee the correctness
and compatibility of different control algorithms implemented by the user, as well as to validate
an user-defined (software) composition.

4.3 Software Component

The e.DO robot is already shipped with a complete suit of software that allows to perform real-
time control and planning of the robot arm. The current software is accesible through a software
API and ROS interfaces.

This pilot will extend and review those functionalties in order to be compliant with Tier-1 and
Tier-2 meta-models. Moreover, it will make use of the tools and functionalities delivered within
the WP3 “basic building blocks”, with special attention to the development of the motion stack.

In addition, this pilot will investigate the usage of the SmartMDSD toolchain for composing
software components from the RobMoSys software baseline. Special attention will be given to
those models and tools aimed to enhance the user experience, that is, human-machine user
interfaces, starting from the SmartWebInterface or SmartVisualization.

4.4 Ethical Issues

The COMAU pilot is an educational project involving the e.DO Robot. Hence, it will involve
students and children from primary schools to University in the pilot’s experiments. Since the
involvement of young students and children, the e.DO project has been developed in order to be a
personal care robot, and it has been certificated as compliant with the ISO 13482:2014 regulation
on Safety requirements for personal care robots. According to such regulation, the robot will not
be directly used by student under 14 years old, and it will be used by other minors only under
the supervision of an expert. In the planned experiments with different schools, we will enable
the direct access of the robot to the educational institution only after a specific training of the
personnel and only under the supervision of a COMAU Expert. Parents of children younger than
14 years old may be requested to sign a “copies of ethics approvals” allowing their children to use
the robot.

4.5 Planning

The next steps are the identification of the basic modules to ensure ease of use for non-specialist
people in the automated world such as the ability to create different kinematic chains, self-build
motion algorithms, integration of new sensors and actuators. This includes the review and the
modeling of the current functionalities, to enable the composability and easy replacement.

27

RobMoSys - D4.1 H2020-ICT-732410

Finally, another planned activity is to observe closely the progresses on the robotic behaviour
meta-model and the tools that support it, since the intuitive programming of an application by
the user is a critical element of the envisioned educational platform.

28

5. Human Robot Collaboration for As-
sembly (CEA)
5.1 Pilot Scenario
This pilot demonstrates application of human-robot collaboration for an assembly task in the con-
text of advanced-manufacturing. Currently, assembly tasks are mainly realized through manual
labor. Such a situation leads to significant risk of musculoskeletal disorders caused by repetitive,
and often non-correct movements. In this context, the usage of collaborative robots will provide
the operators with gesture assistance to improve their working conditions. Moreover, robotizing
these tasks may increase the production speed, especially in case of heavy parts involved in the
assembly.

Though, human-robot collaboration (cf. Fig. 5.2) raises important safety requirements related to
the robot, the tool, the task and the environment (e.g., in an environment where several humans
and robots work together, as shown in Fig. 5.1). Therefore, safety is a major feature that this pilot
aims to realize and validate. Safety can be handled at different levels of the system: before and
after the deployment of the system. We do not focus on functional safety since only collaborative
robots will be used in our pilot and, by their design, they are compliant to human movements.
We distinguish safety aspects at different levels of the system:

• Safety checking at design time: this consists in modeling the non-functional properties of the
system and performing system hazard analysis through properties verification and fault-tree
analysis. Also, this involves modeling constraints related to certification norms;

• Situation awareness at runtime: this consists of detecting the system changes at runtime
and to identify the appropriate safety properties depending on the context. This approach
relies on a global knowledge of the world, the task, the robot, and of all the protagonists
participating to the task.

.
Another major focus of this pilot is to guarantee the flexibility of the software that realises a
particular robotic application, so that a change of one component or its configuration does not
alterate the system, but the replacement can be validated.

5.1.1 Addressed User Stories
The following user stories will be shown within our pilot.

Easing the development of robotics systems through composition of task descriptions. In
this scenario, we will focus on a grasping task. The task is tightly linked to the capabilities of the
robot and the used tool. The system builder can use RobMoSys tools to model the robot and
the gripper. The latter offers a set of skills with which the task is defined. The task can be de-
composed into more concrete sub-tasks. Grasping involves going to the object approach position,
opening the gripper, grasping the object, going to the exit position, moving to the target position
and ungrasping the object. One of collaborative robots capabilities is their sensitivity to external
forces. Consequently, when a collision is detected, the robot stops. However, in some situations

29

RobMoSys - D4.1 H2020-ICT-732410

Figure 5.1: Humans and robots sharing the same environment.

where the robot is equipped with a hamrful tool (e.g: a grinder), we need a collision avoidance
component which is able to anticipate the contact between the operator and the human and stops
the robot if necessary. Thus, grasping involves also collision detection and avoidance components.
Moreover, for a flexible solution, we can also rely on an object recognition component. We can
then use the same task for grasping objects with different shapes.

Towards a safe deployment of the system. In advanced-manufacturing, safety is one of the
most important issues. In an environment where humans and robots work together, operators’
safety has to be guaranteed. Monitors ensure safety for a given machine but we need a global
knowledge about all the protagonists participating to the scenario in order to perform a risk anal-
ysis and to define the proper configuration of the system and of the work cell. This involves
also to be conformant to the norms. Safety engineers can rely on RobMoSys tools to design
the environment properties, the robot (including its internal properties), the tool attached to the
robot, the task, and the operator’s role in the task. This will allow to deduce safety properties
that need to be verified before deploying the system. Once those properties are validated, the
current configuration of the system is considered to be safe.
Though, if the configuration of the environment changes (e.g., different role of the operator, a
different tool attached to the robot, new robot in the same work cell, new task), the model of the
system has to be aware of those changes and to propose new safety properties to check depending
on the context.

System adaptability to components changes. It could happen that a hardware device is broken
and the identical device is not available anymore (deprecated, discontinued, only next version
available). We may also want to replace a robot by another robot having the same capabilities

30

RobMoSys - D4.1 H2020-ICT-732410

(a) (b)

(c)

Figure 5.2: Examples of human-robot collaboration: (a) a collaborative manipulator for generating
vertical effort on a working surface; (b) a screwing task in a hazard environment, performed by an
human operator who teleoperates a robot; (c) a collaborative robot “ISybot” for polishing tasks.

but having different Degrees of Freedom (DoF) and keep using the same task (cf. Fig. 5.3). .
It should be possible for safety engineers/experts to check whether all the relevant system level
properties and constraints are matched when a new device is used through RobMoSys tools. On
the other hand, when a software component is removed from/replaced in the system, as a system
builder, I would like to know which constraints define the now white spot in my design in order to
fill in another component with the proper configuration to again match the system level properties.

5.1.2 Goals

The overall goals and features that the pilot aims to achieve and validate are:

• The definition of a common task description language conforming to the Robotic Behaviour
meta-model for task-oriented programming. The task description must be invariant to slight
changes of the environment and/or hardware choices;

• Skills selection based on robot capabilities: a certain skill requires specific robot capabilities
(provided by hardware or software) to be deployed and executed properly. For example, the
grasping of an object requires a gripper with conpatible affordances; lifting an object requires
a robot arm that can support the object payload. Modeling both skills and capabilities, our
vision is to deduce and select the most appropriate skill for the given context;

• Task supervision at runtime, needed to enable activation of the next task;

31

https://robmosys.eu/wiki/modeling:metamodels:behavior
https://robmosys.eu/wiki/modeling:metamodels:behavior

RobMoSys - D4.1 H2020-ICT-732410

Figure 5.3: System robustness: a 3DoF robot “ISybot” is initially used to grasp a bottle. We want
to use the same task with another robot having different number of DoFs. In order to ensure the
task reusability, an adapter is used to separate the hardware from the task specification.

• Using most updated norms in order to validate the configuration (environment + robots +
humans). For instance, the Standard ISO/TS 15066 provides guidelines for the design
and implementation of a collaborative workspace that reduces risks to operators.

• Defining and generating rules that could be used at runtime to ensure safety;

• Automatically identifying potential failures that could be forgotten/not obvious to safety
experts;

• Providing assistance to integrators and safety experts (e.g: "sensor is missing at a given
location");

• Models (as documents/specification) and tools to enable certification of the code generated.

5.2 Models
The foundations of this pilot are defined based on several RobMoSys meta-models, mainly related
(but not limited) to the following meta-models:

• The Robotic Behavior Metamodel to model the coordination of the tasks required to achieve
certain goals, for instance the grasping of an object;

• World Model meta-model (Tier-2) to store a realistic representation of the environment.
This meta-model is fundamental to provide safety analysis features;

• Component-Definition Metamodel to develop and compose software functionalities;

• Service-Definition Metamodel to demonstrate service-based composition of software com-
ponents.

5.3 Software Component
With the purpose of showing interoperability of tools by means of shared models, this pilot will
be developed using the “Papyrus4Robotics” toolchain, which is part of the RobMoSys software

32

RobMoSys - D4.1 H2020-ICT-732410

baseline. The tool will be expanded and improved to support the pilot requirements. This pilot
will be built by composing several software components, among with (but not limited to):

• Control components initially developed in the context of P-RC21 project, and adapted to
the proposed RobMoSys Tier-2 meta-models;

• Perception stack including sensor models and perception algorithms;

• World Modeling stack;

• Grasping task models.

More software components will be developed by third parties in the next year and can be used in
this pilot depending on their availability.

5.4 Ethical Issues

The robotic system involved in this pilot application includes dedicated collaborative robots, which
are developed to operate and interact safely, also by physical contact, with human operators in the
surroundings. However, depending on the robotic task, situations of injuries may occur. Therefore,
the principal ethical issue identified for this pilot is about human safety. As in pilot 1 (cf. Ch. 2) and
pilot 2 (cf. Ch. 3), the system is classified as a “machine” (cf. ISO 12100 [1]), and a corresponding
risk assessment is performed to derive risk reduction measures. These measures include, but are not
limited to, safeguards, emergency stop functions, operational modes, appropriate hazard markings,
dedicated equipment for the operator and operating personnel training.

5.5 Planning

The overall plan for M13-M24 focuses on developing the skeleton implementation of this pilot
case; the outcome will be presented in the D4.2 report. The workplan is built around two main
lines of action:

1. Software components modeling

• Some control models are already existing in Papyrus4Robotics. It is planned to adapt
the already available control models and to make them conformant to tier-2 meta-
models.

• Identifying the variability related to the affordances for a grasping task, defining the
most appropriate level of abstraction to ensure the robustness of the system and resis-
tance to components changes;

• Modeling the pilot by means of RobMoSys meta-models.

2. Safety methodology. This action involves short term and mid-term activities. The short
term activities will be performed in the next year and may be enriched with the outputs of
the open call projects. They are related to safety checking at design time. The mid-term
activities are related to situation awareness:

1www.p-rc2.com

33

www.p-rc2.com

RobMoSys - D4.1 H2020-ICT-732410

• Safety checking at design time goes through the following steps: (i) studying the
norms related to human-robot collaboration and related to the process, (ii) modeling
the system including the environment (world-model) based on the already available
components in RobMoSys and in Papyrus4Robotics and (iii) enriching them with safety
modeling and safety analysis based on the model: critical components and propagation
of risks, failure, etc.

• Situation awareness at runtime goes through identifying the variability in the system
that may have an impact on the already checked properties. This action will be more
detailed after identifying the results of the first action.

The safety methodology could also consist of automating the risk analysis usually performed
manually before the deployment of robotics solutions in real settings.
The above mentioned workplan can be harmonized depending on the common needs of the pilot
partners. More specific steps will be defined in the future and before the publication of the second
open call.

34

6. Intralogistics Industry 4.0 Robot Fleet
(HSU)
6.1 Pilot Scenario
A particular focus is put not only on the functional scenario of this pilot, but on easing its
development and maintenance through its lifecycle. The pilot therefore serves as a testbed for
open call participants to demonstrate:

• The ease of system integration via composition of previously developed building blocks.
These previously developed building blocks (service-oriented software components for this
pilot) can be composed without additional effort. Such additional effort is typically required
in an integration-centric approach.

• Modeling, maintaining, and tracing non-functional properties and qualities in navigation,
e.g. to showcase the performance of goods delivery.

• Adaptations to the production flow by changing the software configuration only.

This concrete scenario of this pilot is about goods transport in a company, such as factory intra-
logistics (Figs. 6.2 and 6.1). It features the delivery of a set of orders: a fleet of robots collaborate
to deliver orders. The scenario includes a set of different robots and stations that interact:

• stations to deliver boxes autonomously

• stations to pick items/goods

• robots to pickup, transport, and deliver boxes

• robots for mobile manipulation to do order picking of goods into boxes

A video of the basic pilot in action is available at YouTube [2].

Figure 6.1: The Intralogistics Industry 4.0 Robot Fleet Pilot

35

RobMoSys - D4.1 H2020-ICT-732410

(a) Picking items (b) Transport and autonomous
delivery of boxes with goods (c) Order picking into boxes

Figure 6.2: Excerpts of the Intralogistics Industry 4.0 Robot Fleet Pilot.

6.1.1 Addressed User Stories

In accordance with the RobMoSys technical user stories [9], this pilot particularly addresses the
following user stories:

Component Supplier

• As a component supplier I would like to offer my software component (building block) such
that others can easily decide whether it fits their needs and know how they can use it.

• As a component supplier I would like to offer my software component with a datasheet
in form of a digital model (modeling-twin, see [4]). A datasheet contains everything you
need to know to become able to use that software component in a proper way (interface
between the component and its environment), while at the same time protecting intellectual
property. A datasheet contains information about the internals of the software component
only as long as this is needed for a proper use.

System Builder

• As a system builder I would like to compose robotics navigation out of commodity build-
ing blocks according to my needs with predictable properties, assured matching with my
requirements, free from interference;

• As a system builder, I would like to check via the datasheet (in form of a digital model)
whether that building block with all its strings attached fits into my system given the
constraints of my system and given the variation points of the building block;

• As a system builder, I would like to select from available components the one that best fits my
requirements and expectations (provided quality, required resources, offered configurability,
price and licensing, etc);

• As a system builder I would like to use components as grey-box, and to use them “as-is”,
simply adjusting them within the variation points expressed in the datasheet, without any
need to examine or modify source code;

36

RobMoSys - D4.1 H2020-ICT-732410

• As a system builder I would like to adhere to both functional and non-functional constraints
when composing software components.

6.1.2 Goals

This pilot demonstrates the suitability of the RobMoSys composition structures for system compo-
sition. The scenario is built by using the SmartMDSD Toolchain that conforms to the RobMoSys
composition structures. The pilot uses the SmartMDSD toolchain to demonstrate:

• Model-Driven Software Engineering of robotics software components and their composition
to systems;

• Ecosystem collaboration including the different roles that participants can take;

• Service-based composition of previously developed software components;

• Task level composition;

• Managing of non-functional properties in cause-effect-chains;

• Exchange of software components to address new needs and e.g. add capabilites to robots

• Altering the production flow at run-time;

• The use of the RobMoSys flexible navigation stack, an example of elements in composition
Tier 2.

6.2 Models, Views, and Roles

This pilot will use many of the meta-models from the RobMoSys composition structures. It
is expected that the pilot uses the following meta-models and their corresponding views (non-
complete list, only contains most important meta-models).

• Component-Definition Metamodel to demonstrate development and composition of software
components

• Robotic Behavior Metamodel for task level composition

• Cause-Effect-Chain and its Analysis Metamodels to demonstrate management of non-functional
properties

• Service-Definition Metamodel to demonstrate service-based composition of software com-
ponents

A particular focus will be put on the “Tier 3 roles” Component Supplier and System Builder
(see [5, 7]). According neighboring roles will also be part of the pilot demonstration, e.g. the
Performance Designer. To demonstrate the composition of service-oriented software components,
the “Tier 2 role” of the Service Designer will be demonstrated.

37

RobMoSys - D4.1 H2020-ICT-732410

6.3 Software Components
• The pilot is built using the SmartMDSD Toolchain by composing software components from
the RobMoSys Software Baseline (see [8]);

• The pilot uses components of the flexible navigation stack (see [6]);

• Components are coordinated using SmartTCL, an implementation of robotics behavior co-
ordination;

• The pilot uses a fleet of FESTO Robotino3 robots. A packaged set of several components
for immediate use, including those from the navigation stack with the FESTO Robotino3
platform can be downloaded from openrobotino.org. The components used in the navigation
stack can be used as well in other pilot cases, e.g., the Healthcare Assistive Robot scenario
(cf. Ch. 3).

6.4 Ethical Issues
See Section 3.4 on ethical issues for the Healthcare Assistive Robot pilot 2.

6.5 Planning
The SmartMDSD Toolchain v3 is currently being extended with a focus on conformance to the
RobMoSys composition structures. A stable and feature-complete version is expected for release
end of 2017. By 1st of March 2018, the pilot will be supported by the SmartMDSD Toolchain
v3. This includes software components with support for:

• Gazebo/TIAGo/SmartSoft Scenario in simulation using the Gazebo simulator;

• Navigation Stack using FESTO Robotino3 and Pioneer P3DX.

It is planned to continuously extend the online-documentation and provide simulator-based setups.
This is made available for RobMoSys Open Call participants to make use of the pilot and to
demonstrate their contributions even without having access to the real hardware.
More software components and support for fleet coordination will follow. Further development
steps and future roadmap of this Pilot in the course of the RobMoSys project will follow with the
publication of the second open call.

38

http://wiki.openrobotino.org

Bibliography
[1] International Organization for Standardization. ISO 12100:2010 – Safety of

machinery – General principles for design – Risk assessment and risk reduction. Standard,
International Organization for Standardization, Geneva, CH, Nov. 2010.

[2] Matthias Lutz and Dennis Stampfer and Alex Lotz and Christian Verbeek
and Sebastian Denz and Puneeth Rajendra. Industry 4.0 Robot Commissioning
Fleet in Intra-Logistics, using Service Robotics for Order Picking. YouTube. https://www.
youtube.com/watch?v=qRSDxBOUVx0, 2 2017.

[3] PAL Robotics. TIAGo mobile manipulator. http://tiago.pal-robotics.com, 2017.

[4] RobMoSys Consortium. The RobMoSys wiki pages. https://robmosys.eu/wiki/
start.

[5] RobMoSys Consortium. Ecosystem Organization (RobMoSys Wiki). https://
robmosys.eu/wiki/general_principles:ecosystem:start, 2017.

[6] RobMoSys Consortium. Flexible Navigation Stack (RobMoSys Wiki). https://
robmosys.eu/wiki/domain_models:navigation-stack:start, 2017.

[7] RobMoSys Consortium. Roles in the Ecosystem (RobMoSys Wiki). https://
robmosys.eu/wiki/general_principles:ecosystem:roles, 2017.

[8] RobMoSys Consortium. Tools and Software Baseline: SmartSoft Components
(RobMoSys Wiki). https://robmosys.eu/wiki/baseline:components:smartsoft,
2017.

[9] RobMoSys Consortium. User Stories (RobMoSys Wiki). https://robmosys.eu/wiki/
general_principles:user_stories, 2017.

[10] RobMoSys Consortium. Views in the Ecosystem (RobMoSys Wiki). https://
robmosys.eu/wiki/modeling:views:start, 2017.

[11] World Health Organization. Ageing and Life Course. http://www.who.int/
ageing/en/, 2017.

39

https://www.youtube.com/watch?v=qRSDxBOUVx0
https://www.youtube.com/watch?v=qRSDxBOUVx0
http://tiago.pal-robotics.com
https://robmosys.eu/wiki/start
https://robmosys.eu/wiki/start
https://robmosys.eu/wiki/general_principles:ecosystem:start
https://robmosys.eu/wiki/general_principles:ecosystem:start
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki/general_principles:ecosystem:roles
https://robmosys.eu/wiki/general_principles:ecosystem:roles
https://robmosys.eu/wiki/baseline:components:smartsoft
https://robmosys.eu/wiki/general_principles:user_stories
https://robmosys.eu/wiki/general_principles:user_stories
https://robmosys.eu/wiki/modeling:views:start
https://robmosys.eu/wiki/modeling:views:start
http://www.who.int/ageing/en/
http://www.who.int/ageing/en/

	The RobMoSys Approach and Pilot Cases: an Overview
	Flexible Assembly Cell (Siemens)
	Pilot Scenario
	Goals
	Addressed User Stories

	Models
	Software Components
	Ethical Issues
	Planning

	Healthcare Assistive Robot (PAL)
	Pilot Scenario
	Goals
	Addressed User Stories

	Models
	Software Component
	Ethical Issues
	Planning

	Modular Educational Robot (COMAU)
	Pilot Scenario
	Goals
	Addressed User Stories

	Models
	Software Component
	Ethical Issues
	Planning

	Human Robot Collaboration for Assembly (CEA)
	Pilot Scenario
	Addressed User Stories
	Goals

	Models
	Software Component
	Ethical Issues
	Planning

	Intralogistics Industry 4.0 Robot Fleet (HSU)
	Pilot Scenario
	Addressed User Stories
	Goals

	Models, Views, and Roles
	Software Components
	Ethical Issues
	Planning

