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Executive summary
This Deliverable is an extended version of Deliverable D3.1 (“First motion, perception and world-
model stacks specifications”). That latter Deliverable has been “kept alive” continuously, and
has started to live its own useful live as RobMoSys dissemination instrument: several hundreds of
students in various universities have already been using it as (non-exclusive) course material, and
several H2020 and academia-industry projects have been using it as foundation.

The version of that “master document” from the day of submission of this Deliverable is
attached. The rest of this document is a copy of the Executive Summary of the master document.

The major steps forward since the previous Deliverable are:

• all necessary software patterns and best practices that WP3 will need are present, and
documented.

• major choices have been made for software and tooling that the software developments in
WP3 are going to depend on. Major criteria have been:

– maturity of the code base.
– clear and unmambiguous (“semantic”) interfaces and documentation that can be made

100% compliant with the RobMoSys meta models.
– composability: small scale, single focus, no hidden “runtime”.
– programmed preferable in the C language ecosystem, to allow full and efficient data

and function accessibility.

The major items on this list are: cgraph, FlatBuffers, Lapack, SOEM, Lua.

The realtime foundations of the motion stack are now all being implemented together, for all
relevant parts (world model, motion control, perception, monitoring, and task specification).

———

Cyber-physical systems consist of multiple sub-systems that interact with the physica
world, but also with each other. They exchange matter, energy and data, but
also more and more information and knowledge, formally represented as “data”.
The ambition of this document is to find the least amount of formally encoded

knowledge models1 that are needed to represent all possible systems in such a way
that, they can be controlled in predictable, resilient and explanaible ways,2 and
still be re-composable in any type of system architecture.

This document is inspired by the best practices to be found in many successful
and resilient societies and organisations created by humanity, and in the vast amount
of knowledge in physics, mathematics, computer science, and systems and control
theory.

1This is the “simple” ambition of this document: each individual knowledge model is small enough to understand

and comprehend fully in half an hour.
2This is the “not easy” part: it takes a lot of effort and iterations to get the envisaged integration of many

simple things right, that is, correct, effective and efficent.
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Robotic systems are the primary application target. This document advocates the
design approach that considers the simplest robotic system consists already of multiple

robots, each executing multiple tasks at the same time, for many of which they have
to cooperate and to share resources, and with all their behaviour and actions realised
by means of multiple asynchronous software activities.

The system architecture guidelines in this document build upon the meta model of
the task: the world model plays the role of the only activity in the system that pro-
vides loose coupling between the other essential activities of discrete and continuous

control, and discrete and continuous perception. Such information architectures

must be made at various levels of abstraction (actuator control, proprioceptive and
exteroceptive platform control) and their specification as hybrid constrained opti-

mization problems supports vertical and horizontal composition, and deployment
to heterogeneous software and hardware implementations.

This document explains how to use the information architecture models to build com-
plex holonic software architectures, with a set of design patterns and best prac-

tices, around the fundamental primitives of activity, event loop, and stream buffer,
and with explainability, resilience and runtime configurability as main system de-
sign drivers.

After more than 50 years of evolution, the robotics domain has created a large amount of
insights, technology, models and (open source) software. But most of those efforts have still
to be consolidated into commonly supported and standardized components, with best practice
architectures that can guarantee safe, secure, efficient and effective operation of robotics systems.
From the systems perspective, the evolution and the state of the practice in robotics is very similar
to that of other domains where ICT platforms play an ever increasing role: energy production
and distribution, multi-modal logistics and traffic, manufacturing, medical instruments, etc.; this
document uses the term cyber-physical systems for its Chapters and Sections that do not contain
any knowledge that is specific to the robotics domain.

At the highest level of modelling abstraction, a cyber-physical system is a set of activities

that provide behaviour, via which they change their own state and/or that of the resources they
have to share with other Activities, via interactions. The words in bold are the core entities and
relations, and they can be realised in the physical world (e.g., the electro-mechanical behaviour
of robots or cars, the measurement principles behind sensors, the chemistry in a battery) as well
as in the cyber world (that is, the composition of computational and communication hardware
and software); the transformations between both worlds works via transducers that bring their
own dynamics and interaction into the system design.

The design of all cyber-physical applications have some major challenges in common, which
form the theme of this document: composability, self-reflection, reactivity and explainability.
In ideal system design, the latter one should be a consequence of the former two, as soon as the
design of components takes system-level integration and self-reflection into account as primary
design drivers, and as an intermediary goal towards self-explainability of ICT platforms.

The size and the scale of integration of robotic systems grow beyond what single developers
or develpment teams, can comprehend, create, validate and maintain. Contrary to what has
happened in the ICT-driven applications that could be built on top of “the Web” platform, no
“giant companies”3 have been created that have the funding and man power to realise such con-

3The so-called GAFA giants: Google, Amazon, Facebook and Apple.
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solidation single-handedly, and to impose it on the rest of the world in a monopolistic way. The
cyber-physical domains do not have such monopolistic giants, so, it is up to the community to put
its act and hands together, and to create the digital platforms for the domains. That platform
must be functionally effective and efficient, commercially fair and exploitable, and offered to
the world as a set of extremely composable modules. Those modules’ further development and
maintenance can be shared in the open, while their focused exploitation can support the creation
of innovation-driven (non-giant) companies. These composable modules are not only software
libraries and components, but also models and documentation, as well as tools and best practice

architectural patterns.

This document provides the foundations for the modelling of “motion stacks” for compon-

ent-based robotic systems, including control, perception, monitoring, task plan and world

model representations, functionalities, capablities and activities.

Such “stacks” are essential parts of any digital platform for robotic systems, and their design
has a direct impact on how various stakeholders can contribute to, exploit, and regulate such a
platform, as well as the applications built on top of it.

A “component” is any type of computer-readable formal representation of the composition of
smaller parts into a bigger whole. This can be as abstract as the composition of knowledge relations
into a “knowledge base”, and as concrete as deploying executable software code into a process
on an operating system. The ambition of the document is to explain how to do composition, and
what are its best practices, irrespective of the form in which the composition will be used on a
computer.

Most of the material introduced in this document is not restricted to the robotics domain only,
since it applies to all so-called cyber-physical systems (CPS), for which engineers want to con-
trol parts of the physical world via information and communications technology (ICT). The major
difference with “purely digital” ICT platforms (e.g., distributed financial databases, social me-
dia applications, e-commerce platforms) is that CPS directly impact (“control”) the real physical
world, and this brings in a lot of extra constraints on its ICT components, more in particular the
need for realtime feedback loops which include physical components that come with a dynamical
behaviour that has not been designed by the system engineers.

The first part of the modelling focuses on the generic foundations, that the domain of robotics
shares with a lot of other domains. More in particular, we need formal representations of (i) en-

tities, relations and property graphs, (ii) at the levels of abstraction of mereology, topology,
geometry, and dynamics, (iii) with separation of the concerns of mechanism (structure & be-
haviour) and policy, and (iv) with an explicit ambition to support the grounding of knowledge and
information into software and data implementations, and to support the reasoning processes
to create, compose, configure, validate and certify components and systems.

Two core (meta) meta models of the presented approach are: (i) the Block-Port-Connector

paradigm to represent all structural relationships and compositions, and (ii) a formal model to
represent the Composition of data structures, functions and control flow schedules in the
algorithms that provide the behaviour of a computer-controlled engineering system.

The core methodology to link models to executed actions is hybrid constrained optimiza-

tion. The first step in the methodology is to use the above-mentioned models to construct a
description of the to-be-executed activities by means of (i) objective functions to optimize and
(ii) constraints to satisfy. Objective functions and constraints are of three complementary types:
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Figure 2: Sketches of various “advanced” robotic systems whose modelling is covered in this
document.

symbolic constraint satisfaction (that is, reasoning on the “knowledge relations” that populate
the application’s context), continuous constrained optimization (in “metric” domains like time,
space, force, energy,. . . ), and discrete optimization (that is, the “scheduling” of which combina-
tion of specifications to solve under which conditions). The second step of the methodology is
to solve the problem with as outcome the actuation setpoints to apply to the system. Very few
application contexts require that the executed action is indeed the most optimal that exists, and
are happy with a satisfactory solution [?]. The solution need also not be completely computed
before the system is allowed to start acting, since any feasible solution that is available can already
be used to get the system started; not in the least because only actions (and not optimizations)
can help the system controller to assess how well it is realising its objectives in the real world. In
addition, there is typically enough time during the system’s operation to run further iterations of
the solver towards more optimal/satisficing outcomes.

With the above-mentioned core models and solver methodology, the core of system design is
then to combine them and create stable subsystems (sometimes refered to as “holons”) [?]: a
subsystem is called “stable” if it provides a “good enough” trade-off between (i) the quality of

the services it delivers to the application, (ii) the use of resources it requires to provide those
services, and (iii) its robustness against the disturbances that the application’s context will bring
to the system.

The second part of the modelling brings in robotics-specific material, more specifically about
the role of the “world model” as the sole coupling between (the models of) “plan”, “control” and
“perception”, at any level of abstraction of a robotic task, Fig. 3:

• world modelling: what (uncertain) information does the robot system have available about
how the world actually looks like?

• plan: how would we like the world to be changed by the robot system?

• control: what actions does the robot system undertake to realise the planned changes?

• perception: how can data provided by sensors be processed into information to update the
world model?

• monitoring: which functions of the sensor data must be monitored to raise events when
certain thresholds are exceeded?
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Figure 3: This figure sketches the com-
position of the different parts needed
to realise a “task”. The arrows and
the rectangles represent the compos-
tion primitives of interconnection and
containment. Note that the figure is
not representing a software component,
but it represents the structure via which
the parts are composed into a whole.

The task model describes the capabilities that are expected from the robot (e.g., to slide its
hand over a table surface, or to drive through corridors in buildings), and the resources that it
has available to realise those capabilities (e.g., actuators with limited torque generation power, or
fingers with limped mechanical impedance and finite deformation limits). These capabilities and
resources represent the context that provides meaning to the “magic numbers” in the models of
the world, plan, control and perception.

The “top levels” of a motion stack model consist of geometrical entities, relations and con-
straints, from points and lines to kinematic chains with shape, inertia, toolings and sensors; for
example, a dual-arm mobile manipulator, or a six-wheel planetary rover with rocker bogies . The
“bottom levels” model the links between the kinematic chains and the actuators and the energy
sources that must drive the chains’ motions. The major “behavioural” functionality to transfer
energy between actuators and kinematic chain “end effectors” is that of the hybrid dynamics

solver ; it can compute all instantaneous motion and force transformations between the actuator
space(s) and the Cartesian space(s) of all kinematic chains. Similarly to the graph-based models
of kinematic chains, perception graph models compose sensors, sensing features, data association
to object features, and constraints imposed by the task, the environment and the object proper-
ties; the generic “solver” in that context is message passing over factor graphs, playing a similar
foundational role in adding behaviour to the models in perception as the hybrid dynamics algo-
rithm does for motion of kinematic chains. The world model stack is a knowledge-based system,
providing the semantic entities and relations to link the world model information to the data used
in motion (planned and controlled) and perception.

The generic and robot specific model families share the same formalisation of their mathemat-

ical, numerical and digital representations, as well as the connection to metadata for physical
dimensions and units.

This document makes concrete suggestions about how to turn the state-of-the-art insights into
a concrete set of (meta) models, on which to base any concrete implementation for any concrete
application in robotics. The focus is on building a digital platform, so, a lot of attention goes to
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creating the “right” modularity, the “right” levels of detail, the “right” separation of concerns,
and the “right” approach towards composability, such that the development of models, tools,
implementations and applications becomes methodological, transparant and scalable, but also
stimulates the pre-competitive cooperation on the generic parts of the digital platform as well as
the competitive exploitation of that platform for innovative robotic applications.

The efforts required to create a model-driven engineering development work flow really pay off
only after those developments have reached a state in which the models contain not only the
information about what the system does and about how it should do it, but also about why it
should do these things. Indeed, only when the latter information is available, at runtime and in
formal representation, one can expect robots to explain what they are doing, to reason about
their actions, to interpret whether what they are doing corresponds to what they are supposed to
do in the task, and to adapt their action plan accordingly.
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Composable and explainable systems-of-systems:

best practices and knowledge-based models

for resilient holonic architectures

in robotics and other cyber-physical systems

“It’s simple, though not easy. . . ”1

Herman Bruyninckx
(KU Leuven, Belgium; TU Eindhoven, the Netherlands)

with contributions and ideas2 by

Enea Scioni, Nico Hübel, Filip Reniers, Marco Frigerio (KU Leuven, Belgium)
Christian Schlegel, Dennis Stampfer, Alex Lotz (HSU Ulm, Germany)

René van de Molengraft (TU Eindhoven, the Netherlands)

2019-06-28

1Simple refers to the effort to understand ; easy refers to the effort to implement. Two concepts
derived from “simple” are worth introducing too: simplicity refers to the (positive) ambition to remove
everything except what matters; simplistic refers to the (negative) outcome where so much has been
removed that what remains is inefficient, or even dangerous.

2HB remains responsible for erroneous information and claims in this document.



Executive summary

Cyber-physical systems consist of multiple sub-systems that interact with the
physica world, but also with each other. They exchange matter, energy and
data, but also more and more information and knowledge, formally repre-
sented as “data”. The ambition of this document is to find the least amount
of formally encoded knowledge models1 that are needed to represent all
possible systems in such a way that, they can be controlled in predictable,
resilient and explanaible ways,2 and still be re-composable in any type of
system architecture.

This document is inspired by the best practices to be found in many successful
and resilient societies and organisations created by humanity, and in the vast
amount of knowledge in physics, mathematics, computer science, and systems
and control theory.

Robotic systems are the primary application target. This document advocates
the design approach that considers the simplest robotic system consists already
of multiple robots, each executing multiple tasks at the same time, for many of
which they have to cooperate and to share resources, and with all their behaviour
and actions realised by means of multiple asynchronous software activities.

The system architecture guidelines in this document build upon the meta
model of the task: the world model plays the role of the only activity in the
system that provides loose coupling between the other essential activities of dis-
crete and continuous control, and discrete and continuous perception.
Such information architectures must be made at various levels of abstrac-
tion (actuator control, proprioceptive and exteroceptive platform control) and
their specification as hybrid constrained optimization problems supports
vertical and horizontal composition, and deployment to heterogeneous soft-
ware and hardware implementations.

This document explains how to use the information architecture models to build
complex holonic software architectures, with a set of design patterns and
best practices, around the fundamental primitives of activity, event loop, and
stream buffer, and with explainability, resilience and runtime configura-
bility as main system design drivers.

1This is the “simple” ambition of this document: each individual knowledge model is small enough to
understand and comprehend fully in half an hour.

2This is the “not easy” part: it takes a lot of effort and iterations to get the envisaged integration of many
simple things right, that is, correct, effective and efficent.

2



After more than 50 years of evolution, the robotics domain has created a large amount of
insights, technology, models and (open source) software. But most of those efforts have still to
be consolidated into commonly supported and standardized components, with best practice
architectures that can guarantee safe, secure, efficient and effective operation of robotics
systems. From the systems perspective, the evolution and the state of the practice in robotics
is very similar to that of other domains where ICT platforms play an ever increasing role:
energy production and distribution, multi-modal logistics and traffic, manufacturing, medical
instruments, etc.; this document uses the term cyber-physical systems for its Chapters and
Sections that do not contain any knowledge that is specific to the robotics domain.

At the highest level of modelling abstraction, a cyber-physical system is a set of activ-
ities that provide behaviour, via which they change their own state and/or that of the
resources they have to share with other Activities, via interactions. The words in bold
are the core entities and relations, and they can be realised in the physical world (e.g., the
electro-mechanical behaviour of robots or cars, the measurement principles behind sensors,
the chemistry in a battery) as well as in the cyber world (that is, the composition of com-
putational and communication hardware and software); the transformations between both
worlds works via transducers that bring their own dynamics and interaction into the system
design.

The design of all cyber-physical applications have some major challenges in common,
which form the theme of this document: composability, self-reflection, reactivity and
explainability. In ideal system design, the latter one should be a consequence of the former
two, as soon as the design of components takes system-level integration and self-reflection into
account as primary design drivers, and as an intermediary goal towards self-explainability of
ICT platforms.

The size and the scale of integration of robotic systems grow beyond what single devel-
opers or develpment teams, can comprehend, create, validate and maintain. Contrary to
what has happened in the ICT-driven applications that could be built on top of “the Web”
platform, no “giant companies”3 have been created that have the funding and man power
to realise such consolidation single-handedly, and to impose it on the rest of the world in a
monopolistic way. The cyber-physical domains do not have such monopolistic giants, so, it is
up to the community to put its act and hands together, and to create the digital platforms
for the domains. That platform must be functionally effective and efficient, commercially
fair and exploitable, and offered to the world as a set of extremely composable modules.
Those modules’ further development and maintenance can be shared in the open, while their
focused exploitation can support the creation of innovation-driven (non-giant) companies.
These composable modules are not only software libraries and components, but also models
and documentation, as well as tools and best practice architectural patterns.

This document provides the foundations for the modelling of “motion stacks” for com-
ponent-based robotic systems, including control, perception, monitoring, task plan
and world model representations, functionalities, capablities and activities.

Such “stacks” are essential parts of any digital platform for robotic systems, and their
design has a direct impact on how various stakeholders can contribute to, exploit, and regulate
such a platform, as well as the applications built on top of it.

A “component” is any type of computer-readable formal representation of the compo-

3The so-called GAFA giants: Google, Amazon, Facebook and Apple.
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sition of smaller parts into a bigger whole. This can be as abstract as the composition of
knowledge relations into a “knowledge base”, and as concrete as deploying executable soft-
ware code into a process on an operating system. The ambition of the document is to explain
how to do composition, and what are its best practices, irrespective of the form in which the
composition will be used on a computer.

Most of the material introduced in this document is not restricted to the robotics domain
only, since it applies to all so-called cyber-physical systems (CPS), for which engineers
want to control parts of the physical world via information and communications technology
(ICT). The major difference with “purely digital” ICT platforms (e.g., distributed finan-
cial databases, social media applications, e-commerce platforms) is that CPS directly impact
(“control”) the real physical world, and this brings in a lot of extra constraints on its ICT
components, more in particular the need for realtime feedback loops which include physical
components that come with a dynamical behaviour that has not been designed by the system
engineers.

The first part of the modelling focuses on the generic foundations, that the domain
of robotics shares with a lot of other domains. More in particular, we need formal repre-
sentations of (i) entities, relations and property graphs, (ii) at the levels of abstraction
of mereology, topology, geometry, and dynamics, (iii) with separation of the concerns
of mechanism (structure & behaviour) and policy, and (iv) with an explicit ambition to
support the grounding of knowledge and information into software and data implemen-
tations, and to support the reasoning processes to create, compose, configure, validate and
certify components and systems.
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Figure 1: Sketches of various “advanced” robotic systems whose modelling is covered in this
document.

Two core (meta) meta models of the presented approach are: (i) the Block-Port-
Connector paradigm to represent all structural relationships and compositions, and (ii)
a formal model to represent the Composition of data structures, functions and control
flow schedules in the algorithms that provide the behaviour of a computer-controlled engi-
neering system.

The core methodology to link models to executed actions is hybrid constrained op-
timization. The first step in the methodology is to use the above-mentioned models to
construct a description of the to-be-executed activities by means of (i) objective functions
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to optimize and (ii) constraints to satisfy. Objective functions and constraints are of three
complementary types: symbolic constraint satisfaction (that is, reasoning on the “knowledge
relations” that populate the application’s context), continuous constrained optimization (in
“metric” domains like time, space, force, energy,. . . ), and discrete optimization (that is, the
“scheduling” of which combination of specifications to solve under which conditions). The
second step of the methodology is to solve the problem with as outcome the actuation set-
points to apply to the system. Very few application contexts require that the executed action
is indeed the most optimal that exists, and are happy with a satisfactory solution [77]. The
solution need also not be completely computed before the system is allowed to start acting,
since any feasible solution that is available can already be used to get the system started; not
in the least because only actions (and not optimizations) can help the system controller to
assess how well it is realising its objectives in the real world. In addition, there is typically
enough time during the system’s operation to run further iterations of the solver towards more
optimal/satisficing outcomes.

With the above-mentioned core models and solver methodology, the core of system
design is then to combine them and create stable subsystems (sometimes refered to as
“holons”) [47]: a subsystem is called “stable” if it provides a “good enough” trade-off be-
tween (i) the quality of the services it delivers to the application, (ii) the use of resources
it requires to provide those services, and (iii) its robustness against the disturbances that
the application’s context will bring to the system.

The second part of the modelling brings in robotics-specific material, more specifically
about the role of the “world model” as the sole coupling between (the models of) “plan”,
“control” and “perception”, at any level of abstraction of a robotic task, Fig. 2:

• world modelling: what (uncertain) information does the robot system have available
about how the world actually looks like?

• plan: how would we like the world to be changed by the robot system?

• control: what actions does the robot system undertake to realise the planned changes?

• perception: how can data provided by sensors be processed into information to update
the world model?

• monitoring: which functions of the sensor data must be monitored to raise events
when certain thresholds are exceeded?

The task model describes the capabilities that are expected from the robot (e.g., to slide its
hand over a table surface, or to drive through corridors in buildings), and the resources that it
has available to realise those capabilities (e.g., actuators with limited torque generation power,
or fingers with limped mechanical impedance and finite deformation limits). These capabilities
and resources represent the context that provides meaning to the “magic numbers” in the
models of the world, plan, control and perception.

The “top levels” of a motion stack model consist of geometrical entities, relations and con-
straints, from points and lines to kinematic chains with shape, inertia, toolings and sensors;
for example, a dual-arm mobile manipulator, or a six-wheel planetary rover with rocker bogies
. The “bottom levels” model the links between the kinematic chains and the actuators and
the energy sources that must drive the chains’ motions. The major “behavioural” function-
ality to transfer energy between actuators and kinematic chain “end effectors” is that of the
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Figure 2: This figure sketches the
composition of the different parts
needed to realise a “task”. The ar-
rows and the rectangles represent the
compostion primitives of interconnec-
tion and containment. Note that
the figure is not representing a soft-
ware component, but it represents the
structure via which the parts are com-
posed into a whole.

hybrid dynamics solver ; it can compute all instantaneous motion and force transformations
between the actuator space(s) and the Cartesian space(s) of all kinematic chains. Similarly
to the graph-based models of kinematic chains, perception graph models compose sensors,
sensing features, data association to object features, and constraints imposed by the task, the
environment and the object properties; the generic “solver” in that context is message passing
over factor graphs, playing a similar foundational role in adding behaviour to the models in
perception as the hybrid dynamics algorithm does for motion of kinematic chains. The world
model stack is a knowledge-based system, providing the semantic entities and relations to
link the world model information to the data used in motion (planned and controlled) and
perception.

The generic and robot specific model families share the same formalisation of their math-
ematical, numerical and digital representations, as well as the connection to metadata for
physical dimensions and units.

This document makes concrete suggestions about how to turn the state-of-the-art insights
into a concrete set of (meta) models, on which to base any concrete implementation for any
concrete application in robotics. The focus is on building a digital platform, so, a lot of atten-
tion goes to creating the “right” modularity, the “right” levels of detail, the “right” separation
of concerns, and the “right” approach towards composability, such that the development of
models, tools, implementations and applications becomes methodological, transparant and
scalable, but also stimulates the pre-competitive cooperation on the generic parts of the dig-
ital platform as well as the competitive exploitation of that platform for innovative robotic
applications.

The efforts required to create a model-driven engineering development work flow really
pay off only after those developments have reached a state in which the models contain not
only the information about what the system does and about how it should do it, but also
about why it should do these things. Indeed, only when the latter information is available,
at runtime and in formal representation, one can expect robots to explain what they are
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doing, to reason about their actions, to interpret whether what they are doing corresponds
to what they are supposed to do in the task, and to adapt their action plan accordingly.
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Chapter 1

Foundations of knowledge-driven
engineering: meta modelling

Any formal representation of knowledge consists of models built on the ax-
iomatic foundation of entity and relation: an entity represents “stuff”, “things”,
“primitives”, “atoms”,. . . , and a relation represents a dependency between prop-
erties of entities [20]. The meaning of a model must/can be formally represented
by relating the model to one or more meta models: the latter contain the repre-
sentation of all the relations that constructs in the model must satisfy in order to
be “well formed” and “meaningful”. The relation between a model and its meta
models is a relative concept: every meta model is a model in itself and hence has
its own set of meta models; in common practice, one limits the terminology to the
triple model–meta model–meta meta model. A knowledge system for a particu-
lar domain is a set of models and their meta models that describe “meaning” in
that domain. Reasoning in such a knowledge system is done in two complemen-
tary ways: the graphs that make up a knowledge system are queried via graph
matching or graph traversal, with the latter supporting the higher-order
reasoning required for explainable robotic systems.

This Chapter describes the modelling concepts in the core of any knowledge-based and/or
model-driven engineering1 approach towards a digital platform for the robotics domain, or for
any other cyber-physical systems domain for that matter. Major challenges in doing the
modelling “right” are (i) to define the levels of abstraction that are considered essential
in a particular domain (that is, which entities and relations to include, and which ones to
neglect), (ii) how to switch between these levels at the “right” moment, (iii) how to
create knowledge bases for computers to reason on the models contained in those servers,
(iv) the formal representations in “host” languages for encoding the knowledge, and (v)
how to reach the standardization required for realistic multi-vendor interoperability.

1For all practical engineering purposes, this document makes no distinction between both terms: knowledge
is formally represented in models, and models only have meaning for people with the knowledge to interpret
them.
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1.1 Models for science and engineering

“Modelling” is the mental activity of the human scientist or engineer to make an artificial
language to represent, in a formal way, the properties of (real-world as well as abstract)
entities and of the relations between them. A model provides structure to a chosen domain,
to make explicit which things are relevant in that domain, and how these relevant things
influence each other. Hence, a “model” is a collection (or, “set”) of entities and relations
to represent scope ( “what is important?”), interaction (“what influences exist between
entities?”), and behaviour (“how do the properties of entities and relations influence the
behaviour of what they represent?”).

Scientists strive for models that allow to analyse reality; engineers strive for models
with which they can design artefacts in such a way that the models can feed machines
to implement the artefacts in the real world. Engineering models typically make use of
scientific models; the inverse is never(?) the case.

Both scientists and engineers know that a model is not the reality, but just a representation
of their artificial and subjective selection of those parts of reality which they consider relevant.
They both also know that such relevance is not an absolute property, but one that depends on
the context. That context determines that their modelling stops with a particular selection of
axioms or facts, that are not modelled in further detail but are assumed to be grounded. In
science, such grounding consists of (references to) other (possibly not yet formalised) models
and axioms, and in engineering it consists of software, common knowledge and facts. The
last resort of that grounding is the human mind: eventually, it will be humans who give the
validation stamp to the quality of a model, or of the software that implements models and
the tooling that transforms models.

A core ambition of a modelling activity is to represent context and composition, in such
an explicit way that one can add new models to already existing ones without changing the
meaning of the latter, or its formalisation. When developing computer-controlled machines,
there is an obvious extra core ambition: to create software libraries of digital twins, that
implement (or “ground”) the models of the entities and their interactions.

Figure 1.1: Directed graph, with
anonymous edges between named
nodes.

A

a b c

1.2 Modelling knowledge with property graphs

Knowledge is the interconnection between data, information and meaning, and formal repre-
sentations of knowledge have been given names like knowledge base, knowledge graph,
semantic database, or ontology. The structural model is a (directed) graph, Fig. 1.1,
that is, nodes connected by edges, and each edge has a direction. The mereological part
of the knowledge representation adds meaning to the graph’s nodes and edges. The be-
havioural model of a knowledge graph represents how the knowledge can be exploited
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(activated, reasoned with,. . . ) by selecting the parts of the knowledge graph required to
answer “queries.”

Mereology, holonomy and meronomy are all very related terms, that can be used inter-
changeably, to denote the symbolic relations that humans understand to exist between “parts”
and “wholes”. This document uses the term “mereologic” to represent this symbolic relation
whenever models are considered, and the term “holonic” when holarchy architectures are con-
sidered (as alternative to the hierarchical, homoarchical or heterarchical designs. The latter
interpretation finds its origins in the seminal works by Arthur Koestler and Herbert Simon.
Its applications in robotics and manufacturing appeared in the 1990s [79, 81].

Figure 1.2: “Plain’ graph on the left,
and hypergraph, or factor graph, on
the right. The normal graph can
only represent a relation between two
nodes, while the hypergraph can rep-
resent n-ary relations between more
than two nodes.
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1.2.1 Mechanism: property graph for entities, relations and constraints

A graph (Fig. 1.1) is the simplest structure to model that some entities (represented by
nodes) are related (represented by edges).

A factor graph, or hypergraph, (Fig. 1.2) extends the graph model with a second
type of node, namely a node that can connect to more than two other “plain” nodes.
Some domains call the extension a factor node, some call it an hyperedge, illustrating the
fact that its semantics is equally well motivated by considering it as an extension of the
“node” concept or as extension of the “edge” concept. Anyway, in the context of knowledge
modelling, hyperedges represent relations with any number of arguments. For example,
factor graphs can represent S-expressions, which are the basis of context-free languages. In
the context of knowledge representation and reasoning, this is the foundation behind many
computer languages that provide reasoning capabilities, such as Prolog or Lisp. Examples:
(i) for queries, or (ii) for algebraic relations.

A property graph [6] extends the hypergraph model with a third type of node (or
edge), the property node, to represent the properties of an entity node or a factor node
(Fig. 1.3). Again, this addition is a cheap way to increase the semantic richness of a graph
even further, without adding any structural complexity; it does add a structural constraint,
in that a property node should only be connected to one single other (entity or relation) node.

1.2.2 First-order relations

This document adopts the axiomatic basis to represent first-order knowledge models
with property graphs: nodes represent entities, edges represent relations, and both
have properties. Properties represent information like name, identity, type, the data struc-
tures that store the parameters that define the entity’s “behaviour”, provenance, Dublin Core
metadata, etc. This step from normal graphs to factor graphs allows richer semantic expres-
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Rel

Arg1 Arg2 Arg3

properties

propertiespropertiesproperties

Figure 1.3: Property graph, with an edge linking every named node to a node containing
key-value pairs (or any abstract data type for that matter), representing the properties of the
named nodes. The property graph is a directed graph representation of the mereological
model of a relation with three arguments, all with their own properties. The entity Rel has
three other entities as its parts, Arg1, Arg2 and Arg3, and each of them has a properties

entity as a part. The arrows are seemingly still anonymous, but each arrow does represent a
particular has-a relation, and hence has an identifier of that relation as its property. These
identifiers have been omitted in the drawing, because they depend on the concrete relation
that is modelled, and that is information that is missing in this conceptual sketch.

sivity, without the need to add any new structural primitive, and with just a small extra
complexity in the bookkeeping of the type of node.

Figure 1.4: Higher-order knowledge
model.
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1.2.3 Higher-order relations

A second axiomatic basis of knowledge representation is that all application contexts of
realistic complexity need to represent not only first-order but also higher-order relations
because every application needs a context in which to interpret entities and relations
(Fig. 1.4), [37, 63, 72]. Of course, there is no end towards “the top” of such contextual
relations, because every new higher-order relation introduces new entities and properties
whose meaning has to be modelled too.

From a structural point of view, an higher-order relation just represents a topological con-
nection between the properties of other entities and/or relations; from a semantic point of
view, the higher-order relation encodes knowledge about why the connected properties are
connected, about how their connection must be used, about what variations are allowed,
etc. Generally speaking, a higher-order relation models the role that each of its argument
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plays in the relation, given the specific context in which the higher-order relation is created.

(TODO: theory of mind [89]: what do agents know about what other agents know? action
languages, transition system, abstract rewriting systems, OMG’s M0–M3 meta modelling,
Kripke structure and semantics, universal algebra, fluents, graph rewriting, situation calculus,
event calculus, constraint satisfaction problems. Most of these are mathematical models of
little practical use, except for fluents and constraint satisfaction problem solvers.)

Examples of higher-order relations

• intent and configuration of tasks at various levels of control : every robotic system has
motors to create motion, and the control of those motors is driven by a particular goal of
the application (the “intent” of the task). The intent, together with the “capabilities” of
the robot system, result in relations from which the configuration of a control algorithm
is to be derived. There are various “levels” of such control relations, from the level close
to the motors to a level of inter-factory logistics. Each higher-order control relation
“closes the world” for the lower levels; but this closure should not be made strictly
hierarchical, because that limits adaptability and composability with other “worlds”.

• the concept of a singularity in the configuration of the kinematic chain of a robot relates
the values of the chain’s joint positions with the chain’s geometrical properties

• the context of the requirements of the task the robot is executing: not every geo-
metric singularity is also a task singularity ; for example, pushing a load with fully
stretched arms can be a good approach to reduce the amount of force needed in the
muscles/motors, while it is a geometrically singular configuration.

• semantic maps: collections of geometric primitives, with relations (“semantic tags”)
on top that link some geometric primitives in the map to meaning in an application
context.

• semantic localistion and tracking : using knowledge relations to support the decision
making about what sensor processing algorithms to use on which parts of the sensor
data, and to find out where a robot is on which part of a map.

• configuration of constraint solver algorithms: which constraint and objective functions
to use, how to initialise the solver, which monitors to add for deciding whether the
solver has reached a desired result or not,. . .

• configuration of software architectures: which communication streams to use, with
which mediators, which data models, which communication patterns, etc.

• . . .

Types of higher-order relations

• transitive, converse, identity, associative, commutative, symmetric, asymmetric, reflex-
ive or equivalent relations.

• constraint (Fig. 1.5) which are relations that put limits on the values of some properties
in some entities connected by another relation.
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• tolerance: the intervals within which the values of a constraint relation must fall.

• the operator that is naturally connected to any relation is in itself a higher-order relation
for that relation: while the latter models the connection between several properties, the
related operator has the extra knowledge about how to configure the values of these
properties in a particular instance of the relation.

• the semantics of natural languages have a hierarchical structure of interconnected higher-
order relations, the so-called hypernyms and hyponyms2. For example, action is
more abstract than motion, which is more abstract than grasping, which is more ab-
stract than pinch grasping. Or, seeing is more abstract than recognizing, which is more
abstract than localising, which is more abstract than tracking.

• context: the “background” knowledge that influences the property values of entities
in relations (Fig. 1.6). For example, that the gains in a motion control feedback loop
depend on the safety requirements of the application in which the motion control is
being used.

• S-expression gives structure to mathematical relations.

• level of measurement: nominal (types), ordinal, interval, and ratio.

• taxonomy: a tree-structured relation on entities.

• directed acyclic graph (DAG): a graph-structured relation on entities with particular
ordering constraints.

• causal relation, causal chain.

• dependency graph: any relation modelling the knowledge that one particular relation
can only be applied in a particular context if other relations are also applied. A depen-
dency relation often comes with an order (partial or strict) of those applications.

Rel

Arg1 Arg2 Arg3

properties

propertiespropertiesproperties

Constraint

properties

Figure 1.5: A directed acyclic graph repre-
sentation to model a constraint between
the properties of a relation and one of its
arguments. The constraint is a (higher-
order) relation in itself, with its own prop-
erties.

2The terminology for these relations is another name for what this document has called the is-a relation,
and its inverse.
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Rel

Arg1 Arg2 Arg3

properties

propertiespropertiesproperties

Constraint

properties

Context properties Figure 1.6: Directed acyclic graph repre-
sentation that adds a context relation to
the model of Fig. 1.5. Such a context can
influence the meaning/interpretation of all
the relations and constraints within the
context, and is yet again another (higher-
order) relation in itself, with its own prop-
erties.

1.2.4 Properties and attributes

In entity-relation models (Sec. 1.2.1), and hence also in their most flexible property graph
representation, both entities and relations have properties: a set of key-value pairs that
contain the “data” that is needed to understand the meaning of the entity or the relation.
“Attribute is another term that is often used to denote that “data”. This document chooses
to introduce the following semantic difference between both terms, and the choice reflects the
etymology of the terms:

• properties of an Entity are the “data” that that Entity “possesses” or “owns”, and
without which the Entity has no meaning, in whatever context the Entity is used.

For example, every physical object has mass and electrical conductivity.

• attributes are the “data” that are given to an Entity by a Relation that involves it.
More in particular, attributes are the properties of the role of an Entity in the Relation.

For example:

– the color of a physical object in a camera image depends on the interplay between
its surface texture, the properties of its surface paint, the lighting conditions in the
environment, and the properties of the camera.

– the current that flows through the physical object depends on the properties of the
electrical circuit it is made part of.

– the position of a rigid body in space is always relative to other bodies or references.

– the state of a system is a set of data values that describe what to remember of the
system in order to predict the future. This meaning depends on the purpose of the
state in the application that uses the system.

In this document, there is in fact little need to use the term “attribute”, because of the fun-
damental role played by the Entity-Relation duality: any Relation is immediately considered
to be an Entity in itself, and the attributes that a Relation gives to an Entity are modelled
as properties of the Relation node in the property graph model.

1.2.5 Policy: semantic ID meta data

Higher-order relations imply the need for so-called reification in the modelling, which means
that relations become entities themselves. So, among other application-specific properties,
they have their own unique identifier to refer to, so that they can be used as arguments in
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other relationships. In summary, the computer representations of all the “digital twins” and
their first-order and higher-order interconnections can be realised with the same mechanism
of the property graph; this document suggests to adopt the policy to give nodes (and hence
also edges) the following semantic ID abstract data type:

• ID: a unique identifier with which the edge or relation can be referred to in other
models.

• MID (“model ID”): a unique identifier that points to the model that provides the
immediate context in which to interpret this entity, relation, constraint or context. One
can also call this the “type” of the node.

• {MMID} (“meta model UIDs”): a set of unique identifiers that each point to one of
the meta models with which to interpret the model.

• {outE} (“outgoing edge UIDs”): a set of the composition of (i) the unique identifier
for an outgoing edge, together with (ii) the ID of the node to which it connects.

• {inE} (“incoming edge UIDs”): a set of the composition of (i) the unique identifier for
an incoming edge, together with (ii) the ID of the node to which it connects.

The pragmatic cost of a semantic ID is low: a unique identifier can just be an integer, whose
uniqueness need only hold in the context of its meta models. In addition, every composition
requires, in principle, only one extra contextual identification per composing container.

The motivations behind adding semantic meta data to models in a systematic way are that
(i) the topological structure “model”–“meta model”–“meta meta model” is domain knowledge
that is worth representing explicitly in itself, and (ii) sooner or later, any model will have to be
connected to new information, and any system will become part of an even larger system. At
that moment, the new bigger context will have to be able to refer to already existing models
and “reason” about them, to any level of detail, and without having to change anything to
the already existing representations. The semantic richness of a knowledge graph increases
significantly every time such higher-order knowledge, or any new abstraction, are added
to the graph. These are just other set of nodes and edges, that represent “knowledge about
the knowledge”. For example: the reasons why relations between entities exist, or in what
ways an abstraction can be turned into a concrete instantiation.

There are some standards that can be used to represent the unique identifiers: Univer-
sally Unique Identifiers, Universal Resource Identifiers, and International Resource
Identifiers.

1.2.6 Mechanism for reasoning: property graph traversal

A property graph is the structural representation of a knowledge model.3 The behavioural
part consists of graph matching and graph traversal. These are activities to query the
graph for answers. Graph matching gives a template graph as input, and outputs (the set of)
matching sub-graphs in the knowledge graph; the input in graph traversal is a data structure
(“programme”) that encodes at which node to start the query answering, and in which order
to follow edges and nodes further in the graph to find the answer. The simplest form of graph
traversal is the one that workds on tree structures; the popular serialization formats such as

3An early standard, Topic maps, has apparently been forgotten by the community.
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XML and JSON4 have tree traversal query language, e.g., XPath (and its superset XQuery)
and GraphQL.

Obviously, graph traversal queries contain extra, higher-order knowledge about the sys-
tem compared to graph matching queries, and are a possible approach towards realising the
holy grail of higher-order reasoning, which mainstream reasoning frameworks, like the
ones built around Prolog or OWL, cannot provide, because they remain at first order ; in-
deed, Prolog or OWL do not have the semantics to represent relations on Prolog or OWL
relations.

The concept of traversal can be illustrated by means of the simple example in Fig. 1.6:
in order to find out which constraints should be put on the values of the properties node
of the Arg3 node in the relation Rel, one can follow the arrows from the Rel node to the
Constraint node and its properties node. Note that the direction of the arrows reflect
meaning in a relation in a model, but these arrow directions do not constrain the traversal
through the model’s graph that is stored in the graph database; the latter always add two
links for each directed arrow in a model, to allow to travel in any direction between the nodes
that the arrow connects.

1.2.7 Policy: constraint, dependency and causality graphs

Some important instances of the property graph meta model are the constraint graph, the
dependency graph (Sec. 1.11), and the causality graph. They all formalize constraints
that exist between the properties of nodes or relations; but a dependency graph is a special
case of a constraint graph, because “dependency” is a semantically richer type of “constraint”,
and a causality graph is a specific type of dependency, in that it represents cause-and-effect
dependencies.

1.2.8 Best practices: quasi non-existent

In contract to first-order reasoning , the literature and the state of the practice on higher-
order knowledge graphs and graph traversals is scarce, e.g., [6, 27, 73], and practically useful
software tools are not known to the authors. Hence, there are not enough use cases out there
to identify common policies, let alone bad or good practices.

1.2.9 Storage and reasoning in property graph databases

The storage of directed graph representations as in Fig. 1.3 is realised by graph databases,
that provide implementations of property graphs [6]. More in particular, they directly
support the mereological and topological aspects of entity-relation models: they keep track
of which entities are connected to which other ones, and of the properties of each and every
node; and they support the specification and execution of queries via graph matching and/or
graph traversal.

Of course, this interlinking of models via property graphs must stop somewhere; in the
case of (robotics) software systems, this “grounding” takes place when a piece of concrete soft-
ware is composed with the set of models that reflects the software’s behaviour, and a human
expert has validated that this implementation is correctly realising what is represented in the
models. (The software artefacts themselves are not stored in the graph database, but only

4An insightful and concise comparison between XML and JSON can be found here.
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their meta data.) It is a responsibility of the community in a particular domain to decide
what grounding that domain will expect, for what kind of purposes. For example, formal
verification expectations are a lot lower for ROS-based educational robotic systems than for
ESA’s planetary rovers and manipulators; hence, also the accepted level of grounding will be
more stringent in the latter case.

Various types of reasoning are needed on the models of (software) systems, to serve
various complementary purposes: code configuration and generation; model validation (“does
the system specifications conform to the application’s requirements?”), verification (“does the
system implementation conform to its specifications?”), or certification (“is there an official
organisation that confirms that your system implementation is validated and verified?”); di-
alogues with human users and between different computer systems; etc. If all models are
stored as directed property graphs in a graph database, reasoning is realised by means of the
graph matching/traversal query language of the graph database. Some examples of tools that
support such graph traversals are Gremlin, SPARQL, or Cypher.

1.2.10 Host languages to store, exchange and query models

Only very few formal languages are designed to support the exchange of models between
graph databases and other software agents. EXPRESS is a modelling language with already
a mature history and industry-backing, to represent product data, institutionalized in the ISO
Standard STEP; more recent modelling languages were born in the context of “the Web”,
namely RDF and JSON-LD, that have built-in support to represent named directed graphs,
via their keywords for context and unique identifiers. The @context allows a model to
point to an “external” model, in a purely symbolical way; the @id allows models (external as
well as internal) to symbolically point towards any entity in a model. Together, these simple
semantic additions facilitate composition of models with very low coupling, the testing of
conformance to meta models, and the representation of higher-order relations.

XML is probably the most popular “host language”, with an ecosystem of tools, developers
and users that is an order of magnitude larger than those of JSON-LD and RDF, but it is
designed to represent only trees (implicitly, via the containment constraints on XML tags)
and not graphs. There are XML-based extensions such as Xlink that provide the mechanism
for cross-linking, but not the semantics of “context” and of “entity IDs”.

Here is a possible encoding in JSON-LD of the simple model in Eq. (1.1):

{

"@context": {

"generatedAt": {

"@id": "http://www.w3.org/ns/prov#generatedAtTime",

"@type": "http://www.w3.org/2001/XMLSchema#date"

},

"Entity": "IRI-of-Metamodel-for-EntityRelation/Entity",

"Relation": "IRI-of-Metamodel-for-EntityRelation/Relation",

"EntityPropertyStructure": "IRI-of-Metamodel-for-EntityRelation/Properties",

"RelationName": "IRI-of-Metamodel-for-Relation/Name",

"RelationType": "IRI-of-Metamodel-for-Relation/Type",

"RelationRole": "IRI-of-Metamodel-for-Relation/Role",

"RelationNoA": "IRI-of-Metamodel-for-Relation/NumberOfArguments",
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"MyTernaryRelation": "IRI-of-Metamodel-for-MyTernaryRelations/Relation",

"MyTernaryRelationType": "IRI-of-Metamodel-for-MyTernaryRelations/Type",

"MyTernaryRelationRole1": "IRI-of-Metamodel-for-MyTernaryRelations/Role1",

"MyTernaryRelationRole2": "IRI-of-Metamodel-for-MyTernaryRelations/Role2",

"MyTernaryRelationRole3": "IRI-of-Metamodel-for-MyTernaryRelations/Role3",

"TypeArgument1": "IRI-of-MetaModel-for-Argument1-Entities",

"TypeArgument2": "IRI-of-MetaModel-for-Argument2-Entities",

"TypeArgument3": "IRI-of-MetaModel-for-Argument3-Entities",

},

"@id": "ID-Relation-abcxyz",

"@type": ["Relation, "Entity","MyTernaryRelation"],

"RelationName": "MyRelation",

"RelationType": "MyTernaryRelationType",

"RelationNoA": "3",

"generatedAt": "2017-06-22T10:30"

"@graph":

[

{

"@id": "ID-XYZ-Argument1",

"@type": "TypeArgument1",

"RelationRole": "MyTernaryRelationRole1",

"EntityPropertyStructure": [{key, value},... ]

},

{

"@id": "ID-XYZ-Argument2",

"@type": "TypeArgument2",

"RelationRole": "MyTernaryRelationRole2",

"EntityPropertyStructure": [{key, value},... ]

},

{

"@id": "ID-XYZ-Argument3",

"@type": "TypeArgument3",

"RelationRole": "MyTernaryRelationRole3",

"EntityPropertyStructure": [{key, value},... ]

}

]

}

The following model represents a constraint on the previous model (using the constraint
language ShEx), namely the equality between the numeric value of the RelationNoA property
and the actual number of arguments in the Relation:

{

"@context": {

"RelationNoA": "IRI-of-Metamodel-for-MyTernaryRelations/RelationNoa",

"MyTernaryRelation": "IRI-of-Metamodel-for-MyTernaryRelations/Relation"

"length": "IRI-of-Metamodel-for-the-lenght-function/length"

},

"@id": "ID-RelationConstraint-u3u4d8e",

{ "@context": "http://www.w3.org/ns/shex.jsonld",

"type": "Schema",
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"shapes": [

{ "id": "MyTernaryRelation",

"type": "Shape",

"expression": {

{ "type": "TripleConstraint",

"predicate": "RelationNoA",

"value": { "type": "NodeConstraint",

"datatype": "http://www.w3.org/2001/XMLSchema#int",

"value" : "{length(MyTernaryRelation)}"}

] } }

] }

}

1.3 Mereo-topological levels of abstraction

A property graph has entity nodes with properties, and relation nodes between entities. The
Sections above focused on the graph view; this Section describes the complementary semantic
view, more in particular, to describe what is the least amount of meaning that one can give
to an entity-relation graph.

1.3.1 Mereology: has-a

Humans are trained to interpret the textual representation (i.e., “model”) of a relation,

Relation x ( Entity 1, Entity 2, Entity 3 ), (1.1)

with a lot of background knowledge. The simplest interpretation (often called the “high-
est” level of abstraction), is that of its mereology, which just represents the parts that
make up the model, without any additional structure or behaviour. In this case, the parts
are Relation x, Entity 1, Entity 2 and Entity 3. In other words, a mereological model
consists of the set, or collection, of the Relations and Entities that are relevant for the
modelled system. Remark that the context (Fig. 1.6) to interpret the meaning of the re-
lation is not specified explicitly; at the mereological level, such a context is just another,
larger, mereological set, often called the universe or the domain of discourse of a model, and
it represents all the entities and relations that should be considered together before one can
hope to interpret the meaning of the model unambiguously.

The formalisation of the mereological view on models comes with only one single rela-
tion:

• has-a (or holonym), to represent the fact that a “whole” consists of “parts”. (The
inverse relationship is often called part-of, or meronym.)

and one single entity:

• collection: the entity that “owns” the has-a relations with all the entities “inside”.
Note that it does not own the entities themselves!

The collection entity can get an attribute that represents how an application using
the collection interprets the order in which the elements in the collection are pro-
vided in the model: ordered or unordered. In the JSON-LD modelling language, this
attribute is represented by the "@list" and "@set" keywords, respectively.
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For example, the “model” in Eq. (1.1) has eight instances of the has-a relation:

• the “whole” of the context is a collection with has-a relations with all its primitive
“parts”, Relation x, Entity 1, Entity 2 and Entity 3.

• the “whole” of the Relation x is a collection with has-a relations with its three
argument parts, Entity i.

• similarly, all entities have has-a relations with a properties data structure entity.

Figure 1.3 is one (of the many possible) graphical representations of the mereology of Eq. (1.1).
Figure 1.5 extends the model with a constraint on the relation; the constraint brings in “loops”
in the representation. The further extension with a context is shown in Fig. 1.6. The suggested
approach of model composition has the advantage that the directed graphical models have
only acyclic loops; this pattern of cycle-free composition is a best practice that is sometimes
called the dependency inversion principle, and that this document tries to follow as often as
possible.

1.3.2 Topology: contains, connects

The topological version of Eq. (1.1) is as follows:

Relation x ( Argument 1 = Entity 1, Argument 2 = Entity 2, Argument 3 = Entity 3 ).

(1.2)

The extra information in this “model” is that each argument Entity i, i ∈ {1, 2, 3} is
connected to a specific role in the Relation x. That means that extra structural knowledge
is added to the mereological model, namely that of:

• containment: all arguments are contained in the relation, and that container provides
the inward-looking context that determines the interpretation of the properties of the
entities that are used in the relation.

• connection: Entity i is connected to the ith argument of the Relation x, and this
explicit association allows to reason about how to interpret the meaning of that specific
entity in that specific role, again within, both, the inward and outward contexts.

It is clear that the formalisation of the topological view of the “model” in Eq. (1.1)
comes with two relations:

– contains: this represents a partial order structural relation between the entities
involved.

– connects: this represents a symmetric structural relation between the entities
involved.

and with two entities:

– container: the entity that “owns” the contains relations with all the entities
“inside”.

– connector: the entity that “owns” the connects relations with all the connected
entities.
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1.3.3 Role of mereo-topological models

Mereological and topological models might seem overly simplified and obvious, but they
have already a very important role to play in large-scale modelling efforts of digital robotic
platforms: to determine what the models and reasoning tools can “talk about”, or, more
importantly, can not talk about because of a lack of formally represented entities. So, a first
agreement between the model developers in a particular domain is to get agreement about
what terms are “in scope” of the effort, and which are not, and what kind of dependencies
between these terms will be covered by the models. That effort is exacty what this document
is kickstarting, for the robotics sub-domains of motion, perception, world models and task
specifications/plans.

For example, a kinematic chain is a relationship representing motion constraints between
rigid body links and (typically) one-dimensional revolute or prismatic joints; the role of the
links is to transmit mechanical energy (motion and force), while the role of the joints is to
constrain or alter that transmission. Obviously, the order of the joints in the chain has an
influence on the chain’s overall behaviour, and vice versa. Note that these sentences already
contain a form of reasoning, such as: a robot has to have at least six joints to move its end-
effector in all spatial directions; or, if a joint is not connected to a link, directly or indirectly
via other links and joints, it cannot influence that link’s motion.

1.4 Core relations in modelling: conforms-to and is-a

In a previous Section, the term “highest level of abstraction” was used somewhat sloppily,
because in practice, there is always a higher level of abstraction, in any modelling effort.
Not in the least because the science of mathematics is always driving formalizations and
abstractions further and further. This document considers two relations as the core of any
level of abstraction in knowledge modelling: the is-a relation, for abstraction on properties;
and the conforms-to relation, for abstraction on relations.

1.4.1 conforms-to hierarchy on relations

A meta model (or schema) provides the entities, relations, and constraints with which
to decide whether a particular model is (syntactically) well-formed and (semantically)
meaningful. In other words, a meta model is a model of a language in which to write models;
each such model must satisfy the conforms-to relation (rather, constraint) with respect to
each of its meta models, that is, all constructs that are being used in the model satisfy the
constraints on the relations that are made explicit in a meta model, but only for as far as the
constructs in the model indeed use entities that are defined in a meta models. It is important
to stress that it is not required that all constructs in a model must conform to the constraints
of the meta models, because this “‘underconstraining redundancy” (also known as the open-
world assumption) is key to allow composition with any new model extensions and new
corresponding meta models (if these do not contradict constraints introduced by earlier meta
models!).

For example, Equation (1.1) was introduced as amereological model, since one can identify
the “parts” and the “whole” entities, and the has-a relations between them. Sentences in
a natural language must satisfy the syntax rules (that is, form) of that language, but also
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its semantics (that is, meaning), and none of these have already been constrained by the
mereological relations.

Another example is that any property graph conforms-to the mathematical meta meta
model of graphs, that is, nodes connected with edges, independently of the nodes’ interpre-
tation as “entity”, “relation” or “properties”.

The most difficult but also important responsibility in making a meta model is to iden-
tify and formalize all the constraints that have to be satisfied in a model before that
model really carries the “meaning” that is intended, and nothing more or less. For example,
a kinematic chain is constructed by joining links, joints and tool frames, but even obvious
constraints such as “a kinematic chain consisting of just one link connected to three joints is
not valid” must be expressed in one way or another.

(TODO: no inverse relation. Hierachy is tree, with fan-out in the direction of more abstrac-
tion/less concreteness.)

1.4.2 is-a hierarchy on properties

(TODO: instance, object, class; invers relation is type-of. Hierachy is tree, with fan-out in
the direction of less abstraction/more concreteness.)

1.4.3 Composition and inheritance

TODO: composition extends behaviour by introducing independent new entity, with relations
to the entities being extended that contain the coupling between the new behaviour and the
already existing behaviour. Inheritance extends behaviour by introducing a dependent new
entity, with the is-a relation, which only adds new behaviour. The strictest constraint
on inheritance is Liskov substitution principle: any entity (“object”) can replace any of its
ancestors.

Some not-so-good practices in this context:

• Industry Foundation Classes: an “ontology” to represent structures in buildings, like
windows, doors, stair cases, etc. But here is an example where deep inheritance trees
are making this kind of modelling very non-composable, and (hence) extremely large
and complex because they have to model everything themselves and cannot reuse bits
and pieces from other ontology representations.

• URDF (Universal Robot Description Format) is a modelling language in robotics, suf-
fering from the same inheritance explosion problem: every new addition must find its
place somewhere in the inheritance tree under the “God Object” robot at the root of
the tree, and this compromises composition.

1.4.4 Best practice: four levels in is-a and conforms-to hiearchies

No model of the real world, or of an engineered system to control the world, can or must
cover all possible aspects of that world or of its engineered instrumentation. The selection of
the aspects of the real world that are included in a model defines the abstraction: any use
of the model, in whatever context, will have “to make abstraction from” the non-modelled
aspects. The other, complementary, way to reduce the correspondence between a model and
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the real-world entities that it represents, works by reducing the level of resolution in the
model. For example, one can put a building on a map just by adding a tag with its name
attached to a particular map coordinate, or one can draw a polygon on the map of the outline
of the building, or one can add a 3D CAD model. In none of these three approaches, the
building is abstracted away, because it can be part of modelling relations; what is abstracted
away by the just-mentioned geometrical models of the building are its real-world properties
such as material usage, function, energy consumption, etc.
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realisation of

Real-world systems
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Figure 1.7: The partial order in meta models. A meta model language is often also called
a Domain-Specific Language, or DSL. The mnemonics of the M0–M3 abbreviations in the
modelling order relation is that the M stands for “model”, and the number represents the
number of M’s.

1.5 Meta (meta) models and DSLs

One model can conform-to multiple meta models (Fig. 1.7); for example, the model of a
kinematic chain must follow the rules of valid kinematic connections, but must also provide
mathematical representations of its various parts that have compatible geometric coordinates
and physical units.

Since a modelling language, or meta model, is also a model in itself, it has (possibly
multiple) meta meta models, that is, the formal representations of the entities, relations and
constraints that govern the semantics of the modelling language. the conforms-to relations
introduces a partial ordering between meta models. Being a meta model, or a meta meta
model, is not an absolute property of a modelling language, but a relative attribute given
to it in the scope (“container”) of three modelling “levels”: it is a topological relation
between a model, its meta models, and those meta models’ meta meta models. In practice,
the “hierarchy” of meta modelling is not very deep, since one very quickly ends up with “pure
mathematics” as formal languages; key examples being linear algebra, graph theory, predicate
logic, differential equations, or mechanics.

A meta model language is often also called a Domain-Specific Language, or DSL
(Fig. 1.7, and several domains are cooperating on making their own set of DSLs or schemas);
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the meta meta model languages are (typically) independent of a particular application domain,
for example: mathematical models, or XML Schema. The property graph is this document’s
main meta meta model for formal modelling of entities and relations. and the mereological
and topological representations introduced in earlier Sections of this document are at the
meta model level. Later Chapters will apply such (meta) meta modelling to the context of
models for the domain of robotics: property graphs, mereology and topology are all meta
meta models for (robotics) domain-specific languages for kinematic chains, motion control,
geometry, dynamical systems, physical units, etc.

A very popular set of meta/meta models is that of the Meta-Object Facility, which models
the instance-of relations between class and object entities.It is a major foundation of, for
example, UML, but its practitioners often try to apply it to represent all possible knowledge,
information or data relations, even the ones that are not connected via the semantics of
“inheritance”.

Other established domain specific language ecosystems exist in Computer-Aided Design,
in the form of ISO 10303 (also known as “Step”) for production, and building and construction
industry data.

For practical use, it is not mandatory to have formally represented meta models, and
certainly not meta meta models, unless one has to perform model-to-model transforma-
tions, for example, to convert measurement data from the International System of Units (SI)
to the imperial system, or to convert Euler angles into quaternions. Such transformations
can only be verified formally if both “ends” have formal meta models (DSLs) and these DSLs
conform to the same meta meta models. In the XML world, model-to-model transforma-
tions can be done with the XSLT standard; this includes the possibility to to model-to-model
transformations in the JSON world, by first doing a JSON-to-XML transmformation, then
the XML-to-XML transformation, and finally back from XML to JSON.

1.6 Mechanism and policy

One of the major pragmatic problems to compose components into systems is that components
are often provided with hard-coded configuration choices (Sec. 2.6.1). The reason most often
being that the component was developed with just one particular application context in
mind, and for which the chosen configuration was (hopefully) “optimal” and/or “obvious”.
So, another mereological aspect of component modelling to improve composability is to
separate the description of a component’s “mechanism” from the description of the “policy”
with which that mechanism is used:

• mechanism: what does a component (algorithm, process, agent, piece of functional-
ity,. . . ) do, irrespective of the application in which it is used? Often, mechanism is
subdivided into it topological sub-parts of structure and behaviour:

– structure: how are the parts of the model/software connected together?

– behaviour : what discrete and continuous “state changes” does each part realise?

• policy: how can the structure and behaviour of the component be configured, to
adapt its functionality to the particular application it is used in? In its simplest form, a
policy just configures some “magic number” parameters in the model/code of a library
or component system; in more complicated forms, the whole architecture and interfaces
of an application are optimized towards the particular application context.
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1.6.1 Policy: frameworks, middleware, solvers

Two major instantiations of the coupling between mechanism and policy, in the domain of
software engineering, are frameworks and middleware: they provide software libraries that
optimize the “usability” of the software in particular application contexts, by making
already all of the policy choices that are relevant in that application context. The advantage
is that the developers only have to make choices about the behaviour of their applications.
The disadvantage is that these choices are most often hidden inside the framework, and hence
compromise the “reusability” and composability of the framework/middleware, if one
or more of the policy choices are not optimal (or even feasible) within a somewhat different
application context.

1.6.2 Bad practice: interpreting attributes as properties

The concepts of “policy” and “attributes” are often encountered together, because the latter
are, by definition, always the result of a policy decision. Here are some all too common
examples (hence the name bad practice) where an attribute was set by a component designer
as if it were a property of that component:

• a priority is not a property of a thread, but an attribute given by the process that
composes the thread together with other activities.

• a control gain is not a property of a controller, but an attribute given by the task that
needs the controller to improve a particular task-dependent performance metric.

• resource allocation is not to be done in a Computation, but for the component that
requires the resource to help realise a task-dependent functionality.

• colour is not a property of an object, but of the relation that connects the material
properties (texture, paint,. . . ) of that object with the lighting conditions and the visual
perception properties of a camera.

• the shape is not a property of a link in a kinematic chain, since various applications
will require other shape representations for the same link; for example, to make fast
computations with only a first-order accuracy, or to add a specific mesh for collision
deformation simulation, etc.

1.7 Declarative and imperative

Models consist (Sec. 1.2.1) of relations between entities, with constraints between properties
and attributes of entities and relations. Some of these relations or constraints represent
structure (Sec. 1.3.2) between a set of other entities, relations, constraints, properties or
attributes. For example:

• the order in which actions must be executed, sometimes called the control flow.

• the dependencies between concepts, e.g., hierarchy, taxonomy, priorities, etc.

In general, such set of structural relations can be represented by a graph in itself, a so-
called dependency graph (Sec. 1.11). There are two major complementary ways to turn the
information represented by such a dependency model into “actions”:
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• imperative: the ordering structure is determined explicitly, at design time. So, at run
time, the determined “recipe” is executed, as is.

• declarative: the dependency graph is available at run time, together with (i) a solver
program that computes the “optimal” ordering (by solving constraint satisfaction or
constrained optimization problems), and (ii) a dispatcher program that executes the
“actions” in the right context.

In computer-driven systems, “context” has two complementary meanings:

• run time: the minimal set of data that must be saved to computer memory to allow
the action’s execution to be interrupted, and later continued from the same point.

• design time: the minimal set of relations that are needed to determine the meaning
of the action.

A declarative approach allows (but not necessarily guarantees!) to have both contexts available
(and linked, extensible, configurable, verifiable,. . . ) at runtime, which improves composabil-
ity, at the cost of more execution time and memory.

1.8 Hierarchical and serial ordering: scope

A key motivator for model-driven engineering (MDE) is the observation that the amount of
software in modern (robotic) systems has grown so large that no human developers can keep
an overview in their minds about everything, and more importantly, about the implications
of interconnecting components into systems. However, a simple-minded introduction of MDE
can lead to a similar mental overload of models instead of of code, which would mean that
no significant progress has been made.

However, modelling has one large advantage over coding, and that is that there exist many
ways to add structure between models that allow viewing a component or a system at various
levels of abstraction. The mereology of the two major abstraction structures is as follows:

• hierarchical order: or, taxonomies. These are trees of models, where each depth
level models an explicitly identified set of properties, relations and constraints.

For example, topology implies mereology (one can not talk about tow entities being
connected if the two entities have not been identified), etc. Kinematic families of serial
and parallel robots, with further specialisations of 6R serial chains or Stewart-Gough
parallel platforms, etc.

• serial order: or, dependencies. The most useful dependency ordering has the struc-
ture of a Directed Acyclic Graph, since this is a declarative way to model serial
dependencies.

For example, execution dependencies between tasks determine whether they can be de-
ployed at the same time or not. Data access dependencies between functions determine
their concurrency scheduling order. Relative priorities between robotic systems deter-
mine the order in which they are given access to physical resources, such as space or
energy.
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The major usefullness of the hierarchical and serial ordering is that they allow to introduce
scoping relations to the development process (but also to the runtime system analysis!):
interpretation of information can be limited to that part of the presented orderings that has
an impact on the current design or analysis, and “reasoning” can be done in a scope that
is limited to, respectively, the highest level of hierarchical abstraction or the smallest set of
serial dependencies, that make sense. Examples of such “scoped reasoning” are:

• every topological relation implies a mereological one: it does not make sense to reason
about interactions between entities if these entities have not been created and identified.

• every coordinate representation implies a geometric relation: one does not need to look
at the exact numbers or data structure in the coordinate representation of frames to
detect whether their type or their physical units are compatible or not.

Rel properties
port

port port

port

properties

properties

properties

properties

... ... ...

Figure 1.8: A directed graph representation of the topological model of the relation in
Eq. (1.1). The arrows represent connects relations, which add extra structural information
compared to the mereological model, namely the connection with a specific “port” entity that
describes the role of an argument “part” in the “whole” relation. Since the port is an entity,
it also has properties, not in the least the information about the type of the role.

1.9 Structural composition: block-port-connector

This formal representation of structural composition extends the generic Block-Port-Connector
(BPC) meta meta model, [75]:

• Block: every Relation is a Block, so has-a number of Ports.

• Port: each Port represents an argument in the Relation, and the properties of the Port
represent the type of the argument, and the role the argument plays in the relation.

• Connector: this connects a concrete instance-of an argument with a concrete instance-
of the Block and Ports mentioned above. Its types must, of course, match with those
in the Ports.

What is described above is the outside view on the Relation; the internals of the Block can be
again a composition of Blocks and Ports and Connectors, then representing the “algorithm
”that realises the behaviour of the Relation.
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To link the outside and inside, the Ports much get an extra modelling primitive, the
Docks: each Port must have exactly one inside Dock and one outside Dock, and both have
a Connector between them. The constraints on both ends of this Connector are just(?) type
compatibilities.

1.10 Design patterns

A (software) design pattern is a general reusable solution to a commonly occurring problem
within a given context.5 Major reasons why a design can be called a “pattern” are:

• it has been used in multiple real-world applications. In other words, it has proven “to
work”.

• the design description explicitly refers to the various “forces”, which can pull the design
into several (foreseen) directions. In other words,

• the design description explicitly discusses the trade-offs between choosing which forces
to apply to a specific context, and to what extent.

The major top-level categories of patterns (in software, system development, modelling,. . . )
are (i) the structural patterns, and (ii) the behavioural patterns. These are, not coin-
cidentally, also two major categories of design aspects that appear often in this document.
Since the latter’s focus is on model-driven engineering, the above-mentioned key mereological
aspects of patterns (solution, force, context) will be modelled explicitly, as well as the rela-
tions and constraints that connect them. A good pattern model balances the declarative
and imperative (or “procedural”) aspects of the description:

• the fact that the literature uses the semantic term “forces” to represent design choices
indicates the preference for declarative pattern descriptions.

1.11 Dependency graphs

Many higher-order relations have the meaning of constraints: the relation represents a
particular configuration (of properties in various entities or relations) that is not allowed, or
that, on the contrary, is intended to be realised, etc. Even for simple systems, the designers
must be able to model dependencies between sets of constraints (that is, even higher higher-
order relations), that is, some constraints are only valid after some other constraints have
been satisfied. For example, it only makes sense to take a actuator saturation constraint into
account after themotion control loop that steers the actuator has been brought into operation.

Taxonomy of increasingly more constraining dependencies: connection→ relation→ con-
straint → dependency → causality.

5The concept comes from architecture (the bricks-and-mortar form of architecture, that is), via the seminal
work of [4]. That book described patterns as follows: “Each pattern describes a problem which occurs over and

over again in our environment, and then describes the core of the solution to that problem, in such a way that

you can use this solution a million times over, without ever doing it the same way twice.”
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1.11.1 Mechanism: Directed Acyclic Graphs for partial ordering

1.11.2 Policy: temporal order, hierarchy, causality

• cause-effect chain: execution causality, for triggering of component ports, scheduling
of function executions in event loops, reasoning in graph traversals,. . .

• temporal ordering: (non)overlapping start and end events;

• hierarchical ordering:

• model dependency:

• junction tree: define a spanning tree for the graph, via domain-dependent choices of
how to reduce a graph-connected sub-graph into one single node.

• . . .
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Chapter 2

Meta meta models for (robotic &
cyber-physical) systems

All engineering domains have a lot of knowledge in common, using physics,
mathematics, computer science and systems-and-control theory, to represent all
possible interactions between matter, energy, data and information. This
common knowledge is to be formalized into meta meta models, the “higher-
order” knowledge which forms the basis for the concrete modelling of all cyber-
physical systems domains, including robotics. The ambition of this document
is to find the least amount of such models needed to represent behaviour
composition of activities and their interactions.

Engineering systems, hence also robotic applications, contain parts from various physical do-
mains (mechanical, electrical, thermal, etc., Fig. 2.1), and the optimal composition of “com-
ponents” into “systems” is a major responsibility of application developers. Their ambition
should be to maximize two complementary aspects:

• composability: this is the extent to which a component makes all of its “5Cs”
(see Sec. 2.6.1) separately configurable, to increase the opportunities to reuse the
component in any kind of system.

• compositionality: this property of a system reflects the predictability of the be-
haviour of that system, hence making the system more easy to use as a composition
of “components”, as soon as the interconnections and the individual behaviours of the
composing components are known.

Neither of both (“non-functional”) aspects can really be measured objectively and directly,
or even be modelled explicitly. Hence, this Chapter introduces a collection of more concrete
best practices, (software) design patterns, concepts and relations, that help human devel-
opers to bring structure in the complex process of developing models and software for
new components and new systems, hence (hopefully) leading to higher composability and
compositionality.

The presented material is at the meta meta model level, and limited to only the mereo-
topological parts1 of domain-specific knowledge. The behavioural levels of abstrac-

1That is, the compsition of the mereological and topological parts.
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Figure 2.1: The topological relations between the various mereological top-level entities, ac-
cording to [13].

tion will be added in Chapters 3 and following, where “robotics” will start to appear as a
specific subset of cyber-physical systems.

2.1 Cyber-physical systems: interaction of matter, energy, in-
formation & data

A cyber-physical system is an interconnected set of man-made (or “engineered”) “machines”
that operate on the physical world, and:

• consist of physical components, such as mechanisms, chemical processes, belts, pipes,
valves, etc.,

• are instrumented with sensors to measure position, temperature, pressure, etc., to trans-
form physical quantities into digital data,

• and with actuators (electrical or hydraulic motors, burners, etc.) that transform digital
data into physical energy,

• are controlled via (so-called “embedded”) software, which computes the actuator out-
puts from (i) the sensor inputs, (ii) a model of the system, and (iii) a description of
the system’s desired behaviour.

Human civilizations have spent tremendous efforts on the scientific (“mathematical”) mod-
elling of the physical (or “continuous”, or “hardware”) parts, and very complete and
powerful scientific paradigms have been created, which support most of the technological in-
novations of the human race; Figure 2.1 gives a summary of one of the most successful of such
paradigms, that of engineering ontologies within a bond graph context. The engineering of
the cyber [87] (or, “discrete”, or “software”) parts has, still, a much shorter history, and
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a lot less completeness, concensus and harmony has been achieved in the domain of software
engineering.

2.1.1 State of a system

This document provides a large amount of models to represent cyber-physical systems, and
applications engineered around them. That means that such an application will have dozens
to hundreds of models, and hence often thousands of parameters in those models. Some of
the models represent the behaviour of the system over time; the state of a system is the
subset of all the system’s model parameters that (i) change over time, and (ii) are needed to
describe the system’s dynamic behaviour. Several different types of state can be identified:

• energy : the amounts of energy that are stored in different parts of the system.

• computations: all the information needed to pause algorithmic computations for a while,
and resume then at a later moment in time.

• control flow : to represent a set of conditions that are (not) all satisfied at a particular
moment in time, and whose values determine which direction an algorithm is going to
take at that moment.

• plan—behaviour : the information about what activities the system should run at a
particular moment in time, in each mode in which it has to realise a particular behaviour.

• interaction: activities that interact often follow a protocol of interaction that has various
phases.

2.1.2 State representation: ordinal, categorical, continuous, discrete, event

(TODO: event represents that “something” has happened in one activity, is communicated
to other activities, so that they can react to the event and change their behaviour.) ordinal:
each data instance has its place in an order; categorical: each data instance has a type from
a discrete set of nominal categories; continuous: in value (current, distance, temperature,
power,. . . ); with intervals and ratios as important sub-types. )

2.2 Taxonomy of scientific theories — Levels of representation

Any engineering activity makes use of a body of scientific disciplines, and human engineers
spend a lifetime on increasing their understanding of the structural relations between (a
subset of) these disciplines. Because of the shear magnitude of scientific knowledge available,
computer-controlled systems require the most structured possible formalisation of all these
relations, in order to keep the scope of automatic reasoning to (somewhat) tractable levels.

For the purposes of this document, the mathematical and information theoretic domains
are highly relevant. Especially the former is a very mature domain, that comes with the
expected structure; for example, allowing to differentiate between the geometric, algebraic and
analytical parts of mathematical models. It is beyond the (current) scope of this document

41



to formalize the taxonomy of scientific disciplines, but the structural relations will show up
in many places, often in still too implicit ways.

The modelling in this document requires formal representation of the entities and
relations for, both, the physical and the informational parts of the cyber-physical system.
One (but not the only) hierarchical structure2 that relates formal representations is that
of the levels of abstraction3 described below. The hierarchy comes from the observation
that each of these levels is a (not the) meta model of the level below, and has the level above
as one of its own meta models.

2.2.1 Mathematical representation

A mathematical representation is the (often axiomatic) definition of relations between en-
tities that respect particular invariants under transformations of formal mathematical
models. Traditionally, these models are written down in a symbolic form to be produced and
consumed by humans only. This document will not suggest formalisations that are useable by
computers in robots, but refer to them as meta meta models that are grounded “somewhere”.
At least, that is the case with the basic mathematics of algebra (solving equations and poly-
nomials, groups), number theory (natural, integer, rational, real and complex numbers), and
analysis (differentiation and integration, series developments of functions).

The exceptions are geometry and Bayesian information theory (including statistics), be-
cause robot-processable geometric and uncertainty models are essential components in robotic
systems. The document will make formal models of “polygonal worlds” and their “motions”
over time. It relies on readers understanding the more theoretical aspects of geometry such
as: the mathematical properties of rigid body motion as represented by the SE(3) group; the
differential-geometric properties, such as pull-backs of tangent spaces and multi-linear forms,
exponentiation or logarithm; and the lack of a bi-invariant metric to measure the “magnitude”
of a motion.

2.2.2 Abstract data type

An abstract data type is a symbolic form of a knowledge-graphs that also provides entities
and relations to store numerical values of the coordinates of (some of) the symbolic
parts. One needs computers to reason with the symbolic representations of entities and the
relations between them, but also to compute with the numerical values of properties. Such
reasoning and computation can take many forms: to formalise algorithms into computational
models; to check formally the validity of a model; to transform models into code; to decide
which are the right “magic numbers” in algorithms, etc.

At this level of abstraction of model representation, one can represent various levels of
abstraction of the modelled domain. For example, one can consider a robot as a machine that

2Hierarchy in models is a key driver for efficient reasoning on the models, because searching for “more” or
“less” abstraction need only be done in one given direction through the models. So, whenever such a hierarchy
can be discovered in a domain, it makes sense to make it explicit. This turns out to be a difficult exercise in
practice, since many modelling standards have introduced hierarchies just for the sake of efficiency but not
because they are a faithful reflection of the reality one wants to model. For example, all models that claim to
be “object oriented” but violate one or more of the SOLID principles.

3At least, for computer-controlled engineering systems, since there the needs to compute and to communicate
between machines are essential. Sciences and humanities often stop with only the two top-most levels of
abstraction, the first one for inter-human communication, the second one for computerised tools like computer
algebra systems.

42



moves stuff around in space, or as a particular kinematic chain of links and joints, or with
the explicit addition of motors and sensors. Whatever abstraction one works in, semantic
properties that are always relevant are the types of entities and relations, and their physical
dimensions, such as length, energy per time, force, or angle.

The numerical aspects require to link with the meta meta model of the array (or matrix,
or tensor) as the ordered list, and even list-of-lists and list-of-list-of-lists, etc.

2.2.3 Data structure

A data structure model is the next step in bringing the models closer to executable software:
it gives the abstract data types an explicit software representation, that is, a particular
programming language is chosen.

At this level of abstraction, also the quantitative value of each property is added, and
its a corresponding physical unit; for example, meter, inch, or millimeter for length, Newton
for force; second or hour for time.

The purpose of the data structure is to represent abstract data types to a level of con-
cretenes with which to compute, to share and to store data in all its variants (in memory,
marshalling/ and serialising, etc.). Examples are built-in types as integer values, floating-
points values, string and their composition, e.g., arrays and unions in the C language. That
C language is more versatile than JavaScript, since the latter uses the JavaScript Object
Notation (JSON) that allows to distinguish only between floating-point values and integers.
Another example is the Lua language that provides only the concept of number. This affects
not only numerical values, but also strings. For example, the Python language distinguishes
between strings and Unicode strings.

2.2.4 Digital storage

One essential part of computing with data structures is to store them in the memory of
a computer, or to communicate them between computers. So, one needs an extra level
of representation, namely that of how many bits are being used to implement them on a
particular computer hardware, and in what structural order the bits get their meaning in the
data structure.

For example: the positions of a point in space can be stored as 32-bit IEEE floats, or
communicated by JSON numerals; mathematical entities and operators can store matrices in
compatible ways with LAPACK or HDF5.

2.2.5 Electronic processing

With modern computers, the performance of computations is strongly influenced by the
electronic architecture of cores and caches. For example, computations on the CPU registers
are orders of magnitude faster than those on higher levels in the memory cache hierarchy.
Or compare-and-swap operations can avoid the context switches that are an inherent part of
locks that come with mutual exclusion.
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2.3 Functions: composition of computations into algorithms

This Section provides the mereological and topological parts of a modelling language to
describe algorithms as “composite functions” of the traditional [90] parts of data structure,
(pure) function and control flow . The description is independent of how the algorithm is de-
ployed in different components, of its implementation mechanisms, and of the programming
language used. The major added value in this meta model lies in the separation of concerns
of representing data, functions and control flow explicitly (and hence separately), including
the dependency constraints between them. Especially the control flow and constraint
parts are seldom available as first-class citizens of a meta model; both are essential for solver
algorithms with a large amount of runtime adaptability.

In all of the “5Cs”, some form of algorithm has to be performed, and not just only in the
“Computation” ones. The algorithms in “Coordination” are typically just Boolean functions;
the “Communication” algorithms are typically protocol stacks; “Configurators” execute con-
figuration scripts or parse configuration “files”. What ends up in the “Computations” parts is
the rich variety of algorithms that belong to a particular application domain. Later Chapters
in this document introduce several of them in a motion control context.

2.3.1 Mereo-topological model

A mereo-topological representation of an algorithm is as follows: “Starting from an initial
state and initial input, the instructions describe a computation that, when executed, proceeds
through a finite number of well-defined successive states, eventually producing output and
terminating at a final ending state.”

The mereological entities are data structures (i.e., to represent the computational
state and the computational configuration of an algorithm) and functions (i.e., instruc-
tions, or computations), and the mereological relation is execution (that is, a function links
the data structures that are the input variables of a function to its output data structures).

The first topological relation is (function) closure, or “data binding”: a function is
connected to the data structures that serve as its input and its output data.

The second topological relation is control flow, that is, the ordered progression through
states (equivalent to the order of execution of functions), which is also called the schedule.

The third topological relation is a (function) invariant: it represents a constraint between
(some of) the input and output data of a function that must be satisfied every time a function
has been completely executed, independently of the values of the input data.

2.3.2 Mechanism: function, data, schedule, invariant and algorithm

The entities and relations in the meta model are direct representations of data structures,
functions and control flow, with a computational schedule that composes them into an algo-
rithm:

• D-block: the Entity to represent data (structures), via a data model that describes
what are valid structural compositions of data.

• F-block: the Relation that represent a function, that is, the computational element
that has D-blocks as its arguments, with some of them having the role of “inputs”,
others of “outputs”, and some have both roles. both roles).
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An F-block should be a pure function, that is, without only explicitly visible side-
effects: the function will change the value of some of its data arguments, and nothing
else.

• S-block: the Relation that represents the scheduling constraints (or control flow) of
a collection of F-blocks, that is, their appropriate execution order.

• A-block: an algorithm is a composition Relation (or an “architecture”) of all of
the above, together with a collection of constraint relations, such as invariants and
closures. An architecture is a D-block in itself, that contains the UIDs of the (i)
composing blocks, (ii) the dependency graph relations, and (iii) its own semantic meta
data.

F-blocks and D-blocks are connected to each other, because an F-block changes some data
in its D-block arguments. So, there is a need for data access constraints to model the
requirements that the order of execution of two or more functions must satisfy if one wants
to guarantee correctness and consistency of the data structures they operate upon. These
constraint relations can be of three types:

• causality: a function that changes data values brings in a cause-and-effect relation,
between the data “before” and “after” the application of the function. Since many
functions and data structures represent the physical world, this algorithmic causality
might or might not correspond to physical causality; this knowledge in itself brings in
another relation.

• function invariant: the effect of the function on the data values can be modelled
imperatively or declaratively (Sec. 1.7): the imperative form is that in which the function
is, in itself, a composition of functions and a schedule; the declarative form is a relation
that holds between the data values “before” and “after” the application of the function.

• data consistency: different functions can change different parts of the same data
structure, and their function invariants must, together, satisfy some relations that
must hold between all parts.

Together, all the constraints in an algorithm for a constraint graph. For example, the data
structures that represent the “motion state” of a robotic kinematic chain only have consistent
meaning after the full “inverse dynamics” algorithm has been executed.

All the above-mentioned entities and relations are composable (thus defining higher-order
relationships) with some straigthforward composition constraints:

• a D-block can contain D-blocks;

• an F-block can contain other F-blocks and D-blocks;

• an S-block can contain other S-blocks;

• an A-block can contain other A-blocks.

Other commonly used names for the F-block entity are: (composite) operator, action, or
actor . F-blocks can easily be mapped to a function prototype (“signature”) in any specific
procedural or functional programming language. Arguments (input and output values) of the
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Type0 retval Fnc(Type1 arg1, Type2 arg2, ...)
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Figure 2.2: A function prototype and its graphical representation as a F-block connected to
a set of D-blocks.

function are ports (in Block-Port-Connector terms) connected to D-blocks; Figure 2.2 shows
an example. The structural part of the meta model conforms-to the Block-Port-Connector
meta model (BPC): the domain is the description of an algorithm, and it is obtained by
specialising the entity block to F-block, D-block and S-block, and introducing domain
specific constraints (and meaning) to the connects relation. As an example, ports represent
the arguments of a function, and they are typed; that is they can be connected to a D-block

under the constraint that the digital data representation model of the D-block and the port
are compatible. The connector that hosts a data access constraint has an extra attribute
which indicates if the access to the data represented by the D-block is read-only, write-only or
both (i.e., if the argument is input or output of a modeled function). Since multiple F-blocks
can share a data access constraint to a D-block, the latter influences the execution order of
the F-blocks: the execution of an F-block that has write access to a D-block prevents other
F-blocks from being executed if they are also connected to the same D-block. Therefore, the
data access constraint is a declarative form to define concurrency properties of the modeled
algorithm.

2.3.3 Computational state of an algorithm — Stack

(TODO: data structure needed to make the mapping from input data structures to out-
put data structures unique. When the computational state is stored, the algorithm can be
restarted at any later moment by restoring that computational state. For a pure function, all
computational state is in its arguments.)

2.3.4 Operational status of an algorithm — Flag

(TODO: a flag is the data structure needed to decide on the control flow inside an algorithm,
that is, which of a finite number of “computational branches” to take. A flag has an enum

(“enumerated values”) as its abstract data type, that is, the flag can take one of a finite
number of possible symbolic names. The literature does not offer commonly adopted semantic
differences between the terms “state” and “status”. An algorithm can have multiple flags at
each moment in time.) Duality between flag and event; more in general, between a stream of
events and a (database) table of flags: the latter is a snapshot of flags that store the value of
all event at a particular point in time; the former represents the change in state of the table.
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Flags represent snapshot of behavioural state in algorithms, activities (FSM), interaction
(interface protocol state), etc. )

2.3.5 Policy: flags to coordinate synchronous schedules

(TODO: schedule of functions; dispatching of schedules; flags used to represent operational
status of an algorithm, so they are the declarative way to influence control flow of dispatching
via reacting to flags, set by other algorithms, or even other activities. Flag separates the
concern of deciding to react, and to effectively executing the reaction.)

2.3.6 Policy: closure in a context

The design choices in the meta model’s mechanism are very “low level” so flexible enough
to allow various control flow policies: multiple entry and exit points, multiple dispatch, par-
tial application, callbacks, iterators and currying, and closures. For example, the A-block
mechanism extends the concept of closure in several ways:

• it has-a collection of one or more functions, and not just one.

• it has-a collection of one or more control flows that put an order on the execution
of the functions.

• it has-a collection of one or more dependency graphs as declarative models for data
access and function sequencing constraints.

2.3.7 Policy: deployment in BPC component

Recall the meta model requirement that F-blocks should not have side effects ; thus, no
internal state should be allowed, or in other words, an F-block must expose any internal
D-block through ports. This prevents information hiding, thus enabling better composability
and reusability of the modelled algorithm, at the cost of increased complexity. If an application
requires information hiding, it can realise this at the BPC level of its components, so leaving
all composition freedom to the implementation of its algorithms. This composition freedom
can be done in many different ways, and the forces that determine the behaviour of the
composition are:

• encapsulation, information hiding, security. The representation of these various forms
of data “protection” is possible by dedicated constraints on the accessibility of the
D-blocks. This is best done by composition of the algorithm’s A-block with a BPC
model in which some Ports are connected to selected D-blocks, F-blocks and/or
S-blocks, and those connect relations get attributes that model the kind of “protec-
tion” to be composed in.

In other words, the closure of the algorithm is not defined by the functional developer,
at design-time, but by the component supplier, who provides the port-based view on
the algorithm that fits best to the concrete context in which its functionality is to be
used.

• run time adaptability : there is no hard technical constraint that prevents the just-
mentioned port-based views to be adapted at runtime.
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• resource management : the execution of an algorithm makes use of two resources of
the computer hardware, namely its memory and its CPU. Because the meta model
contains explicit and complete information about the memory requirements (size as well
as access constraints) of D-blocks and the execution sequences of F-blocks, an application
developer can provide tooling to deal with possible exhaustion of those resources; e.g.,
the various management policies for data buffers or stacks, and for iterators or execution
schedules.

2.3.8 Policy: application programming interface

One of the most popular ways to make algorithms available for reuse is by means an applica-
tion programming interface (API) of a library. APIs are popular whenever an application
wants to have a grip on when individual functions act on individual data structures; for ex-
ample, to guarantee data consistency.

The design forces are: to optimize information hiding, and minimize runtime adaptabil-
ity. Only a selection of F-blocks and D-blocks are made accessible through the API; the
S-blocks remain hidden, and default versions are provided that reduce the number of entry
and exit points to one per F-block that is made visible.

2.3.9 Policy: dataflow

Some applications have very few data consistency constraints, so it does not matter when
an individual function accesses an individual data structure. Dataflow programming has
emerged as a pattern in this context.

The design forces are: to maximize computational throughput; to maximize information
hiding for the control flow ; to allow some form of runtime adaptability and resource manage-
ment of the data buffers.

The dependency graph models the order in which data has “to flow” through function
blocks, hence it declaratively determines the control flow of the actual flow computations;
that scheduling is derived at compile time or at deployment time; policies of buffer overflow
management are available. In practice, only trees or Directed Acyclic Graphs give rise to
predictable performance of dataflows, and, often more importantly, to intuitive programming
interfaces that rely on connecting ports in function blocks.

2.3.10 Policy: functional programming

Functional programming has emerged as an algorithm composition policy that makes the
functions first-class citizens, over data.

The design forces are: to maximize information hiding for the dataflow ; to allow some
form of runtime adaptability and resource management on the callback event loop.

The dependency graph models the order in which functions are to be composed, hence
it declaratively determines the control flow,; the scheduling (possibly via dispatch tables) is
derived at deployment time; policy of preventing starvation of function invocations.
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2.4 Activities: composition of algorithms into behaviour

For every physical and information-processing component in a robotics/cyber-physical system
holds that it has-a behaviour that lasts for some time. For example, the motion of the air
that flows around a quadrotor drone and through its propellors (physical behaviour), or the
control of the lift force of the quadrotor by steering its rotor velocities (information-processing
behaviour). This document uses “activities” as the collective name for entities that realise
(“implement”, “execute”,. . . ) such behaviour over time. This document introduces the fol-
lowing hierarchy in types of information-processing:

• function: the data, function and control flow entities and relations of Sec. 2.3, and
which form the foundation of all computations in software components.

• algorithm: the composition of several functions and function schedules which
share data in a fully synchronous way. That is, the functions are scheduled in a
serialized way, and all data is available exclusively to any function in any schedule.

• program: the composition of several algorithms, some of which may be executed
concurrently. That is, care is to be taken that one function does not write data at the
same time that another one is reading that data, since this asynchronous execution
of functions can introduce inconsistencies in the data they share amongst themselves.

• activity: the composition of a program with the ownership of a particular re-
source. Ownership means that:

– every resource has one and only one owner at every moment in time. But ownership
can be transfered.

– the values of the properties of the resource’s model can only be changed by func-
tions in the activity.

– other activities that need access to the resource must do so via queries to the
owning activity. It is possible that read access is granted in a way that requires no
explicit query for each access, possibly via a protocol. Protocols exist for transfer
of ownership (“Producer–Consumer”, “Broker”), and sharing of access (“borrow-
ing”).

– “the” state of a resources exists only in its owning activity, and other activities
just have copies of that data, which can be mutually inconsistent.

– when the owner of a resource is stopped, the resource is not accessible anymore,
or the owner has a protocol with which it transfers ownership explicitly.

In other words, an activity does not only communicate data with other activities,
but also coordinates the access to the resource under its responsibility.

2.4.1 Mechanism (meta model): event loop computations

The computational architecture that fits best to the activity meta model is that of the
event loop, that is, the combination of synchronous and asynchronous communications and
computations. The event loop pattern is so important in itself that is is explained in more
details in Sec. 2.8.
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2.4.2 Behavioural state of an activity — Mode

(TODO: the extra data structure in addition to the computational state of all algoriuthms
inside an activity; that is, the data with which to determine which algorithms to run under
what conditions. An activity can and sould be in one and only one mode at each moment in
time.)

2.4.3 Policy: sequential, concurrent and distributed execution

Algorithms compose data structures with functions that access those data structures. So, the
design choices are:

• restricted by constraints on (i) access order between data structures, and (ii) execution
order between functions.

• relaxed by assumptions that (i) an explicitly specified part of the data structures are
not changed by “the outside world”, and (ii) an explicitly specified part of the functions
have no side effects.

Activities compose algorithms, in two complementary ways:

• serialize them: multiple algorithms can be executed in the same program, and the
program designer must make choices about the order in which the various algorithms
are executed.

• iterate them: it is a very common use case in cyber-physical and robotic systems to
executed an algorithm or program repeatedly over time, at more or less fixed time
intervals, in infinite or finite loops.

Hence, algorithm and program developers must provide designs that are composable with
respect to concurrency:

• the algorithm designer must minimize the amount of constraints on the order of data
access by functions in the algorithm, while still guaranteeing the correctness of the
intended behaviour.

• the program designers must take into account all constraints of data access and func-
tion execution order that come with the algorithms they have to compose, and choise
serialization and iteration policies that respect them.

While algorithm and program designers take decisions about concurrency, the designers of the
deployment of programs in threads, processes, cores, SoCs and clouds must take composable
decisions about:

• parallelization of their functions over several computational cores connected by CPU
busses and caches. The policy choices are determined by optimising which executions
can run at the same time and still share some data.

• distribution over several computers connected with an local or wide area network.
The policy choices are determined by optimising which executions can be offloaded
to different computers, without compromising the performance of the data exchange
between programs.
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Of course, the algorithm designers can artificially constrain the amount of parallelism by pro-
viding design with a high amount of (often implicit!) concurrency constraints; concurrency is
indeed a necessary condition for parallelization or distribution, but not a sufficient one. Con-
currency is involved with the semantics of the functions and the data they use, and not with
the availability of the hardware resources for computation storage and/or communication,
which is the realm of distribution and parallelization.

Such parallel and distributed execution of activities is supported by threads and pro-
cesses, relying on inter-activity communication mechanisms. The latter are commonly bet-
ter known as inter-process communication, although several of its mechanisms also hold for
threads (e.g., shared memory or message queues) or for cores, SoCs and clouds (e.g., sock-
ets). These mechanisms rely on operating system services for (i) scheduling and managing
resources for computation and communication, (ii) configuring realtime performance param-
eters, (iii) enabling synchronous and asynchronous access to peripheral devices, and (iv) se-
rialisation/deserialisation and encryption of the data structures used in communication.

2.4.4 Policy: work flow

(TODO: BPMN, roles, lanes,. . . )

2.5 Interfaces: interactions between behaviour in activities

Physical activities interact by exchanging energy; information activities interact by exchang-
ing information (“data”, “messages”, “events”,. . . ), about the status of the physical activ-
ities (motion, force,. . . ) and symbolic activities (task, performance,. . . ) whose interactions
they control. So, two complementary mechanisms must be available:

• the exchange of information between activities.

This is such an important aspect of system design that it merits its own “first-class
citizenship” rolw in this document’s meta modelling scope.

• the production and consumption of information.

The “producing” activity in the exchange of information must be able to “hand over”
its information to the exchange mechanism; the “consuming” activity must be able to
get information from the exchange mechanism.

The information interaction is realised via the so-called interfaces of the activities. This Sec-
tion explains, at the mereo-topological level, how the producer/consumer communication
pattern is composed with the activity pattern, to lead to a composite pattern, the Stream,
that models interactions between activities.

2.5.1 Semantics of exchange instrument: buffer, queue, channel, socket

Interfaces exist to give one activity access to information in another activity. The pointer is
the core technical mechanism (in software representations, that is) to support such access:
the “owning” activity provides the “using” activity not with the desired information itself,
but with another piece of information that indicates where the latter can find the desired
information. This pointer can be the address in the RAM memory where the information’s
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data structure is stored. It can also be a symbolic name (“UID”) of the data structure; in
this case, the “using” activity must translate the symbolic name into a concrete address, e.g.,
via a key-value lookup table. There are several complementary (and not mutually exclusive)
ways the “pointer” mechanism is being used to realise semantic classes of interfacing:

• buffer: both activities share the same memory space, and can use the (symbolic or
address) pointer directly in their own code.

The advantage of the shared memory mechanism is that the data need not be copied,
and all of the available information is accessible, directly and repeatedly.

The disadvantage is that there is no clear ownership of the data, hence one must add data
access constraints to all activities that share the information. These constraints must
be followed by all functions that use the information, so the interleave their execution
in a predictable, consistent, and resilient way. Most often, the constraints are only
satisfied by discipline of the programmers, instead of being guaranteed by construction,
in programming languages or software tools.

• message queue: this mechanism works between two activities in the same address space
or not, and both rely on the services of the operating system. That acts as a mediator,
by taking care of (i) copying the data to and from buffers in the address space of both
activities, via write and read operations, and (ii) deciding which data to forward from
a producer to a consumer.

The advantage of a message queue is that the developers of the reading and writing
activities need not bother about the data access constraint: the data must be copied
anyway, to be sent over the “wire”.

The disadvantage is that the execution of each activity has some side effects: the data
comes only available one by one, in the strict first in, first out order of the queue; higher
memory usage because of the data copying; and non-deterministic pre-emption of their
execution, because the “locking” of the buffer pointers can happen implicitly behind
the screens.

• channel combines the advantages of buffer and queue: activities share a buffer (in
the RAM-based shared memory of the process in which both are active, or via “file
based” shared memory offered by the operating system), but at any moment in time,
the ownership of two halves of the buffer lies unambiguously with either the producer
or the consumer, and never with both.

In other words, there is a communication of ownership (“move”) of a buffer half from
producer to consumer.4,5

• socket: when activities do not share directly accessible memory,6 the message queue
mechanism is extended further: the “local” message queue is not really one single
queue, but the data that is written to it is sent to another computer or process via a

4The Go programming language uses this approach natively, via its policy “Do not communicate by sharing

memory; instead, share memory by communicating.”.
5For channels, a terminology is used that fits closer to the context of “communication”: “producer” becomes

“transmitter”, and “consumer” becomes “receiver”.
6That already is the case on one single computer, where processes have separated memory access, realised

by hardware.
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communication channel, where it is copied to the local message queue of the program
there. The interfacing activities can still use the same send and receive operators.

The advantage is the same as for message queues, i.e., the implicit satisfaction of the
data access constraint. For so-called embarrassingly parallel applications, it might be
that the overall time to do computations is reduced, because more cores can be used at
the same time and the relative costs of communicating the data structures is dwarfed
by the time needed for computations on the data.

The disadvantage is that the communication overhead cost is increased: the data must
be copied several times; communication takes longer the “further apart” the hardware
cores that execute the communicating processes; the channel between both processes
must be kept alive in a socket. A second disadvantage is that “the” state of a data
structure does not exist, because of the many copies to be kept consistent, all the time.

The operating system on a computer is the natural place to embed all of the above-mentioned
mechanisms, exactly because it is “just” mechanism that applications can and should compose
with their specific policies. Major aims for “mechanism” developments at the platform level is
to strive for (i) standardization, (ii) performance, (iii) resilience, and (iv) security. Realising
these competing goals together requires a huge effort, which is another reason to share this
effort by all stakeholders of the platform. A key example illustrating this context in the case of
operating systems is the D-bus inter-process communication project; or the WebRTC project
in the context of multi-media streaming over “the Internet”. In robotics, the ROS project
tries to achieve the same role, but it has not yet reached industry-grade maturity in any of
the four design goals mentioned above.

2.5.2 Semantics of continuous, discrete and symbolic information: data,
events, and queries

Activities process their “data” by means of “functions”, in many different ways. They must
also be able to influence what other activities do in their processing. Hence, both “data” and
“functions” must be represented in ways that allow (i) to compose them internally inside
one activity, and (ii) to exchange them between activities. This document identifies the
following three semantic types of “data” to cover all use cases:

• data structures for the continuous world: the real world is continuous in time,
space, energy, etc., and this document gives the name “continuous data” to every formal
representation of that continuous world.

• events for the discrete world: activities must be able to influence each other’s control
flow. This typically happens via sending “events” or “signals”, or to look at the value
of “flags”. These are (small) data structures whose semantics is to represent the discrete
(changes in the) state of the world. More concretely, the represent that “something has
happened” or that “some condition has a particular status”.

• queries and dialogues with models for the symbolic world: activities must be able
to represent, to discover, to configure and to update the functions that they use
themselves or that others use, and do that at runtime. In other words, to represent
current or possible behaviour (of oneself, or of the other one), and to provide new
“computations” and new “data types” to each other. Such symbolic interactions take
place via a query protocol, that composes a particularly sequence of models.
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Of course, from the point of view of the technical act of creation, storage or communication,
events and models are just special cases of data. So, this document uses the pars pro toto
terms

• “data”, to refer to all three semantic variants.

• “information”, to refer to data that comes with meta data that explains how to interpret
the data.

2.5.3 Semantics of exchange direction: uni-directional and bi-directional

Interfaces in the cyber context most often exist of a hierarchy of communication levels, and
even though an interface at one particular level may be uni-directional, communication at
other levels can still be bi-directional.

For example, communication of data over a TCP/IP connection has a uni-directional
semantics at the top level (as reflected in the naming of the send() and receive() operations)
but at a lower level, acknowledgement (“ACK”) messages are sent in the other direction too.

2.5.4 Patterns: Publish-Subscribe, Producer-Consumer, Request-Reply

Activities must choose an interaction pattern (or “communication protocol”) to coordinate
the information exchange via each mutual interface. The design forces, that drive the pattern’s
trade-off in different directions, are:
• number and anonymity of participants and channels.
• longevity of the interface.
• necessity to support “dialogues”.
• necessity to mediate the traffic inside one interface.
• necessity of mediation between several interfaces.

Two major pattern versions exist: Publish-Subscribe and Producer-Consumer, whose major
differences are summarized in the table below.

Publish-Subscribe Producer-Consumer

anonymous peers peers know each other’s identity

communication between peers outsourced
to broker

peers deliver messages one-to-one them-
selves.

hence, one-way, send-and-forget hence, two-way, backpressure and polling
stream

topic centred: each interaction involves a
data structure of the same type

message centred: every interaction can be
a composition of different data structures

one session per topic type one session per Producer-Consumer pair.

mainstream policy: FIFO queue mainstream policy: randam access to all
entries in buffer

Quality of Service by brokerage middle-
ware

Quality of Service by application

A simple “hybrid” between both exists: Request-Reply, which merits to be identified as
a third major pattern. Communication patterns are commonly dealt with in the general-
purpose ICT literature, and are hence very mature. Detailed discussions are beyond the
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scope of this document, and the interested reader is refered to literature, e.g., ZeroMQ doc-
umentation.

2.5.5 Mechanism: Producer-Consumer stream

The Producer-Consumer pattern has become dominant in “the Web”, and more in particular
the composition of that interface pattern with the bi-directional exchange policy, and the
channel data structure and ownership semantics. The reason for its success is the balance
between

• the possibility of producer and consumer to adapt their behaviour to the actual status
of their interaction,

• the asynchronous and loosely-coupled nature of such reactions,

• and the somewhat more complex design and implementation than simpler alternatives,
like, say, pub-sub.

This document identifies this composition as the streammeta model (or “producer consumer-

stream”). Its mereo-topological and behavioural aspects are (Fig. 2.3)

• a producer activity acts as the source of data chunks;

• the stream is an (ordered) data structure of data chunks;

• a consumer activity acts as the sink that takes data chunks out of the stream;

• both producer and consumer can access and update all chunks in the stream part they
own.

• the producer transfers ownership of one or more of its parts of the stream to the
consumer, without leaving any holes in it ordered structure, and at the moment that
fits best to its own behaviour.

• the stream has a barrier data structure, that indicates the separation between the
(“upstream”) part of the stream owned by the producer, and the (“downstream”) part
owned by the consumer.

The barrier is owned by the producer, and it can move it to anywhere in the upstream
part of the stream.

• the mechanism can be implemented in software with high performance, not in the least
because the clear ownership property allows lock-freedom and thread-safety.

This mechanism is simple, and offers many configuration opportunities to realise solutions
for almost all use cases of interacting activities. Its impact on two of this document’s major
drivers, composability and explainability, cannot be overestimated. The Chapters on
information and software architectures illustrate this claim by explaining many use cases in
more detail.
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Figure 2.3: Example of streams
and their compositions, includ-
ing the status flags and owner-
ship barrier to coordinate the in-
teraction between producer and
consumer.

2.5.6 Policy: peer activity and flow control status flags

The behaviour of the producer and consumer activities in a stream can be made more explicit,
by composing the stream meta model with two complementary types of status flags.

The peer activity status flags consist of one flag for the producer and one flag for the
consumer, which they use to indicate their own current activity on the stream: they can
be active, (that is, producing, respectively, consuming), inactive (that is, the “other side”
should not expect any change in the part of the stream owned by the inactive peer), pausing
(that is, producing/consuming activity can restart at any moment), or requesting (that is,
the consumer is waiting for the producer to become active, or the other way around).

The flow control status flags consist of again one flag for the producer and one flag for
the consumer, which they use to inform the other peer about whether or not one peer
is ready to let the other peer act on the stream. Indeed, a producer could fill up a stream
faster than a consumer can process it, or the other way around. So, it makes sense to let
both agree on a (stream) flow control protocol, to help them keep the behaviour of their
shared stream predictable. This information can be conveyed by means of the flow control

status flags as follows:

• push flow control: this producer-owned status flag can either be stopConsuming (which
represents the message to the consumer of “please, stop consuming for a while”), or
resumeConsuming (which represents the message “please, start consuming again”).

• pull flow control: this consumer-owned status flag can either be stopProducing (which
represents the message to the producer “please, stop producing for a while”), or resume-
Producing (which represents the message “please, send some more chunks”).

The pull policy fits best to a slower-consumer-than-producer use case, while a push policy
fits best to a slower-producer-than-consumer use case. The reaction mechanism is sometimes
called backpressure, and, in general, it uses both policies intermittently, to adapt to the
context.

In summary:

• flow control: information produced by one activity about the desired activity of the
other.
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• peer activity: information produced by one activity about the actual activity of
itself.

Together, they provide an activity with a (flexible, ubiquitously deployable, and simple to
understand) mechanism to adapt its behaviour to the status of its interactions with all other
activities in the system.

For system architects, the added value of the combination of both types of status flags is
to keep a lot of the decision making about inter-activity interactions inside the boundaries
of each activity itself, hence increasing the level of dependency inversion and inversion of
control, which are both advantageous to the explainability of system architectures.

2.5.7 Composition of Producer-Consumer streams

The stream is a mechanism to interconnect the behaviour inside two activities, optimizing
the loose coupling between both activities, both behaviourally and structurally. Hence, com-
position of streams is simple, Fig. 2.3:

• one activity can be the consumer of one or more streams, and at the same time the
producer of one or more other streams.

• any stream can have one or more producers, and one or more consumers.

• hence, the simplest system architecture is one in which each activity’s behaviour is that
of a stream processor: the stream chunks it outputs as a producer, are processed
versions and/or compositions of the stream chunks it inputs as a consumer.

2.5.8 Composition of data and meta-data streams

In the above-mentioned context of using streams to increase the loose coupling in system
architectures, it makes sense to let streams carry the information that allows the consumer
to interpret the producer’s data chunks without any interaction with third parties. In other
words, a stream must have a mechanism to piggyback meta data on top of the data, to
increase the data lineage (also called “data provenance”).

Figure 2.4 shows the simplest approach of adding a dedicated metadata stream. The
metadata is typically a lot smaller than the data, and one entry in the metadata stream can
represent the interpretation of many (often, even all) chunks in the data stream. Of course,
the chunks in both streams are highly dependent and are hence best generated together by
the same producer.

producer meta
data stream

consumer meta
data stream

producer meta
data stream

Figure 2.4: Producer-consumer
stream composed with an extra
meta data stream. Each chunk in
the latter encodes meta data for a
contiguous series of chunks in the
former. Both streams share the same
status flags, and ownership barriers.
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Time series are a common example of requiring metadata, namely the information about (i)
the time that each chunk in the stream was produced, and (ii) the clock that was used to
generate the time samples. For example, indicating time zone, temporal resolution, , etc.

2.5.9 Submission-Completion streams

An extension of Request-Reply towards series of related (CRUD) requests is the pattern
of Submission-Completion streams:7 producers of requests add them to the submission
stream, and come back later to collect the result from the completion stream, Fig. 2.5.

request
producer

completion stream

request
processor

submission stream

47

12

Figure 2.5: Submission-Completion
streams. The processed stream goes
to the original producer; the order of
the items in the completed stream can
be different from the order in the sub-
mitted stream.

The pattern involves an input (“submission”) stream, and an output (“completion”) stream:

• the producer submits its request to the request submission stream, and the request
processor takes it off and processes it when it sees fit.

• the request processor submits its result to request completion stream, and the producer
takes it off when it sees fit.

• the request processor need not return the processed requests in the same order as the
producer has submitted them. That means that the index in the stream can not double
as unique identifier of each request, so the latter must contain extra fields for that sole
purpose of identification of a request.

• only when both streams are coordinated by the same activity (“mediation), one
can guarantee end-to-end consistency of request processing.

• one (and only one) of both peers, the producer or the consumer, can act itself as
coordinating activity. Or, alternatively, a third-party activity is given the responsibility
for the mediation.

The Submission-Completion streams pattern has been used since decades already, such as
in Channel I/O for mainframe computers; task queues; disk access libraries; or multi-host
communications. More recent instances appear in: asynchronous I/O via “I/O rings” that an
operating system kernel provides to a application.

2.5.10 Publish-Subscribe & Request-Reply as stream architectures

The Publish-Subscribe and Request-Reply communication patterns can be realised as partic-
ular cases of stream compositions:

7The simplest version of this pattern is the Command stream.
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subscriber

broker

publisher

Figure 2.6: Publish-Subscribe communication
realised by a streams composition. Both pub-
lisher and subscriber have ownership of only
one single entry in the stream.

• Publish-Subscibe (Fig. 2.6): the publisher activity has a stream to the broker activity,
without flow control or backpressure support, and with the extra policy that the pub-
lisher can only fill the stream one entry at a time. A similar configuration holds for the
stream between the broker and subscriber activities.

• Request-Reply : this is the Submission-Completion architecture, with the same con-
straints between activities as in the Publish-Subscribe case.

2.5.11 Policy: message broker

A typical use case of a stream (in the particular context of a networked environment) requires
the producer and consumer to register with (or, to subscribe to) a stream, and to make use of
the stream’s services to realise the data (and hence ownership) transfer. This policy implies
that the stream must be more than just a data structure, namely an independent peer activity
in itself; in other words, it becomes a broker .

2.5.12 Interaction state — Interface protocol phase

(TODO: the extra data structure in addition to the behavioural states of the activities involved
in an interaction; that is, the data with which to determine which data to exchange via the
interface, and when. Many interfaces have a dedicated protocol that formalizes the different
phases of the interaction.)

2.5.13 Mechanism: Conflict-Free Replicated Data Type (CRDT)

(TODO: different activities can concurrently change data structures, and the changes are
merged and distributed automatically without the need for a central server which “owns” the
data structure; only some data structures have the CRDT property.)

2.5.14 Mechanism: immutable data type

(TODO: concurrency becomes a lot easier to make predictable if any data that is created new
will never have to change anymore, because reading of data can never lead to inconsistencies;
explain where this particular type of CRDT makes sense in system architectures, and when
(not) to use it. Aspects of garbage collection and compaction.)

2.6 Components: composition patterns for activities and their
interactions

Every digital platform consists of a (potentially large) number of components, providing
“services” to each other. This Section provides a meta model of the architecture of such
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Figure 2.7: The mereo-topological
model of the Component primitive.

components, designed for this distributed context, with dynamically changing runtime
lifecycles of, both, the servicing components and the application being served. The design
allows:

• to deploy all functionalities and patterns presented in all the Sections of this document.

• to use only a subset of its parts without changing its capability of serving in a composable
application system architecture.

• to be a sub-system in itself, repeating the exact same component architecture composi-
tion internally.

2.6.1 The 5C’s: composition of behavioural roles

Since quite some time already, “robots” can not be built anymore with just one single com-
puter program being responsible for their control. Not in the least because, within the set
of all cyber-physical systems, “robots” are the devices from which the highest amount of
flexibility is expected, both in its (hardware and software) resources and in its task capa-
bilities. Hence, it makes more sense “to engineer a digital platform” that must control a
robot system, than “to program” a robot. There is no sharp definition of what a robotic
digital platform is, or should be. That lack of definition is not really a problem, because the
above-mentioned expectations in variability and flexibility imply that the set of software and
hardware components (“services”, “processes”, “nodes”, “agents”, or whatever one wants to
call them) cannot be fixed at design time of the system anyway.

The art of system engineering hence consists of finding the “right” granularity in compo-
nent behaviours, and the “right” architecture of their interaction structure, such that compli-
cated but realiable digital control systems can be created, offering predictable capability per-
formance even though various components can come from different, competing vendors.
A necessary condition for the latter expectation is that all models (of structure, behaviour
and interaction) are built with neutral, open and formalized DSLs (Sec. 1.5).
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The simple 5C8 component9 meta model [66, 82] that any system design should conform
to, contains the following mereological entities and relations:

1. Computation: the “processing” entities that realise the “continuous” behaviour
of the component, that is, to transform the (streams of) input data into (streams of)
output data and events.

2. Coordination: the “logic” entities that realise the component’s “discrete” behaviour,
that is, to process incoming events so as to decide whether or not the component has
to change its Computation behaviour.

3. Configuration: the “logistic” entities that turn such behaviour-changing decisions
into practice, taking into account the constraints imposed by the reources that the
component is using. Indeed, most often a component can not change its behaviour from
one execution time to the next, because the component relies on specific behaviours of
other hardware and software components. Hence, configuration requests often trickle
down to other components, and there is asynchronous state involved in the process of
realising a (re)configuration.

4. Communication: the “interaction” entities that exchange data, events and models
between concurrently or asynchronously executing components, respecting spe-
cific constraints on consistency, ordering, memory usage, timing, etc. A Component ’s
internal exchange of information can be organized as one or more software busses.

5. Composition: the “architectural” relations that link a given collection of components
together into one or more “super” components (or “sub-systems”, or “systems”), in
such a way that all of the above-mentioned “Cs” are provided again to the “next” level
of component/system composition.

A Component typically need already the following types of Composition, because the repre-
sented roles are generic:

• Monitoring: each monitoring component is a Computational component by itself, but
it has a “higher-order” role, in that:

– it exchanges data with one or more of the computational components that are
responsible for the services that the Component must provide,

– to compute the Quality of Service (QoS) with which these computations are
realizing their expected service behaviour, and

– to fire an event when particular QoS thresholds are being reached.

• Mediation: each mediation is a Computational component by itself, but it has a
“higher-order” role complementary to the Monitors:

8The 5C model of this Section has its acronym in common with that of [51]; while there is a thematic
overlap, the meaning of the latter 5C model corresponds more to the “levels of abstraction” discussed in
Sec. 1.3.1 and following.

9The document uses the name “component” somewhat as a pars pro toto or synecdoche, that is, to indicate
the parts of a system, all of its sub-systems, as well as the whole system itself. This is in agreement with this
document’s major goal to present composable designs.
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– it exchanges data with the Component ’s Configuration,

– because it has the extra application-specific knowledge about how various Com-
putations are to be traded-off when the QoS of the Component goes beyond its
configured thresholds, and

– then to take the decision to trigger the Configuration component to reconfigure
some of the Components to react according to the application trade-offs configured
in itself.

There can be multiple Monitoring and/or Mediator components in each Component model,
the same Monitor and/or Mediator can get data from several Computations, and the same
Computation can provide data to several Monitors and/or Mediators.

The above-described meta model is only declarative, in the sense that it just makes
developers aware that each (software) component has-a specific set of parts with the above-
mentioned roles, but it does not explain how to realise these roles with concrete software
components. The following Sections explain, step by step, the approach to eventually de-
velop imperative architectures that conform to the 5C meta model; the following Chapters
then complement the architectural aspects with structures and behaviours of the concrete
application domain of robotics.

The meta model is a model, and hence not a software architecture. That means that:

• the concrete models of systems can be pre-processed before configuration and
deployment to optimize, for example, the amount of Communication, Configuration
and/or Coordination components that are needed in a (sub)system.

• the architecture of a deployed (sub)system can be adapted at runtime, if (i) the
models of all Components are available, and (ii) the Configuration component can deal
with online queries for re-composotion.

• the model is an excellent (because structured and explicit) documentation for human
developers to discuss the system design, and its trade-offs.

2.6.2 Bad practices

• Configuration is not to be done in a Computation, but for the component in which the
Computation provides a task-dependent functionality.

• similarly for Coordination: a Computation must never make the decision that its be-
haviour has to change, even if it provides all the data needed in the monitoring that
fires the event to (possibly) trigger the decision.

• try to schedule asynchronous activities, by introducing a new activity with the responsi-
bility to trigger the other activities by means of sending execution triggering messages.

(TODO: declarative, so only “don’t do” relations can be given; no Configuration in Compu-
tation; no Computations in Coordination; )
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2.6.3 Mechanism: “5Cs”

2.6.4 Policy: separation of concerns in/between platform and application

The meta model allows a lot of variability within the same strict and semantically grounded
structure, and the “forces” that drive concrete designs into different directions are:

• separation of roles in the digital platform: this has been explained in Sec. 2.6.1.

• separation of application and platform: the knowledge about what is “optimal” for
the application is deployed in components with an explicitly identified role, separated
from those that contain the knowledge about what is “optimal” for the digital platform.
Of course, such separation need not imply full information hiding: the application must
be kept informed about how well the platform is realising its capabilities, and the
platform should be informed about the Quality of Service desired by the application.

The domain of software engineering has a term for the bad practice of too much coupling, and
the meaning of that term fits very well to modelling too: two software modules are connascent
if a change in one module implies the other module to be modified accordingly, in order to
maintain the overall correctness of the system.

2.6.5 Policy: vendor-centric added value in Configuration, Coordination,
Composition

The Component meta model has a handful of different roles, but Fig. 2.7 already hints at
the fact that the amount of models and code that will eventually have to be used for all
components is is, by far, concentrated in the Computations. The other component can have
very little content, but that content is the one where vendors can make the difference between
the generic service implementations and their unqique selling point and commercial added
value.

2.6.6 Policy: Coordination, Orchestration, Choreography

One possible trade-off that one can want to make in the design of a system is that between
(i) the amount and latency of communication that is expected to coordinate the behaviour
execution between several Components, and (ii) the autonomy of each Component :

• Coordination: all components have been designed to react to events with explicitly
identified names, the events are broadcasted to all components, and each reconfiguration
must be triggered by a broadcasted event.

• Orchestration: a lot less events have to be broadcasted, since all components share
the same “score” with the expected sequencing of events; it then suffices to broadcast
synchronization events only, at a much lower rate and not necessarily in a broadcast to
all components.

• Choreography: the components have Computation components that observe the be-
haviour of other components, and Monitors that can recognize, with internal computa-
tions only, when reconfigurations are needed; ideally, this can happen without the need
to broadcast one single event between the components.
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2.7 Tasks: composition of behaviours for control, perception
and world modelling

Section 2.6 presents the platform-centric meta model for Components, whose ambition is to
create composable software services (irrespective of the application domain the services are
designed for) that are to be deployed in operating system processes, on top of hardware
resources; Sections 2.3, 2.4, 2.5 and 2.8 present how to interface functionalities in event loops,
executed in activities, and deployed in threads and processes to provide the services accessible
at the ports of software components. All of the above are generic, i.e., application and domain
independent, and this Section presents that last missing domain/application-specific piece,
namely the mereo-topology of how an application must represent entities and relations of
its domain by means of the task meta model (Fig. 2.8). That is, to model:

• the capabilities that the application wants to offer to its “users”. (In the context of
this Chapter, those “users” most often are other Task models, not physical/human end
users).

• how to realise those capabilities with the resources it has available.

• the strong structure in the (small set of) types of functionalities the application
must compose together in one single task.

• the strong structure in how several Task models can be composed, horizontally (i.e.,
Tasks at the same level of abstraction) as well as vertically (i.e, Tasks at different levels
of abstraction).

The formalisation of how to compose the task model parts (the “information architecture”)
with the platform-centric models refered to above (the “software architecture”) is dealt with
in the system architecture Sections.
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Figure 2.8: The mereo-topological
model of the Task primitive. Note
that the drawing does not represent
a software component, but a model of
the composition of the parts needed
in a Task, and of where interac-
tions between these parts occur. (Of
course, the software components that
will, eventually, implement Task exe-
cutions, will be structured along the
Task model structure as much as pos-
sible.)
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2.7.1 Mechanism: capability, resource, world model, plan, control, moni-
tor, perception

Figure 2.8 shows the mereo-topological graph of the Task meta model. The mereological
part of that Task meta model has the following types of entities (and nothing more!):

• resource: the constraints of what can be provided by the resources that are necessary
for the execution of the modelled task. For example, mechanical strength, energy avail-
ability, computational and communication hardware properties, etc., together with the
quality of service metrics which represent how well the resources are being used.

• capability: the constraints of what the task execution can deliver to users, together
with the quality of service metrics which represent how well those capabilities are being
provided.

• world-model: all the information that needs to be shared by all the other models
in a Task. In other words, it contains the extra information that represents the context
in which these other models are used; e.g., the information about how the “magic num-
bers” in all these models are connected to each other for each specific set of capability
requirements and resource constraints, and how these are related to information about
the physical world.

There can be multiple “versions” of the “world” present at the same time (e.g., past,
present, and future states), because the world-model is also the place “to memorize”
the past, or to host possible desired or future worlds, both with various “uncertainty”
versions.

The world-model is not just there to represent information about the external physical
world, but it also contains semantic tags with (links to) information that is relevant
for the other parts (plan, control, monitor, perception); for example, texture or color
information of an object in the world that is optimal for a particular type of sensor
(processing) to detect.

• plan: the model of which “motions” (or “actions”, in general) to be executed in which
sequence, and under which conditions. The plan is the discrete version of the control,
that is, the one for which the actions are triggered by events via which the task tries
to go from the actual model of the world to a desired world model.

• control: the model of how to realise the plan, in the actual world, and with the
actual task requirements and resource constraints. This model contains the continuous
aspects of control, that is, the one for which the actions are triggered by data streams.

• monitor: the model of the relations on world model parameters with which to check
whether the actual task behaviour corresponds sufficiently enough to the expected be-
haviour. This is the discrete version of perception, that is, the one that triggers
events in the task behaviour.

• perception: the model of how sensors can provide the actual information needed to
create and/or update the continuous parameters in the world model.

The topological part of the Task meta model has the following relations and constraints:
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• separation of concerns via world model: this constraint on the allowed connec-
tions between the mereological parts in a Task meta model, is a major design axiom,
because it implies that all interfacing between plan, control, monitor and perception

functionalities takes place only indirectly, via interactions with only the world model.
In other words, the world model is the place to store all the state, that is, the informa-
tion that one must remember from the past, to act in the present, and to predict the
future.

“Interactions”, “to store” and “to remember” suggest communication, data base func-
tionalities, or shared memory, but that is a too constraining view: what is described in
this Section are the models of the entities and their relations, and not software realisa-
tions that conform to these models.

• data, event and query interaction models, to support the information interaction
required for, respectively, inter-agent streaming, asynchronous reactive broadcasting,
and discovery and configuration of inter-agent cooperative behaviour. (See Sec. 2.5 for
more details.)

A similar remark as above holds here too: despite the suggestive names, these are
models of what type of interaction is required, and they do not represen the software in
communication middleware or the operating systems that realises these interactions..

Most applications have to support multiple tasks, to multiple users, and with dynamically
changing requirements for both. Hence, the task primitive mechanism must allow various
composition policies; Figure 2.9 is an illustration of one such composition over multiple of the
levels of abstraction discussed in this document, and the next Section explains the trade-offs
available in composition.

2.7.2 Task meta model as semantic database

For any somewhat realistic application, composite task models as in Fig. 2.9 will contain
several hundreds to several thousands of entities, relations and constraints, so it is appropriate
to call it a “semantic database” (Sec. 1.2). The added value with respect to a normal
database is:

• the parameters in the “data” are linked together with relations that have semantic
meaning, via the higher-order interconnections between them.

• queries on the database can (hence) use semantic terms reflecting the intention, causal-
ity or dependency that holds between query arguments. In other words, one can get
explanations about why the query yields the results it does, or about the context in
which the answer holds.

• as a further result of the semantic contents of the database links, knowledge can be
exploited also in the computation of the query answer, because graph traversal be-
comes possible instead of the less efficient but more general graph matching. The latter
is the default “solver” for relational database, while the former becomes more and more
standard in graph databases.

In the context of cyber-physical systems, and robotics, this means that the coupling be-
tween control and perception can be adapted to the context provided by (i) the expected
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Figure 2.9: Composite task,
over multiple levels of task spec-
ification, linked to three of the
most common levels of abstrac-
tion of a robot’s kinematic chain.
The task composition pattern is
repeated at the composite level,
adding the knowledge about
which additions to make at the
composite level, and which in-
terconnections (constraints, new
relations) to add with the parts
that are already present in the
composed task models.
Again, note that the figure repre-
sents the composition of knowl-
edge relations, and not that of
software components.

capabilities, (ii) the available resources, and (iii) the past, actual, and expected state of the
environment.

For example, a robot controller can switch its perception algorithms depending on the
knowledge it has about which features in the environment fit best to, both, the available
sensors and sensor processing software, and the required feedback and monitoring in the
motion control loops. More concretely, when driving through a corridor in a hospital or office
building, the robot can actively search for the “semantic tags” that have been put in the
building with the explicit purpose of guiding its users towards the various destinations; a
similar situation holds for all outdoor navigation tasks where traffic signs and signalling are
available, such as in car and truck driving, or plane and helicopter take-off and landing.

2.7.3 Policy: coupling via shared world model

World models are designed to decouple all “internal” activities in Tasks, so the most deter-
ministic way to integrate several Tasks is by sharing and coordinating selected parts of the
“composite” and “component” world models. One end of the sharing spectrum is realised by
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a blackboard architecture: all activities that have to share world model information, read and
write it on the “same “map”, so activities can see everything from each other. The other end
of the sharing spectrum has no shared world model at all: all activities have their own internal
world model, and exchange world model information via communication, one-on-one and
on a need to know basis. The “forces” that determine where to position an application in this
spectrum are: communication cost; model consistency; robustness against loss of interaction;
specialisation of component functionalities.

2.7.4 Policy: continuous, discrete and symbolic Task models

Most robotic systems have three complementary knowledge representation (and integration)
needs:

• continuous: the knowledge represents the time, space, effort, cost,. . . aspects of a Task.

• discrete: the knowledge represents when and and why to select another continuous
Task model, and how to switch “smoothly” between them.

• symbolic: the knowledge represents the insights about which “magic numbers” to
configure into the continuous and discrete Task models, and how these magic numbers
are interconnected by (higher-order) relations and constraints.

(TODO: examples in control (feedback/feedforward, FSM, strategy) and perception (associ-
ation on data, information and task levels.)

2.7.5 Policy: hybrid constrained optimization problem specification (HCOP)

(TODO: how to fill in the HCOP specification with Task meta model structures)

2.7.6 Policy: declarative solvers and imperative algorithms

Computations that use constraint-based solvers are designed to be more deterministically
composable than ones with only imperative algorithms.

(TODO: a solver generates a plan at runtime, with a more limited horizon (in time, space,
resources, capabilities) than the Task in whose context it works. The different policies in this
respect model which solver and which horizon to choose, under which contextual situation.)

2.7.7 Policy: sharing data, events, models

Communication infrastructure is designed to be shared by many processes and/or comput-
ers, so a lot can be gained by deploying several task-level “client-to-server” communication
channels onto the same infrastructure channel, and to do the same with the data, event
and/or query messages that are to be exchanged through these channels. “Queries” are, in
fact, complete models that are being exchanged between components, allowing for higher lev-
els of declarative interactions. For example, the success of the “Web” is based on the fact that
full HTML models are communicated, which in itself composes other web standard formats,
such as SVG or JPEG; even when a receiver can not “render” the full model, the composition
semantics is clear enough (i) to allow local decision making about what to render or not, and
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(ii) to communicate back a “status report” to the sender explaining which parts of the sent
model gave problems.

2.7.8 Policy: mission, service, skill, function

(TODO: explain how these different names in the literature conform to the same meta model,
but within different scope and levels of abstraction.)
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processing Figure 2.10: Feedback and feedforward control

both contribute to the actuation signal u that
is given to the plant. And they both can work
with processed versions (yp and yffp ) of the cur-
rent state z of the plant.

2.7.9 Vertical and horizontal composition

The Task meta model is a major part of the modelling methodology of this document. This
Section explains how its design makes it a candidate for composition, both “horizontally” and
“vertically”.
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Figure 2.11: Horizontal composition of Task models, in an inlans waterways shipping context.

Horizontal composition — Task activities share at least a part of the world model,
but in most cases also parts of perception, control and monitoring, Fig. 2.11. This results in:

• access to shared resources (such as the world model) must be coordinated between
activities.

• if (the execution of) the plan, control, perception and monitoring models is done by
multiple activities, their internal “state machines” must be adapted to guarantee this
coordination.
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• constraints and objective functions are fused in some parts of the Task specification’s
plan.

• tolerances might be adapted to the specific context of a specific composition, and hence
the monitors that are connected to checking the tolerance violations.

Overall, the same HCOP-based control methodology applies as for the composed Tasks indi-
vidually, and in many cases “all” that has to be changed are the Coordination and Configu-
ration parts (Sec. 2.6.1) in the system’s architecture.
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Figure 2.12: Vertical composition of Task
models.

Vertical composition — Tasks add to each other’s models, Fig. 2.12:

• higher level adds constraints and objective functions to lower level ’s COP.

• and vice versa.

• there is a need to introduce extra constraints and objective functions because of the
coupling.

• hence, also extra tolerances and monitors are needed.

But again, the same HCOP-based control methodology applies as for the composed Tasks
individually, and not only the Coordination and Configuration parts are adapted, but also
new Communications and Computations are to be introduced.

The following terminology is sometimes used to refer to particular vertical composition
levels:
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• strategic: decisions about what investments in resources are needed to create profit.

• operational: decisions about which existing resources to deploy to create required
capabilities.

• supervision: decision about accepting the performace of provided capabilities, or to
adapt them.

• coordination: execution of capabilities, monitoring, and reconfiguration.

• control: continuous time execution control.

2.8 Event loop pattern: composition of asynchronous compu-
tational behaviour

The event loop is the mechanism to compose the execution of (i) synchronous algorithms
(e.g., sensori-motor controllers), together with (ii) a set of other asynchronous activities
(threads and processes, physical or digital) with which the algorithms have to interact (e.g.,
via digital or analog I/O, or via networking). Some instantiations of the pattern are (i) the
“Web” with “browsers”, “servers” and Single Page Applications (SPA), (ii) the Programmable
Logic Controller (PLC) workhorse of the automation industry, (iii) the realisation of the
software components in service-oriented architectures, and (iv) computer games.

2.8.1 The role of the event loop

The nominal context in which algorithms are designed is that of so-called synchronous
execution: (i) the order in which every function executes—and, hence, the order in which
every access to data takes place—is the order in which it is programmed in the code of the
algorithm, and (ii) the functions have no side-effects, that is, they only change the values
of the data structures that are in the directly visible scope of the programme code. The
execution context of components, however, is typically asynchronous: just by looking at
the code, one can not know when new data will arrive at the Ports of a component, or when
new data provided by a component will reach the Ports of other components; in other words,
it is best to assume that each of the functions in the asynchronous parts of a software system
can have side effects.

Since algorithms are to be deployed inside of components, there must be a way to connect
both worlds together, and the event loop is an architectural pattern to realise this. (It
is a specialisation of the reactor pattern and proactor pattern, in that it adds particular
ordering policies to the execution of all functions that it manages.) The event loop pattern
has three main goals: (i) to decouple the synchronous parts from the asynchronous ones,
(ii) to provide a computational context to store “state” in a thread-safe way (that is, to
guarantee that it is changed by any side-effect of any of the other functions), and (iii) to
allow the application developer (and not the operating system) to configure the balance
between the following system design forces of non-blocking asynchronous execution and
sequential synchronous execution:

• data consistency in algorithms. Many Computations rely on guarantees that the
data they work with is changed only in deterministic ways, under their own full control.
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For example, there is a lot of state in task planning, perception, or discrete and con-
tinuous control algorithms. Hence, access of the computational functions to the data
must take place in a synchronous way: the order in which the function operators are
programmed is also the order of the changes to the data they manipulate, and there is
no other function changing the data “behind their back”.

• localising the synchronization of the side effect-full data exchange. Side effects
inevitbly take place, via (hardware and software) mechanisms like interrupt handlers,
mutexes, condition variables or “lock-free” and “wait-free” buffers, etc. The pattern’s
solution is to copy the data from/into asynchronous sources into/from a “thread-local”
storage to which only the event loop thread has access. The above-mentioned mecha-
nisms are explicitly recognizable in the programme code, so that it at least possible to
identify the areas in the code where side-effects can not be avoided.

• identity of ownership of data. While it is inevitable that “state” variables are
copied, for various reasons and to various asynchronous activities, a system design can
only be (understood or proven to be) correct if each piece of data has one and only one,
uniquely identified, owner. That owner must have to possibility to decide when copies
of data are allowed to enter into, or to exit from, asynchronous interaction channels, and
when and how to update the “state” it own on the basis of asynchronously incoming
requests to change that “state”.

• event handling latencies. There are almost no robotic applications in which asyn-
chronous I/O is not present, because lots of sensors and actuators have to be interfaced,
and processes must communicate. The event loop pattern provides application develop-
ers with one callback object per I/O channel, and has a mechanism (i) to select which
I/O channels to deal with at any particular iteration through its “loop”, and (ii) to
configure how long it wants to wait on the channel.

• prioritization of event handling. The above-mentioned selection of I/O channels is
done with priority queues, for which the configuration is again under the explicit control
of the application developers.

• off-loading of asynchronous processing. The application developers can configure
a thread pool of “worker threads”, in addition to the “main thread”, to let each long-
running event handler be dealt with in a separate “worker”, and to make the results
accessible to the main thread via a message queue.

2.8.2 “5C”-based programme template for an event loop

A mereo-topological10 version of the event loop, using only component-centric 5C entities,
is given in the following pseudo code:

when triggered // by operating system, which deals with all

// asynchronous side effects.

do { // the control flow structure of the event loop.

communicate() // get all "messages" with events & data, filled in

10This model represents behaviour, as a mereo-toplogical composition of 5C entities, which represent types

of behaviour themselves.
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// by other asynchronous activities.

coordinate() // handle the events in these messages, and

// decide which ones to react to.

configure() // some events imply reconfiguration of computations.

compute() // execute your (serialized set of) synchronous algorithms,

// which in themselves are side effect-free computations.

coordinate() // the computations above can generate events that

// imply reconfiguration of this event loop.

communicate() // the computations above can generate events & data that

// other asynchronous activities must know about.

sleep() // the loop deactivates itself, until the shortest deadline

// that was requested in all of the steps above.

}

The sequence of functions in the code above is not a hard constraint, and the exact selection
and serialization order of these functions in an event loop is to be configured by the application
developer. Each application context indeed comes with a set of dependencies between the
order in which computations can be executed, and those declarative constraints are to be
“solved” (in principle, every time the event loop is triggered) to create a procedural schedule
(Sec. 2.3) that encodes the bookkeeping structure of the algorithmic control flow in the event
loop.

The power of the event loop pattern, as described in the code above, is that it stimulates
developers to separate the 5C concerns in an extremely simple way. That way has also
proven11 to facilitate (but not to guarantee) composability and compositionality in complex
distributed systems. This composition of multiple event loops into one single larger event
loop expects that all algorithms inside the event loops can be created by means of coroutines,
and not of preemptive multi-tasking. One necessary, but not sufficient, condition to satisfy
this constraint is that all functions in the algorithms have no side effects, and access only
data that is local to the event loop. Often, that data is stored in the buffers12 needed for the
asynchronous I/O in the communicate() parts of the event loop.

2.8.3 Mechanism: callback, source, event, context, poll, dispatch, pool

Section 2.8.2 gave a mereo-topological representation about how the event loop pattern orders
the behaviour it must realise for all the activities that it serves. This Section introduces
another mereo-topological model for event loops, this time explaining the entities and
relations —both, computational resource-centric and algorithm-centric— that together form
the mechanism each event loop is built from:

• callback: a composition of a data structure and a function. It is the responsibility of
the context to guarantee that the data is in a consistent state whenever the function
is called.

11For example, many web servers and web browsers work with an event loop architecture.
12For example, for UDP message passing, or TCP/IP byte streams.
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• source: the composition of a callback with the meta data required for mediation
within (a context inside) an event loop, to allow “optimal service” to be given to all
callbacks. Some mediation relations are: priorities between the execution order of
callbacks, or the information needed to decide whether some callbacks can/should not
be executed any more.

• event: this data structure is filled in by the operating system (and hardware) and
read by the event loop to find out whether or not, and what, data is available from
asynchronous sources. Also the synchronously executing algorithms can fire events, but
their handling can be realised completely without support from the operating system.

Events are the mechanism via which to separate the following concerns: monitoring
the behaviour of a system for specific “things to happen”, and reacting to what has
happened. The event mechanism allows to include several policies, for both separated
activities: multiple monitoring activities can generate the same event; multiple activities
can react to the same event; activities can react in different ways to the same events; and
the connections between sources and sinks of events can be mediated and configured,
even at runtime.

• context: the composition of sources that adds two relations to the meta model: (i)
the sources over which to do the mediation are clearly identified in relation that the
event loop execution must take into account, and (ii) all the data and constraints needed
to execute all the functions in the sources must be accessible in a local data structure
owned by the event loop, so that the callback handling can take place in a thread-safe
way.

• poll: the function that a context is executing to read the information about what data
an asynchronous I/O source has available for reading, or has sent out to “somewhere
else”.

• prepare, check, dispatch, finalize: these four functions are (possibly) executed in
each iteration through an event loop, in that order,13 for each individual I/O source:

– prepare: do source-specific configurations to make it ready for polling, if needed.

– check: read some “register” data in a source’s local data structure, to find out
whether it is ready to be polled in this ongoing run through the event loop.

– dispatch: actually execute the poll and corresponding callback function.

– finalize: do source-specific configurations to “clean up” a polled source, if
needed.

Not all functions need to be defined for every source, and when they exist they need
not necessarily be called every loop iteration. These decisions are part of the policies of
the event loop mechanism.

• loop: this is a data structure representing (i) the order in which the above-mentioned
functions are executed, on their respective sources, and (ii) the maximum time that
it wants to be blocked on a poll before it pre-empts that the poll and continues with
the rest of the functions in the loop.

13Functions from several sources can be taken together, respecting the same overall order.
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• message-queue: when some polling has been off-loaded to a dedicated worker thread,
the loo need not read the original source’s registers (that part of the job is being done
by the worker), but it “polls” the message queue that is filled by the worker with the
data it polled. In contract to asynchronous I/O, the message queue is a local data
structure, which is in principle always ready to read from (possibly with empty data as
a result).

• attach-source: connect a particular source to one single context.

• attach-context: connect a particular context to one single thread.

2.8.4 Policy: memory allocation of source, context, queues, workers

Since the number of asynchronous sources is often not known in advance, and can vary at
runtime as well as their readiness for polling, different implementations make different choices
of which of the above-mentioned data structures to store in data segments, on the stack or
on the heap. The choices are typically motivated on the basis of trade-offs between memory
usage and execution time.

2.8.5 Policy: priorities

A second obvious policy to think of is that of attributing priorities to various sources, and
to the events that their asynchronous I/O devices provide.

2.8.6 Policy: mediation

The policies above must be mediated, and (possibly each iteration of the loop), one can choose
different trade-offs between capability needs on the one hand (performance, consistency, flex-
ibility,. . . ), and resource usage on the other hand (quality of service, “energy” consumption,
latency,. . . ):

• one can select to skip prepare, check, and/or finalize;

• the more dynamic one wants to make these choices, the more latency can be expected;

• one can change attach-source and attach-context at runtime.

2.8.7 Policy: context deployment in threads

The worker threads are a mechanism that still requires decisions to be made about when
to use workers, how to distribute sources over them, and how to configure their in-process
message queues.

2.8.8 Policy: integration into software components

Figure 2.13 shows an architecture to implement the internals of a software component, as
one single process with three types of threads:

• main event loop: this is where the behaviour of the component is being computed.
It offers a “thread-safe” context to the algorithms that realise the behaviour.
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• worker thread: there is one worker thread for each asynchronous I/O channel that
can block for a “long” time.

• mediator thread: this is where the (possibly many) quality of service measures are
monitored, and in case that the performance (in, both, I/O communication and internal
computations) goes beyond the QoS boundaries, one or more of the above threads is
triggered to change its behaviour, via a message on an event queue.
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Figure 2.13: The mereological and topological meta model of a software component, built
as one single process with several threads and message queues. The dashed rectangles repre-
sent asynchronous I/O channels, offered by the operating system and possibly requiring also
hardware components such as network cards, or Analog/Digital convertors.

Since all threads reside in the same process, their mutual communication can be realised by
message queues on the memory shared by all threads. The “event polling” for such message
queues is simple and efficient, because it can be done synchronously. The Figure shows the
generic case with two message queues between each two threads, to support interaction in
both directions.

There is maximum one mediator thread, minimum one event loop thread14, and zero
or more worker threads. Within the process, the threads interact via message queues; they
(must) use asynchronous I/O, provided by the operating system only (e.g., Unix pipes), or
the OS together with the hardware (e.g., EtherCat sockets).

Figure 2.13 does not show the external interfaces of the software component. This
typically correspond to one or more Ports being connected to a subset of the asynchronous
I/O and message queues of the component’s internals.

2.8.9 Software pattern realisations

The event loop can rightfully be called a “software pattern”, since there exist already various
realisations, with mature and large-scale application track records; here are some of the largest
realisations, with industry-friendly open source licenses:

• libuv event loop, powering the Node.js real-time web applications platform, and with
the V8 Javascript engine.

14Hence, none of them is really the “main” event loop.
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• Java, JVM, Disruptor event loop

• GLib Main Event Loop:

The FSM states of the loop.

The event loop loops over callback sources, each providing prepare, check, dispatch
and finalize functions; there three default tyeps: timers and file descriptors (the OS
does the waiting and the loop polls for ready events) and idle ones, that are always
ready to be dispatched (= run):

The loop can also deal with also “child thread” signals: CTRL-C etc.

• SystemD event loop

States: states

• ZeroMQ based event loop. It has a fixed attachment between sources, context, and
thread.

ZeroMQ offers inproc messages queue, which fit in the event loop context to support
inter-thread communication, between the main loop and its workers.

2.8.10 Software anti-pattern realisations

Many middleware frameworks in robotics/cyber-physical systems do not offer event loops
as design and development primitives, but force their users into a hidden choice. For example,
all robotic middlewares suffer from this anti-pattern: ROS, Orocos, MOOS, etc.; some of their
major too hard-coded policies are: dedicating one whole I/O channel to each Port instead
of multiplexing several of them; no internal multi-threading supported as first-class design
primitive; lock-in into one single programming language; and the lack of explicit provision for
mediation and ownership.

2.9 Solver pattern: from declarative specification to impera-
tive algorithm

Computations must be realised, eventually, via algorithms, but sometimes the human devel-
opers do not have to program an algorithm explicitly since a software tool can be used to
generate it from a declarative specification; that is, by specifying the constraints that have
to be satisfied by the functions and data, but not the selection and ordering of them. This
Section presents the mereo-topological model of such tools, which are often called solvers.
The generic advantage of a declarative approach is its composability: their key mechanisms,
“constraints” and “objective functions”, lend themselves naturally to composition, while the
imperative control flow of algorithms does not.

Typically, the implementation of software algorithms is distributed as a library with
compile-time type checking, and its documentation is often reduced to an Application Pro-
gramming Interface (API) description. This approach has served the robotics community for
some decades, but the growing complexity of the robot systems and the higher demands with
respect to application flexibility have made clear that the approach does not support devel-
opers (i) to compose, at development time various algorithms from the various levels of
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the motion, perception and world modelling stacks, (ii) to configure runtime interactions
with other functionalities, or (iii) to deploy the same algorithm with its optimal configura-
tion settings for the large variety of software component frameworks and operating system
process capabilities. All of these advanced functionalities require some form of formal models,
and tooling to support the reasoning behind the required model-to-“X” transformations.

Moreover, during the realisation of a concrete software library, the function developer is
often forced to take design choices and assumptions which later on prevent composability
and reusability of the library in a different application than the one in the developers’ orig-
inal focus. A typical example of these choices is the information hiding which often is the
non-intended side effect of object encapsulation in object-oriented programming: in some ap-
plications it is desired to hide or protect certain data, but in the primary robotics use case of
integrated planning, perception, control and world modelling, this has become a major show-
stopper towards predictable and composable software systems. For example, for kinematic
chain solvers, one of the most composition-limiting factors in existing API-based libraries is
the fact that users of the libraries do not have access to how the “solver sweeps” over the
kinematic chain have been implemented, and that they can not add attachment points to
the chains for other purposes such as collision detection or visual servoing; hence, the same
sweeps computations must be redone several times, within subsequent method calls, which
leads to loss of efficiency, and, more importantly, to the risk of losing (computational) “state”
consistency.

2.9.1 Mechanism: relation, constraint, dependency graph, spanning tree,
action, solver sweep

A typical solver has the following mereo-topological entities :

• domain: the set of all “states” of the problem under study.

• optimization-relation and constraint: these relations represent which state com-
binations are, respectively, desired or not allowed.

• dependency-graph: the graph that represents dependencies between several optimization-relations
and constraints. For example, there can be an order in inequality constraints, or an
hierarchy in optimization functions.

• spanning-tree: one particular way of ordering the dependencies in a tree structure.
Most solvers spend time on creating such a tree structure, to have an efficient way of
structuring their computations.

• action: any combination of allowed data and function on the domain. The goal of the
solver is to find a control flow on such actions that brings the system from an initial
state to a state that satisfies the optimization-relations and constraints.

• solver-sweep: a solver algorithm typically “sweeps” one or more times over the spanning-tree,
where each node crossing correspond to the scheduling of a particular action, and a ter-
mination condition checks whether the constructed set of actions (that is, the resulting
imperative algorithm) is “good enough” to stop the solver.
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2.9.2 Policy: task-based hybrid constrained optimization

The assumption behind many task-based approaches in robotics is that every robotic task can
be modelled as a hybrid constrained optimization problem. Its general formalization is
as follows:

task state in the task domain X ∈ D
desired state set {Xd}

robot state in the resource domain q ∈ Q
objective function minq f(X)
equality constraints g(X) = 0
inequality constraints h(X) ≤ 0

tolerances d(X,Xd) ≤ A

solver algorithm computes q
monitors (Boolean functions of X) decide on switching

For each particular domain, one must fill in the types for f , X, q, etc., as well as a particular
type of solver. For each particular application in that domain, one has to fill in:

• parameter values for f , X,. . .

• concrete solver and monitor models and implementations.

2.9.3 Policy: dynamic programming

Dynamic programming is, often, the most difficult algorithm design pattern, since it ex-
ploits the knowledge about which intermediately computed data structures should be given
the status of “state”, because they will be reused at a later time. Obviously, that knowl-
edge is very domain and application dependent, so few generic insights exist. With one
major exception: the physical world satisfies many conservation principles (e.g., for energy
or momentum), so any intermediate result that represents a conserved property is a natural
candidate to become a status variable in the algorithm.

The design forces are: to maximize runtime adaptability, in dependencies between data,
functions and schedules.

This is a broad family of “declaratively specified” algorithms (or solvers, Sec. 2.9), and
hence they come close to exploiting all features of the presented algorithmic meta model.

2.9.4 Policy: static spanning tree pyramid

(TODO: all memory statically allocated, functional dependencies modelled as spanning trees,
schedules modelled as spanning tree over spanning trees; configuring, preparing, dispatching;)

2.9.5 Policy: feasible and optimal solutions

Any dependency relation can be “hard” or “soft”, specifying whether one desires to find
feasible or optimal solutions:

• feasible: each constraint relation must be strictly satisfied.

• optimal: the deviation from the constraint relation is optimized according to a cost
function.
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Satisfying versus optimizing solvers: the former uses the interations towards the most
optimal solution until the current intermediate solution is already “good enough”, that it,
within a particular, identified, set of the constraints. The latter form of solver only returns a
solution when this solution is the optimal one, or when the solution can not be compute for
some reason.

2.9.6 Policy: sweep scheduling

The schedule of the solver’s computations can be determined statically or dynamically:

• static: the spanning tree is computed once, and deployed as a static dispatch data
structure.

• dynamic: the spanning tree can be (re)computed at runtime, allowing for dynamic
reconfigurations of the solver specification.

2.9.7 Policy: tolerances

• numerical accuracy of the constraint satisfaction;

• number of iterations to find solution.

2.10 Finite state machine to coordinate activity modes

This Section presents the meta model of the Finite State Machine (FSM), used to represent
that activities (be it processes, systems, controllers, tasks,. . . ) must often realise different
behaviours, one at a time. Each of the possible behaviourial states is called a mode,
and each mode represents one particular set of constraints that determines when and why
an activity switches between behaviours. The description of the meta model maximizes the
separation of mechanism and policy, and of structure and behaviour. This is not an obvious
ambition, because in the long history of state machines various versions of their structural
and behavioural models have been “standardized”, each featuring monolithic and domain-
centric couplings between all these aspects. For example, Harel statecharts, Mealy machines
or Moore machines, [19, 85]. The FSM meta model presented in this Section provides a
modularization with which all these variants can be composed, by means of context-specific
configuration relation.

2.10.1 Structure & behaviour: state, transition, event reaction table

The structural part of the FSM meta model, Fig. 2.14, represents each individual behaviour
by a state, with transitions between states to represent switches in the behaviour. There are
no constraints on how many transitions can exist between two states, and a state is allowed
to have a transition to itself. The state and transition models are extremely simple; the
transition model depends on the state model, but not vice versa.

The semantics of an event is that of a Boolean variable, that represents whether or not
“something has happened”. The role of an FSM is to react to events, and its behavioural
model represents (i) the logical conditions under which the FSM transforms (ii) a set of
events into (iii) a transition to another state, and (iv) the creation of another set of
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State1 Transition 7 State1

Figure 2.14: An example of the structural (mereo-topological) part of a Finite State Machine
model, with its graphical representation on the left, and its tabular form on the right. In
a property graph representation of this model, the nodes are States and the relations are
Transitions; the FSM in itself is a higher-order relation: it composes a particular set of
States and Transitions.

events. The model of this transformation behaviour is a logical mapping, the so-called
event reaction table.15 (Figure 2.15 has an example.) Hence, an event reaction table

is a table of Boolean expressions, whose truth value is computed via propositional logic. The
processed events can be generated by the “outside” world, or by itself; the generated events
can be reacted to, also by the “outside” world or by itself.

Boolean expression of resulting events
events reacted to transition fired

e 1 ∨ e 3 Transition 1

e 2 Transition 2 E 2

e 3 ∧ e 1 Transition 3 E 1, E 3

e 4 Transition 4 E 4

e 1 ∧ e 3 Transition 5

Figure 2.15: An example of an event reaction table that models one possible behaviour of
the FSM in Fig. 2.14. When the Boolean condition evaluates to true, the corresponding
transition is executed in the model, and a possibly empty set of events is fired. The events
are not part of the structural model in Fig. 2.14, because they are the coupling with the
system context in which the FSM is embedded.

2.10.2 Higher-order FSM model: pre, per and post conditions

An event reaction table represents the first-order behaviour of state transition. But FSM
designers typically have knowledge about the system that can be represented as higher-order
relations on state transitions. These relations are constraints on an FSM state that model
the intended reasons to make a transition. Three types exist

• pre-conditions: the constraints between system variables that have to be satisfied before
the FSM state is entered.

15This term event reaction table is not standardized outside of the scope of this document.
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• per-conditions: the constraints between system variables that have to be satisfied while
the system is in the FSM state.

• post-conditions: the constraints between system variables that must be satisfied after
the FSM state is left.

The set of constraints in the three types can overlap. They are not events, because what
matters is their truth value at the time of evaluation, not the timing of when these truth
values change over time. When they are available to the system control software during
runtime, they serve as assertions to be monitored, so one can (i) check whether a computed
transition is justified, and (ii) explain why it is, or it is not.

The transition rules of an FSM are “hard coded” in order to make reaction fast. But “to
explain why” a transition must take place requires higher-order modelling. More in particular,
the models of pre, per and post conditions that have to be satisfied for each state, plus the
relations between which of these conditions depend on each other between states. It is not
necessary that a transition can only take place if the post-conditions of the first state are
the pre-conditions of the next state; for example: the first state activity stopped because a
time-out expired.

2.10.3 Mechanism of event handling: event queue, event processing, event
monitoring, event loop

In the context of cyber-physical systems, finite state machines are used for the coordination of
activities, and therefore the structural and behavioural models of the previous Section must
be executed. Indeed, the models in the previous Sections are passive abstract data types
that represent the state of the coordination of several coordinated activities by the coordinating
activity. All activities interact by means of shared events, which they fire and/or react to.
The meta model of that (re)active execution is a special case of stream handling, with the
following extra event handling entities and relations, in addition to the above-mentioned
state, transition and event:

• event queue: the structural relation that represents the streams of events that the
FSM has received and must still process, or that the FSM has fired and must still send
out.

• event processing: the behaviourial relation between the input event queue stream
and (i) the output event queue stream, and (ii) the transitions stream. Boolean
algebra is the mathematics of the algorithm that computes the behavioural relation.

• event monitoring: a particular instance of event processing that monitors the FSM
as an activity in its own right. Typical monitor functions are:

– detecting whether the FSM is “running in cycles”. For example, the same nominal
Task execution plan is always interrupted by the same non-nominal situation and
the same error recovery plan that leads to the same Task FSM state that the Task
plan execution started from.

– event tracing: an event must be fired each time a particular sequence (“trace”)
of events has occured. For example, activity 1 sends an event after activity 2

and activity 2 have fired an event.
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This monitoring is one of the causes that fires, from the inside, events to which the
FSM can react to.

The computations needed for event queueing, processing and monitoring are realised by an
event loop that “wakes up” at configured moments in time to execute the computations.
This execution requires computational state16 of its own, which adds extra parameters to
the FSM meta model:

• life cycle parameters:

– current state: the ID of the current state of the FSM.

– initial state: the FSM state in which the FSM starts after its event processing
activity has transitioned from its deploying state to the active state (Sec. 2.10.8).

– final state(s): one or more FSM states in which the FSM ends its active state
and transitions back to its deploying state.

– state history: the stream of state IDs that the FSM execution has moved
through.

• extensions to the externally visible event reaction table:

– onEntry, onExit: these events are added to the table for each transition, so
execution behaviour can be triggered every time the state at the start of the
transition is exited and the state at the end of the transition is entered. It
is a best practice to use two events, since this allows the behaviour to be “owned”
by the separate states, and not by the transition.

– onTrigger: the event loop triggers the current state at regular intervals in
time, and execution behaviour can be connected to such triggers by adding a
transition from that state to itself.

2.10.4 Mechanism: activity Coordination behaviour via monitors and call-
backs

Finite State Machines are the mechanism behind the coordination of several activities, and the
latter must provide the following two types of computations to make use of that mechanism:

• monitor: a function that observes the behaviour of an activity, and fires an event when
that behaviour reaches pre-configured boundaries. In other words, their execution is the
cause of the event processing.

A typical usage is to support the decision making about when it may be time to let an
activity switch its behaviour. The decision logic itself is encoded in the event reaction

table of the coordinating FSM.

• callback: a function that the event loop executes in lieu of the coordinated activities
that have registered these functions as clients for the event processing. In other
words, their execution is a result of the event processing.

A typical usage is to realise reconfiguration of an activity, required by a state change in
the FSM.

16Note the fundamental differences between “state” as a representation of type of behaviour, and “state”
as the values of the parameters in the algorithms that implement the behaviour. It is a pity that no widely
accepted nomenclature exists to separate these two meanings of the word “state”.
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2.10.5 Policy: selection, priority, deletion

At any moment in time, the event queue of an FSM contains zero or more events that it
is expected to react to. And the event processing relations in an event reaction table are
declarative. Hence, extra choices must be made to determine the actual execution behaviour
of the event handling. For example:

• which internal events and transitions to include in the model.

• which callback functions to attach to which events, and to which activity. This is the
trade-off between

1. communicating the event and keeping the computation local. The event is not han-
dled in the event loop of the Coordinating state machine, but communicated to
the coordinated activity; the latter then computes the callback in its own compu-
tational context.

2. communicating the computation to a non-local context. The event is handled in the
event loop of the Coordinating state machine, so the computation of the callback
takes place in the event loop of the coordination activity.

• how many events to take from the event queue in one single event condition evaluation
step.

• priorities on the selection of events from the queue.

• the rules to decide when to remove which events from event queues.

2.10.6 Constraints on event handling meta model

The constraints below are (possible) assumptions to make in an FSM meta model. It is
necessary to make these assumptions formally explicit, when one needs to subject an FSM
model to formal verification (“does the system implementation conform to its specifications?”),
and validation (“does the system specifications conform to the application’s requirements?”):

• a modelled behaviour is in one, and only one, state at each moment in time.

• an FSM represents the behavioural state of only one activity.

• every state and every transition has a unique ID.

• state transitions take no time.

• event processing takes no time.

• event firing takes no time.

• representation of all parts of the model takes no space in computer memory.

• event queue bookkeeping takes no time.

• the management of the event processing takes no time.
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Figure 2.16: An example of a
hierarchical Finite State Machine.
The open and filled circles represent
initial state and final state, re-
spectively.

2.10.7 Policy: hierarchical state machine

The structural relation of hierarchy, as depicted in Fig. 2.16, is commonly used for finite state
machines. It changes the structural and behavioural semantics of the “flat” state machine as
follows:

• containment relation: a state can be contained in another “super” state.

• containment tree constraints: a state can only be contained in one single “super”
state, and these containment constraints can only form a tree.

• shared transitions: a transition from a super state to another state represents
the set of transitions from all of the internal states to the same other state.

• non-shared event conditions: each internal state can have a different event condi-
tion for the above-mentioned shared transition.

• initial state, final state: when the overall state machine transitions into the su-
per state, one internal statemust be selected as the final state of that transition.
One internal state can be selected as final state, which means that an internal
transition into this final state automatically gives rise to a transition away
from the super state, if that super state has only one possible transition.

• there can be a policy to remember the internal state that the FSM is in when a
transition takes place out of the super state, so that this so-called history state

will be selected as the initialstate for the next transition into the super state.

The major design motivations to choose for hierarchical state machines are the following:

• reduction of state explosion: one can “hide” all states below a certain level in the
containment tree, hence reducing the (apparent) complexity of the number of states and
transitions.
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• just-in-time creation, or lazy evaluation, of state machines from model. The
reason can be to reduce the effects of state explosion on the runtime memory con-
sumption, but the policy also allows for runtime adaptation of the discrete behaviour
of a system by the just in time creation of new state machines via runtime reasoning
on the basis of (declarative) behavioural models in the application.

2.10.8 Best Practice: Life Cycle State Machine for single activity deploy-
ment

Almost no component or system can provide its “services” to other components, or to users
of the system, without making use itself of the services of multiple “resources”. These “re-
sources” can be services of other components or sub-systems, but also physical and/or in-
frastructural resources such as energy, CPUs, memory, communication bandwidth, etc., and
“computational” resources such as interfaces or algorithms, Hence, in practice it is exceptional
that the services of a component can be provided, or reconfigured, instantaneously.

The design pattern of the Life Cycle State Machine (LCSM) in Fig. 2.17 has been used
since decades, in several equivalent incarnations and names,17 to coordinate the availability
of “internal” resources for the provision of “external” capabilities, and to let the capabilities
be provided only after they have been fully configured. The semantics of the different states
is as follows:

• deploying: the system is working on finding and configuring all the resources it needs
before it can offer its capabilities to others. During this super state, the system should
not be visible to other systems, since the latter can not yet (or not anymore) interact
usefully with this system.

– creating: the software resources are created, with which the system does the
bookkeeping of its own behaviour.

– deleting: the above-mentioned software resources are cleanly removed.

– configuring resources: the system is configuring the service resources it requires
for its own operation.

• active: the system is visible to other systems to engage in interactions.

– configuring capabilities: the system is not providing its services, since it must
first (re)configure itself to provide a particular configuration of its services.

– ready: the system is ready to provide its services to other systems.

∗ pausing: the provision of the system’s services is put on hold, but can resume
immediately. This state is necessary, for example, for the composition with
Traffic Light activity coordination.

∗ running: the system’s services are provided.

17Some life cycle state machines use names for their states that represent the reason why a state has been
reached, and not what activity the system is performing while being in a state. For example, names appear
like “configured”, “error”, “started”, etc. These name choices restrict composability by introducing implicit
assumptions of “hierarchy” between transitions.
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An example is the service to control the motion of a robot: in its deployment superstate,
it must not only create and configure the data structures and functions that it needs for
its motion control service, but it must wait till other services have become active (e.g., a
kinematics computation service, and the input/output device drivers to the robot’s actuators
and encoders). It can provide several types of motion control services, like force, impedance,
velocity or position control; sometimes it will have to pause its own service, because the end
user Task system is itself not yet active.

Of course, the LCSM meta model conforms-to the meta model of finite state machines ,
which itself conforms-to that of automata theory. The LCSM meta model adds mereological
semantics (the names of the configuration states in a LCSM), and topological semantics (which
transitions make sense, and which are the hierarchically contained levels of abstraction that
the LCSM is coordinating).

2.10.9 Best Practice: FSM for behavioural state, Flag for operational sta-
tus

(TODO: a flag is an “memorized event”, or “level-triggered signal”: it represents the oper-
ational status of an activity, while an FSM state represents what behaviour that activity is
executing; that is, what composition of control, perception, world modelling, decision mak-
ing,. . . is activated at a particular moment in the life time of an activity. Another way of
looking at flags is as shortcut for a logical condition of a composition of events: if that com-
position occurs “often enough” it makes senses to remember its outcome in a flag variable
instead of recomputing it every time it is needed. An extra advantage is that a flag variable
lends itself very well to be represented by an atomic variable, which improves multi-thread
safety. )

2.10.10 Best Practice: Flag, Traffic Light, Petri Net, for inter-activity
coordination

Any application of some complexity must have several activities whose only purpose is to
coordinate some actions of multiple activities, because these activities can only add value to
the application when their actions can be realised “at the same time”, in a particular order,
or with serialised access to one and the same shared resource.

The simplest version is a flag, to indicate that a shared resource can be used by activity1

but not by activity2. A flag is often the memory (or level-triggered event) of a series of
events, each signaling that the flag can be set or unset, and the latest event wins.
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Shared resources with more than two activities, can apply the model of traffic lights on
a traffic junction, in which the coordinating activity generates one flag (“traffic light”) for
each of the activities. That flag has a color code with the following semantics:

• red: the activity can not access the shared resource.

• green: the activity can access the shared resource.

• orange (optionally): the shared resource is “soon” going to become (un)available for
access.

The coordinating activity fires events, to indicate a change in one of the traffic lights. And
each of the coordinated activities fires similar events, that are interpreted by the coordinating
activity as follows:

• red: the coordinated activity is not ready to access the shared resource.

• green: the coordinating activity is ready to access the shared resource.

• orange (optionally): the coordinating activity “soon” going to become (not) ready to
access the shared resource.

The coordinating activity reacts to the coordinated activities’ events, and decides which flag

to give to which activity. Examples of the traffic light coordination are:

• the operation of manufacturing work cells in a manufacturing line, where the “line” is
the resource all workcells have to access in an orderly fashion.

• the access of multiple robot arms to the same material or tool feeder, without “fighting”
for those resources.

• the deployment and runtime management of several threads in one process, which have
to share several resources: RAM memory for their code and data blocks, communication
buffer memory, and CPU time.

There exists a “mirror” version of the semantics above, to synchronize activities that must
start doing something together at the same time; for example, a set of devices next to a
conveyor belt have to start a particular behaviour together with the start of the conveyor
belt. The semantics of the events fired from the coordinating activity to all of the coordinated
activities is:

• red: none of the coordinated activities is allowed to start its behaviour.

• green: each of the coordinated activities must start its behaviour.

• orange (optionally): each of the coordinated activities must prepare itself to start its
behaviour, because the synchronisation is going to be started “soon”.

The semantics of the events fired from a coordinated activity to the coordinating activity is:

• red: the coordinated activity can not start its behaviour.

• green: the coordinated activity has started its behaviour.
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• orange (optionally): the coordinated activity is soon ready to start its behaviour.

The Life Cycle State Machine of Fig. 2.17 uses the same color code, for its super-states:

• red: the state of the LCSM is deploying; the activity can not provide its capabili-
ties/services to others.

• orange: the state of the LCSM is active and can switch “soon” to the ready state
(that is, either running or pausing).

• green: the activity is running or pausing, and can switch between both states instan-
taneously.

The most complex version of multi-activity coordination (with a widely accepted semantics)
uses protocols instead of traffic lights, that is, the activities must exchange several messages
before they can agree on a coordinated action. For example, a prepare to transition state
that waits for a confirmation that “the other side” has indeed made its transition before
committing to the intended transition itself. This last decision can be “undone”, until the
commitment event has been processed. two-phase commit protocol. The Petri net meta
model is often used to represent such coordination protocols.

2.10.11 Bad and Good Practices in FSM usage

• bad : to mix the Computations for (i) the Boolean logic computations to decide about
making transitions, and (ii) the continuous computations needed to monitor activities
and to generate their events. The former are much easier to make deterministic in time
than the latter.

good : to put such a monitoring computation into another activity than the FSM, and in-
terconnect them with an event communication; and design in extra states and logic rules
in the FSM such that the behaviour is robust against the undeterministic computation
and communication timing of the monitoring events.

• bad : to add the “guard” (monitoring) computation to a transition, since that makes
the transition take an non-deterministic time to be realised.

good : to add no computations whatsoever to transitions, but only to states. In this way,
the only time taken by a transition is the time needed to adapt the FSM data structure
by changing the pointer to the current state.

2.10.12 Transition systems for the runtime creation of FSMs

Finite state machines are a good model to represent the discrete switching between behaviour,
but any somewhat realistic application requires thousands of behavioural states, which com-
promises scalability. The obvious solution is to use sec:higher-order]higher-order relations
that represent the links between “pre-conditions” of “actions” and the models of finite state
machines to realise those actions; the technical challenge is to develop solvers to do the model-
to-text transformations that generate executable state machines.

(TODO: explain how the concept of transition systems applies to (i) the online generation of
FSM, based on (ii) graph traversals over knowledge about the discrete behaviour capabilities
of robot systems. Links with action languages, fluents, and triple graph grammars [27, 28].)
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2.11 Data, uncertainty and information

Using formalized models to represent one’s knowledge about the state of the world, and about
the relations that exist between the time evolutions of interacting entities in the world, can
help in formulating the “right” task control problem. However, defining the model is only half
of the story: since every model contains parameters, one has to estimate the “real” value
of these parameters, based on (i) the measurement data from sensors, and (ii) the relations
that link these measurement data to the model parameters.

2.11.1 Mechanism: Bayesian probability axioms

Bayesian probability theory is a scientific paradigm for information processing. Its ax-
iomatic (hence, fully declarative) foundations have been laid in the 1960s [36, 43]. These
axioms for plausible Bayesian inference are:

I Degrees of plausibility are represented by real numbers.

II Qualitative correspondence with common sense.

III If a conclusion can be reasoned out in more than one way, then every possible way must
lead to the same result.

IV Always take into account all of the evidence one has.

V Always represent equivalent states of knowledge by equivalent plausibility assignments.

They result in the well-known mathematics of statistics, with random variables and prob-
ability density functions (PDF) as major entities, and the chain rule and Bayes’ rule
as major relations. How to measure the information contents in a PDF was also explained
axiomatically [36], resulting in the primary role of logarithms as the natural measures of
information. These axiomatic foundations are as follows:

I I(M :E AND F |C) = f{I(M :E|C), I(M :F |E AND C)}

II I(M :E AND M |C) = I(M |C)

III I(M :E|C) is a strictly increasing function of its arguments

IV I(M1 AND M2:M1|C) = I(M1:M1|C) if M1 and M2 are mutually irrelevant pieces of
information.

V I(M1 AND M2|M1 AND C) = I(M2|C)

2.11.2 Mechanism: Bayes’ rule for optimal transformation of data into
information

(TODO: [92].)

2.11.3 Policy: belief propagation

(TODO: explain how the structure of a Bayesian graphical model provides a declarative way
to solve the model. Junction tree, message passing. [46, 59])
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2.11.4 Policy: hypothesis tree for semi-optimal information processing

(TODO: [21, 68].)

2.11.5 Policy: mutual entropy to measure change in information

One of the major choices within the large family of logarithmic functions was the following:

H(p, q) = −

∫
p(x) ln

(
p(x)

q(x)

)
dx,

where both p(x) and q(x) must be strictly positive. The function H(p, q) is asymmetric,
hence it is not a distance function, or metric. The reason why it is a “major” choice is that
it focuses on the relative change in information between two probability density functions,
instead of aiming for an absolute measure, which does not make much sense. H(p, q) is known
under several names: mutual entropy, mutual information, or Kullback-Leiber divergence.

2.12 Formal representation languages: mature standards

Meta models for some of the representations discussed in this Chapter have already been de-
veloped (and to some extent also formalized) over the years, and several of those have matured
into world-wide, vendor-independent standards. Most formalizations have been developed for
human developers only, and not for higher-order reasoning by computers.

2.12.1 QUDT and UCUM

The quantity-unit-dimension-type meta model has already been formalized several times, for
example in the QUDT initiative [86]. This ontology is nicely composable with the levels of
abstraction hierarchy:

• mathematical and abstract data type representations: the T(ype) and D(imension)
parts in QUDT are linked as semantic tags to each “type” of thing that one wants to
represent. The type in QUDT is the same as the type in the mathematical and abstract
data type representations; for example, the distance between two points in space, or
Maxwell’s equations. The dimension in QUDT adds annotations to (parts of) types
such as length, time, or voltage.

• data types and digital representations: as soon as one makes a concrete choice of how to
represent things concretely on computers, one automatically introduces the Q(uantity)
and the (physical)U(nit) parts of QUDT.

• T and D always come together at the same level of abstraction, as do Q and U.

Next to QUDT, promoted by the W3C, a similar model exists, UCUM (the Unified Code for
Units of Measure), which is promoted by the Eclipse eco-system.
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2.12.2 JSON and JSON-Schema

JSON-Schema is a schema to formally describe elements and constraints over a JavaScript
Object Notation (JSON) document. Instead of relying on an external DSL, a JSON-Schema
is also defined as a JSON document. In turn, the JSON-schema must conform to a meta-
schema, which is also defined over a JSON document. A concrete example is provided in
Figure 2.18.

instance-of

conforms-to

{

  "id": "http://robmosys.eu/schemas/geometry/point-entity#",

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "description" : "Point Entity",

  "properties": {

   "x" : { 

     "type" : "number",

     "description" : "coordinate along x-axis"

    },

   "y" : { 

     "type" : "number",

     "description" : "coordinate along y-axis"

    },

    "z" : { 

     "type" : "number",

     "description" : "coordinate along z-axis"

    }

  },

  "additionalProperties": false,

  "required": [ "x", "y", "z" ]

}

Model
{

  "x" : 1.2,

  "y" : 0.5,

  "z" : 5.6

}

Data

http://json-schema.org/

draft-04/schema#

Meta-model

Figure 2.18: A valid data instance of a JSON-Schema Model representing three coordinates.
The schema includes few constraints on the data structure, such as the values required for the
validation of the JSON document. Moreover, the schema conforms-to a specific meta-model
of JSON-Schema (draft-04).

JSON-Schema is considered a composable approach, since (i) JSON supports associative
array (only strings are accepted as keys) and (ii) JSON-Schema supports JSON Pointers (RFC
6901) to reference (part of) other JSON documents, but also objects within the document
itself. This allows to compose a schema specification from existing ones, and to refer only to
some specific definitions. JSON-Schema is used in web-technologies and it is very flexible in
terms of requirements needed to be integrated in an application. However, it is verbose with
respect to other alternatives, as well as not efficient in terms of number of bytes exchanged
with respect to the informative content of a message. In fact, JSON-Schema does not provide
native primivites to specify hardware-specific encodings of the data values. However, it is
possible to compose a schema that cover that roles, in case that the backend component can
deal with them.Figure 2.18 shows a example of a typical workflow with JSON-Schema. As a
final remark, JSON-Schema is not limited to describe JSON documents, but also language-
dependent datatypes.

2.12.3 JSON-LD

JSON-LD, “JSON for Linked Data”

(TODO: outline of features; how to use it to represent property graphs, Semantic ID ("@context"
for meta model connections, "@type" for meta model conforms-to relations, and "@id" for
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model ID; how to formulate queries as graphs on the property graph, with given and queried
property parameter values; how to do graph traversals to answer queries.)

2.12.4 RDF1.1

RDF:

(TODO: relation to JSON-LD: minor difference in flexibility to name graphs; lack of keywords
to represent Semantic ID natively.)

2.12.5 Abstract Syntax Notation One (ASN.1)

ASN.1 (“Abstract Syntax Notation One” is an IDL to define data structures in a standard,
code-agnostic form, enabling the expressivity required to realise efficient cross-platform serial-
isation and deserialisation. It has its orig ins in telecommunication, in the early 1980s. ASN.1
models can be collected into “modules”, which can be composed between themselves as well.
This feature of the ASN.1 language allows better composability and re-usability of existing
models. However, ASN.1 does not provide any facility of self-description, if not by means of
the naming schema used by the compiler to generate a data type in the target programming
language. Originally developed in 1984 and standardised in 1990, ASN.1 is widely adopted in
telecomunication domain, including in encryption protocols, e.g., in the HTTPS certificates
(X.509 protocol), VoIP services and more. Moreover, ASN.1 is also used in the aerospace
domain for safe-critical applications, including robotics applications. For example, an ASN.1
compiler is included in The ASSERT Set of Tools for Engineering (TASTE), a component-
based framework developed by the European Space Agency (ESA). Several compilers exists,
targeting to different host programming languages, including C/C++, Python and Ada.

2.12.6 Hierarchical Data Format — HDF5

HDF5 is another internationally standardized format, with a maturity similar to QUDT,
offering meta model, models and reference implementations for all sorts of abstract data type
representations and transformations.

2.12.7 FlatBuffers, Protocol Buffers

FlatBuffers and Protocol Buffers are more recent but well-supported alternatives. Their
designs have been optimized for efficient runtime data processing and messaging18 and self-
description, but not really for knowledge representation and reasoning.

2.12.8 BLAS, LAPACK

BLAS and LAPACK are other mature ecosystems of models, tools and software, to provide
the linear algebra aspects of representations and operations in geometry.

18For example, by the Apache Arrow project.
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2.12.9 DFDL

DFDL (Data Format Description Language, “Daffodil”): (TODO: XML, less developed for
scientific abstract data types like multi-dimensional arrays;)

2.12.10 XML Schemas

Similarly to JSON-Schema, XML Schemas (e.g., XSD) are models that formally describe
the structure of a Extensible Markup Language (XML) document. XML schemas are very
popular in web-oriented application and ontology description, but also in tooling and hardware
configurations (e.g., the EtherCAT XML Device Description).

2.12.11 Differential geometry

Differential geometry (e.g., [16]) is the mathematical theory (including an unambiguous ter-
minology and notation) of the geometry and dynamics of robotic systems (and other energy
transforming cyber-physical systems), starting with the manifold of all positions, and the tan-
gent and co-tangent spaces representing the velocities and forces, in the form of, respectively,
the tangent vectors at a point on that manifold, and the co-tangent vectors (or 1-forms)
over each tangent space. The concept of a jet fits well to the geometrical combo of position,
velocity and acceleration of the same point or rigid body.
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Chapter 3

Meta models for the geometry of
rigid bodies and polygonal worlds

The focus of this Chapter is on the polygonal models, because they are a uni-
versal base for (i) any other “smoother” representation of geometry, and (ii) any
composition of the three top-level robotic “services”, namely manipulation by
grippers; reaching by arms; navigating by wheels, propellors or legs. The sim-
plest geometric models of all the mentioned entities are polygonal (“stick fig-
ures” and “boxes”), as is any base map of a world representation (“areas” with
“semantic tag” points attached to them). Adding geometric chain relations
(graph, or sequence, of geometrical primitive and relations, with (not necessarily
rigid) constraints between entities), kinematic relations (rigid joints connecting
rigid bodies) and dynamic relations (inertia, damping, elasticity) to the meta
models is straightforward: each of these extensions is composed into a polygonal
geometric base model, via “semantic tag” attachment points with relations
with the semantic tag properties of already existing other parts of the geometric
model.

3.1 The meta meta models

Robotic devices (and most other cyber-physical devices as well) take up space in the real
world, and they have to coordinate their own motions with those of other devices, objects
and humans. Irrespective of whether they are part of the system or live outside the system,
as “disturbances”. Hence, models must be available to let the devices exchange information
about how each of them is going to move in the near future, about which device gets spatial
access to some areas, and about how the coordination of such motions and accesses must
be realised. This, in turn, requires the devices to be able to reason about the space they
occupy themselves, the space other “devices” occupy, and how these evolve over time . For
robots, the (probably) most important knowledge is geometrical: how do they steer their
links, connected by their joints, to reconfigure their own pose, and to move around in the
world as an indivisable device. This Chapter introduces meta models for the most common
geometrical entities and relations in robotics, in the 2D Euclidean plane and the 3D Euclidean
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space, with the 1D space of the “(Euclidean) line” as a useful boundary case:1

• the point, line and line segment (being the compositions of two points), and poly-
gon (being the composition of several line segments). The absence of infinitely extended
geometrical entities like lines or planes is intentional: they fit well with abstract mathe-
matics (“just” adding some constraints on the extension of the mathematical concepts),
but are not at all necessary for modelling any type of robotic system. (Or for perceiving,
controlling, monitoring,. . . them.)

• the specific-because-omnipresent composition of all of the above primitives into a rigid
body: a rigid body model adds (i) constant relative distance constraints between
all of its parts, and (ii) semantic tags attached to the points, segments and polygons,
to serve as “unique ID pointers” to which other composition models can refer to.

• their associated entities and relations of (relative) position and direction,

• and their time derivates of velocity and acceleration.

• their associated relation of (polygonal) shape.

• the composite relation of geometric chain (more precisely, “geometric graph”), that
represents a (partial) order on the relative positions and/or orientations of geometric
primitives, without any mechanical motion constraints between them, and possibly with
an evolution over time.

Position, velocity and acceleration composed together form the parts in the mereological meta
model of what this document calls motion. There is no motivation to consider position,
velocity and acceleration as separate relations on geometric primitives, because any object
that moves or does not move has always a state of motion with all three motion components.
The meta models of many of these entities and relations have already been consolidated in
mature mathematical formalisations. These are not described in this document, but refered
to as meta meta models.

The geometric chain is the most complex relation in this Chapter. The composition of
rigid bodies with joints as the motion constraints between them, are the topic of the Chapter
on kinematic chains. The complementary composition of rigid bodies with electro-
mechanical dynamics as complementary motion constraints are is already treated in this
Chapter’s Sec. 3.5.

3.1.1 semantic IDs for geometry in 1D, 2D and 3D

Section 1.2.5 describes the generic foundations of semantic meta data, namely the usage of
IDs as “symbolic pointers” between models and meta models. This Section adds geometry-
specific specialisations, and explaining that model in human-centered form is the subject of
this Chapter. The suggested MMID is

{MMID : [ "Geometry", "3D", "Euclidean", "Polygon" ] }, (3.1)

with similar notations for other geometric entities and relations, that are relevant in 1D and
2D spaces. The order of the semantic tags in the MMID container "["...",...,"..."]" above

1The generic term space will be used to denote any line, plane or space.
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has meaning: Geometry is the top-level meta meta model, and the1D, 2D and 3D tags are
more specific than Geometry but at the same time also more generic than the identification
of the geometrical space of the described entities and relations as Euclidean, Projective or
Affine (Sec. 3.1.2); the last tag identifies a the most specific geometric entity or relation. All
of these entities and relations belong to the realm of the mathematics meta meta model. This
document sometimes uses composite MMID tags P(2), A(2), E(2) and P(3), A(3), and E(3)

for, respectively, the projective, affine and Euclidean spaces in two and three dimensions;
the composite MMID tag R(n) represents the real line in n dimensions. Further MMID tags are
introduced in the Sections below.

The 1D meta model is trivial: it represents a line, a circle, or a curve, or any other
geometric primitive that can be mapped, continuously, to (a segment of) the real line. The 2D
meta model (Sec. 3.4.1) is the core meta model, representing a manifold2 of zero-dimensional
(“0D”) Points, and with simple composition rules to build all other entities. The 3D meta
model (Sec. 3.4.2) is presented separately, because:

• 2D geometry is sufficiently relevant in itself to merit its own meta model.

• all 2D semantics hold in 3D too, but not the other way around, so 3D geometry is a
composition of the 2D meta model with some extra semantics. For example, the 2D
concept of area keeps its meaning in 3D, but volume is a meaningless concept in 2D.

3.1.2 Geometric relations in projective, affine and Euclidean spaces

All entities and relations introduced in this Section have meaning in Euclidean, affine and
projective spaces. The point is the fundamental entity. The composition of points into lines
brings extra topological constraint relations, namely collinearity, are-equal, intersect
and have-ratio, which hold for all mathematical spaces refered to in this Section. The
line relation is where the three mentioned spaces differ from each other, and there is a clear
hierarchy: projective geometry has the smallest amount of relations; affine geometry con-
forms to all of them and extends them with its own (rather large) number of relations; and
finally Euclidean geometry is on top of the hierarchy, with a couple of relations more. None
of these spaces has a natural origin, because any point in the space serves equally well as
reference. This implies that “position” can never be a property of the representation of a geo-
metric entity, but only a property of a relative position relation between geometric primivites.

The projective space has as key relations (i) the incidence of points and lines, and (ii) the
cross-ratio between sets of two points on four lines.

The affine space extends the projective space with the relations of (i) parallelism of lines, (ii)
(ii) barycentric coordinates, and (iii) convexity, and (iv) Pappus’ law relation between two
pairs of three points on two intersecting lines. The latter means that an affine description
of points and lines keeps the relative order between them; for example, an affine geometric
model that has a street between two other streets, keeps that street in the middle, no matter
what affine transformation is applied to the model. Examples of affine transformations are

2A manifold is continuously mappable on Rn, with R the real line. Hence, Rn is always one of the meta
meta models of any geometric meta model in this document.
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translation, scaling, similarity, reflection, rotation, and shear.

The Euclidean space represents relative position and translational motion of points. Euclidean
space has a distance relation, which is a quadratic form that maps two points to a real scalar.
That means the terms length and angle have meaning. The relations are-orthogonal (of
lines) and triangle inequality are consequences of the distance relation.

3.1.3 Non-Euclidean space for rigid bodies

When points and lines are being connected together to form “rigid bodies” in the Euclidean
spaces E(2) and E(3), a new relation of orientation emerges. It is just the shorthand for the
set of constraint relations between all points that their mutual distance is constant over
time. All of the above-mentioned mathematical entities and relations remain meaningful, but
extra semantics is introduced because of the dependency between translation and orienta-
tion: because of the constant-distance constraint, translating one point has an impact on
the translation of the other points it is rigidly connected to. It turns out that the semantics
introduced by the constant-distance constraint has nice mathematical (Lie) group properties,
represented by the following two spaces:

• the Special Orthogonal group and algebra in two and three dimensions (SO(2),
so(2) and SO(3), so(3); MMID: Geometry::SpecialOrthogonalGroup::2D/3D) repre-
sent the semantics of “pure” orientations. This space has a well-defined “distance”
metric between any two orientations (the smallest angle over which to reorient the first
orientation to make it equal-to the second orientation. But there is no “unambiguous
zero” rotation, because rotating a body over 360 degrees brings it back to its original
orientation.

• the Special Euclidean group and algebra in two and three dimensions (SE(2),
se(2) and SE(3), se(3); MMID: Geometry::SpecialEuclideanGroup::2D/3D) repre-
sent the semantics of the coupling between translations and orientations.

One of the major constraints on SE(2)/SE(3) is the lack of a bi-invariant metric relation
[45, 52, 53]; for rigid bodies this means that:

• one must always introduce a weight function (that is, a new semantic relation) between
translation and orientation.

• the “normal” Euclidean metric has no physical sense,

• “orthogonality” between velocities and forces has no physical sense either [52].

Examples of physically meaningful weight/metric functions in mechanical systems are inertia
and elasticity/stiffness. The get that semantic status because their physical meaning leads
to a metric that is “invariant” under any change of formal representation of the relations
involved. More concretely, the kinetic energy of a moving body is independent of the physical
units chosen to compute that energy, and independent of the reference frame in which one
computes that energy.
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3.1.4 Differential geometry

The concepts of manifold, group, metric are defined in the mathematical meta meta mod-
els of differential geometry and group theory. That higher-order knowledge provides
useful (and already highly formalized) constraint information. For example. the relation that
velocities satisfy all properties of the tangent space to the manifold of rigid body poses, ac-
celerations live in the second-order tangent space, and forces live in the co-tangent space,
[16, 31]. The latter means that forces can play the role of linear forms over the motion spaces,
mapping position displacements, velocities and accelerations into real scalar numbers, with
physical interpretation of energy; more in particular, work, power and “acceleration energy”3,
respectively, [67, 70, 91].

3.1.5 Qualitative spatial relations

(TODO: connects, contains, borders, intersects, on top of, Left of, behind,. . . , from
own or others’ point of view; in addition to mereological has-a whole-part relation. Qual-
itative Spatio-temporal reasoning, spatial relations between regions in space, e.g. Region
Connection Calculus, DE-9IM, or Cross Calculi [12, 48].)

3.2 Taxonomy of geometric meta models

This document introduces the partially ordered hierarchical structure of Fig. 9.1 as a modelling
axiom (a so-called taxonomy) for the (mostly geometric parts of)motion/perception/world
modelling stacks in robotics. This partially ordered modelling structure serves as struc-
tural backbone of reasoning, querying and model transformations; each of the entries in
itself is candidate to be (meta) modelled by at least one formal model, with semantic metadata
linking between them. The lower levels of abstraction (with the lowest numbers in the de-
scriptions below) represent the (almost) domain-independent aspects of mereology (the set of
“things” in the model) and topology (the connections between “things”); the gradually more
“domain”-specific levels are motivated by specific sets of use cases in robotic world modelling,
motion and perception. As far as the geometry4 parts of the taxonomy are concerned, this
document introduces the following partially ordered set of levels of abstraction, using the
kinematic chain as the running example to ilustrate the kind of knowledge representation
required at each level:

1. Mereology: this abstraction meta meta level is introduced in Sec. 1.3.1, and models
the “whole” and its “parts”, with just has-a as relevant relation, and the resulting
collection as relevant higher-order entity.

In the mereology of the geometrical meta model, a kinematic chain has-a collection

of links and joints, and it has-a workspace, that is, a part of the physical world that
it can occupy.

1.1 Objects & 1.2 Manifolds: the “wholes” and “parts” in a robotics context are further
classified in (the top level of) a taxonomy with two complementary branches: “discrete”

3This is not a commonly used term in the English-language scientific literature. Gauss [32] introduced the
concept with the German term “Zwang”.

4The taxonomy includes dynamics too, which is covered by the mathematical theory of differential

geometry.
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things (“objects”) and “continuous” things (the “manifolds” of the configuration spaces
of the objects). One particular mereological entity or relation has typically discrete
as well as continuous parts; for example, a kinematic chain has a continuous motion
space, but also a discrete set of actuators and sensors; which by themselves again have
continuous state spaces.

A kinematic chain has-a its whole-part relation with its links and its joints as
objects, and its workspace as the manifold of all reachable positions of its parts.

2. Topology with its Contains and Connects relations. This abstraction level introduced
in Sec. 1.3.2 models “neighbourhood”, more in particular the contains and connects

relations, in, both, discrete and continuous spaces. There are also topological relations
in non-geometric taxonomies, for example in all knowledge models where hierarchical
hypernym/hyponym relations have been identified (not only for objects, but also for
verbs).

A kinematic chain connects its links to its joints, forming the kinematic graph; most
common topological instantiations are: serial, tree or parallel.

2.1 Spatial topology: in the continuous real-world space around us, the following relations
specialise the connects-contains relations:

– neighbourhood relations like near-to, left-of, on-top-of, inside-of, etc.

– tesselation (or “tiling”) representations of spatial coverage.

Both are defined in the (two- as well as three-dimensional) Euclidean, affine, and pro-
jective spaces. Such spatial topological relations apply to kinematic chains relative to
objects in the environment, for example, when its end effector comes above a table, or
inside-of a box, or when a mobile platform covers contiguous areas in the world.

2.2 Object topology: within the continuous real-world space around us, objects can be
physically connected to each other, and their connects relations have block, port,
connector, and dock parts.

Serial kinematic chains have “arm” and “hand” object topologies, which are more con-
crete (i.e., behaviour-rich) than a “manipulator”, which is more concrete than “actor”.

3. Geometry: this is the essential next level of modelling abstraction, for the manifold
type of entities and relations, and a large taxonomy of geometrical meta models has
been defined in the mathematics literature already, of which the affine, projective and
metric versions are most relevant to robotics.

The context of a Task implies that a kinematic chain has-a lot of points attached to
its links, and whose geometrical position and velocity in space are of interest in the
task for which the kinematic chain is used.

3.1 Affine geometry: this introduces non-metric geometrical entities, such as point, line,
and hyperplane, and relations such as intersect, parallel, and ratio.

Many serial kinematic chains have some parallel joint angle axes.

3.2 Dimensionless (or “qualitative”) metric geometry: many use cases do not need
absolute distances or angles, but rather relative ones. In other words, the absolute
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scale of the geometrical entities is not used, but the ratios of lengths or angles (which
are physically dimensionless) are the relevant information in a task specification. For
example, when driving through an office corridor, the robot perception system can
track the relative (changes in) areas and the directions of wall, door, ceiling or floor
surfaces, without having to know their absolute sizes. Indeed, staying at the “center”
of a corridor, driving towards its “end”, or moving twice as far as the nearest door, are
all relative (or “qualitative”) motion specifications.

A serial kinematic chain often has the “zero configuration” of its joint angles in the
middle of their physical motion range, which is geometrically well-defined without the
need to use absolute numbers. Similarly, a specification to move a joint “away from”
its mechanical limits is a meaningful and metrically dimensionless motion specification.

3.3 Metric geometry: as soon as one introduces a metric (or “distance function”), one
can start talking about entities such as rigid-body, shape, orientation, pose, angle,
and relations like distance, orthogonal, displacement,. . .

A kinematic chain transforms metric speeds at its actuators to metric spatial velocities
of its links.

4. Dynamics: this modelling level brings in the interactions between “effort” and “flow”
in the exchange and transformation of “energy”. For mechanical systems, that means
force and motion; for electrical systems, that means current and voltage; etc. In general,
these effort-flow relations are called impedances.

A kinematic chain transforms mechanical energy between (i) the motors attached to its
joints, and (ii) its links. The latter can themselves transform mechanical energy with
objects in the chain’s environment; for example, when pushing a box over a table.

4.0. Differential geometry: this is the domain-independent representation of physical
systems, that is, all features that are shared between the mechanical domain, hydraulic
domain, electrical domain, thermal domain, etc. The most fundamental concepts are:
Tangent space, Linear form, Vector field, and metric.

A kinematic chain transforms electrical energy at its actuators to mechanical energy
at its links. Each of the latter’s motion properties have the mathematical properties
of the Special Euclidean group SE(3) and its Lie algebra se(3).

4.1. Mechanics: there are just three fundamental types of mechanical interaction: stiff-
ness, damping and inertia linking force to, respectively, position, velocity and
acceleration. Other relevant entities and relations are: mass, elasticity, gravity,
momentum, potential-energy, and kinetic-energy.

All of the above mechanical entities and relations are present in kinematic chains.

4.2. Electro-magnetics: the interactions between current and voltage, namely resistor,
inductance, capacitance, reluctance, back-emf, flux,. . .

These entities and relations are present in a kinematic chain with electrical actuators.

Later Sections and Chapters will provide more detailed descriptions of many of the math-
ematical/physical concepts above, and (software) engineering extensions will be added, for
example, to model data structures, coordinates and physical dimensions.
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3.3 Levels of representation in geometry

Section 2.2 introduced a natural hierarchy in the composition of knowledge representations,
and this Section applies this hierarchy to the context of formal meta models in geometry, and
adds two other representation forms that are cutting across the generic hierarchy: physical
units and uncertainty. These formal models apply to (a selection of) the geometric meta
models described in Secs 3.1–3.2.

Meta models of geometric entities and their relations add semantic meaning (“informa-
tion”) to the digital quantities (“data”) that they (or rather, their software instantiations)
work with [11, 24], and these semantic relations have the dependency structure of Fig. 3.1.
A summary of the relevant levels of representation is:

• mathematical: each geometric entity can be represented by (“composed with”) multi-
ple mathematical models. For example, a LineSegment is the set of all Points that lie
on the Line between a start Point and an end Point.

(This document does not pursue the mathematical modelling, because that is beyond
its scope.)

• abstract data type: each of the above can be represented with multiple abstract data
type models. For example, a LineSegment is an array with two members, with one
member having a meta data tag of start and the other member a meta tag of end.

• data structure: each of the above must be represented in a concrete programming
language with the available (instances of) data structures. For example, the array in
C comes in the following forms of an ordered list (array), or an ordered list of ordered
lists (matrix):

int cat[10]; // array of 10 elements, each of type int

int a[10][8]; // an array of 10 elements,

// each of type ’array of 8 int elements’

• digital storage: each of the above must be represented with a particular digital rep-
resentation model, to describe how the information is encoded in bits and bytes in the
RAM and the hard disks of computers, and in the messages that computer processes
exchange the information with. For example, each int in the array above is represented
by four bytes, with the little endianness arrangement.

• physical units: all of the above must be composed with a model of the relevant physical
units. For example, the above-mentioned floats are of the type lenght and have a unit
of meter.

• uncertainty: all of the above must be composed with a model of the possible uncer-
tainty. For example, a Point’s uncertainty can be represented by the standard deviation
of the numerical values in its digital representation.
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Abstract data

types

 - Point Coordinates

 - Quaternion Coordinates

 - Frame Coordinates

 -  ...

Uncertainties
 

- Versor          - Frame

- Vector          - Line

- Point            - Plane

- Orientation  - ...

Geometric Entities

 

Data structures

 - Point vector

 - Quaternion vector

 - Frame matrix

 -  ...

  - density

 - function.

 - distribution

 - ...

Units

 - units

 - quantities

 - dimensions

 - types

Figure 3.1: The mereo-topological model of the representations of geometric entities and re-
lations, that is, the container entity for “mathematical” (i.c., geometrical), “abstract data
type” and “data structure” representations. An arrow represents composition of complemen-
tary aspects in that numerical representation. Models of physical units must be composed
always; models of uncertainties can be composed, when needed.

3.4 Meta models of Point-Polyline-Polygon geometry

This Section presents the meta models for the geometry that is relevant to cyber-physical
system domains in which spatial information is essential; for example, robotics, avionics, man-
ufacturing, or intelligent traffic systems. The major semantic concepts are (i) the entities of
points, lines, line segments and polygons, (ii) the relation of a map as an ordered or
unordered set of sets of geometric entities, (iii) the relations of instantaneous motion
of the entities, and (iv) the rigid body as a constraint on that instantaneous motion re-
lation. The meta models are hierarchically structured into various levels of abstraction: (i)
mereo-topological naming of entities and relations (Secs 3.4.1–3.4.4), (ii) abstract data types
for symbolic model validation and model-to-model transformations (Sec. 3.4.6), and (iii) data
structures to carry coordinates (Sec. 3.4.8). Each meta model on a “higher” level of ab-
straction can be represented by multiple meta models on a “lower” level. Hence, separating
the definition of all these meta models helps composability of modelling efforts.

Modelling in this Section starts with the Point entity, and all other entities and relations
are compositions of that Pointmodel. (The monospaced font style is used in this Section
to denote keywords in the meta models; for example, Point.) This model composability
approach is motivated by:

• the desire to keep the number of “basic” abstract data types small.

• the desire to put entities, relations, and the constraints on those relations, into separate
meta models, because there are many use cases for the separate meta models.
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• the fact that most sensors in robotics measure points, and not lines, planes or bodies.

• the fact that for points the concept of uncertainty is uniquely defined, but not for lines,
planes or bodies.

• the straightforward way to provide all possible kinds of “attachments” to compose into
richer semantic structures.

Examples of the latter are sec:meta-model-geometric-chain]geometric chains and kinematic
chains (Chap. 4), or maps or world models (Chap. 6). The knowledge in the combination of
this Section’s meta model for geometry and those for kinematic chains and “OpenStreetMap”-
like world models, is sufficiently mature and complete to allow their formal representation to
start a community-driven process towards a vendor-neutral open standard.5

3.4.1 Point entity and its composition relations

Point — A Point is the zero-dimensional element of the space manifold, so it has no
properties of length, area, volume, or shape. None of this knowledge must be represented
explicitly; just referring to the mathematical meta meta models suffices: does the Point live
in a 2D or 3D space, and is this space Euclidean, affine or projective? In other words, the
mathematical representation of a Point is just a symbol, to represent its identity. This
document chooses the notation

{ Point : aPoint }, (3.2)

to identify a model of a Point. With all Semantic ID information, the full version of such a
Point relation is depicted in Fig. 3.2. The following Sections will only use the short version.

{

[ { MMID: ["Geometry","E2"] },

{ MID: "Point" },

{ ID: "Point-E2-xy34s" }

// a unique identity code

],

{ Arguments: [ {PointName: "aPoint"} ] }

}

Figure 3.2: Mereological model of a
Point, with Semantic ID meta data.

Vector — This ordered list of two Point entities adds three constraints: (i) the ordering
that gives an orientation to the Vector, (i) that list contains exactly two members (and not
all the points on the line in between), and (iii) the two Points in the list are different. One
of the Points gets the attribute of start, and the other that of end. These parameters are
not a property but an attribute, because different contexts can give different orientations
to the same Vector. The model is the composition of two Point models:

{ Vector : [ {start : Point-E2-xy34s}, {end : Point-E2-567j3} ] }. (3.3)

5With clearly identified advantages with respect to the robotics de facto standard URDF: all possible
kinematic chains can be represented and not just tree structures with one-dimensional revolute or prismatic
joints; any other meta model can be composed with the kinematic chain model without requiring that other
meta model being visible or even known; in particular, any type of actuator and control algorithm, including
multi-articular configurations.
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The model above uses ID strings that refer to Point models as in Fig. 3.2; if desired, the
shared MID and MMID information can be taken out of the Semantic ID of each of the com-
posite Points and put in the Semantic ID of the Vector.

The following are Vectors with constraints:

• Line vector: the start point is constrained to be somewhere on the Line through the
start and end Points of the Vector.

• Free vector: the set of Vectors starting in every point of the space, all forming par-
allellograms with every other Vector in the set. (Because of its dependency on the
Parallel relation, this concept does not exist in projective space.)

• Versor, or Direction vector: a Free vector that represents just an orientation,
that is, whose length has no meaning. Of course, the constraint remains that the
start point is different from the end point.

• Unit vector: a Direction vector in the Euclidean space, whose length is constrained
to be of unit length.

Their formal models are straightforward compositions of the Vector model, with the extra
constraint relations.

Polyline — A polyline is an ordered set of Points. It is equivalent to an ordered list of
Vectors, with the constraints that (i) the start point of one Vector is the end point of the
previous Vector in the ordered set, (ii) each Point belongs to exactly two Vectors, except
for the start point of the first Vector and the end point of the last Vector. The notation
is:

{ Polyline : [aPoint-ID, bPoint-ID, . . . , zPoint-ID] }, (3.4)

where aPoint-ID, bPoint-ID and zPoint-ID are the unique IDs of Points. Length is a
scalar real-valued property of the Polyline, whose value is the sum of the Lengths of each
of the Vectors. The orientation of the Polyline is an attribute, that is also inherited by
every Vector in the Polyline. The notation is

{ Polyline : [{start : aPoint-ID}, bPoint-ID, . . . , {end : zPoint-ID}] }. (3.5)

Simplex (in a 2D space) is an ordered list of two non-colinear Vectors, with the con-
straint that both have the same start point. The notation is:

{ Simplex : [{start : aPoint-ID}, bPoint-ID, cPoint-ID] }. (3.6)

The extension to a 3D space is obvious: just add one more Point, and adapt the Semantic ID

accordingly.

Orientation6 is the attribute of the ordering: the order from bPoint-ID to cPoint-ID

being positive or negative is a convention given by the application context.

6Right handed and Left handed are often used synonyms.
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Frame is an entity that only has meaning in the Euclidean context, because it adds two
metric constraints7 to the Simplex entity: (i) the length of each Line segment is the unity
length, and (ii) the Line segments are perpendicular (or orthogonal). The orientation

of a Frame is typically an essential attribute, because of its use to represent Coordinates

(Sec. 3.4.8), so the notation has somewhat different semantics than the Simplex:

{ Frame : [{origin : aPoint-ID}, {end : bPoint-ID}, {end : cPoint-ID}] }. (3.7)

The extension to a 3D space is obvious: just add one more Point, and adapt the Semantic ID

accordingly.

The Frame is a spatial shape entity, but it is often just used for its attribute of orientation, in
2D and 3D spaces. (The Simplex too, for that matter.) Some common policies to represent
orientation are:

• explicit ordering of the Frame’s Vectors, via semantic tags that reflect numerical order
(1, 2, and 3), alphabetic order (X, Y and Z), or color coding order (R, G and B, after
the deeply established RGB color model).

• the binary orientability choice between Right handed or Left handed.

The notation for a Frame-based Orientation is:

{ Orientation : Frame a }. (3.8)

Polygon — This is a Polyline with the extra constraint relation that the two not yet
connected start and end Points must now coincide. The notation (for an oriented Polygon)
is:

{ Polygon : [{start : aPoint-ID}, bPoint-ID, . . . , zPoint-ID, {end : aPoint-ID}] }. (3.9)

The orientation attribute is inherited by all Polylines inside the Polygon. The interior
of the Polygon is represented by an extra attribute, namely one single Point outside the
Polygon lines:

{ Polygon : [{start : aPoint-ID}, bPoint-ID, . . . , zPoint-ID, {end : aPoint-ID}], (3.10)

{interior : iPoint-ID}

}.

In the Euclidean context, area is a property of the polygon.

Polygon pair — The unordered set of (i) a set of two Polygons, and (ii) a Point that has
the attribute interior. The notation is:

{ Polygon pair : [P1 : [{start : aPoint}, bPoint, . . . , {end : aPoint}], (3.11)

P2 : [{start : APoint}, BPoint, . . . , {end : APoint}] (3.12)

], (3.13)

{interior : iPoint} (3.14)

}. (3.15)

7These constraints are the same in 2D and 3D.
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In the Euclidean context, area is a property of a Polygon pair, namely of its interior
part.

Multi Polygon — An unordered set of Polygon pairs. In the Euclidean context, area is
a property of the Multi Polygon, as the sum of the areas of each Polygon pair.

3.4.2 Extra composition relations in 3D

All of the 2D entities keep their meaning in 3D too. This Section introduces the extra 3D-only
entities.

Polyhedron — This is the generalisation of the Polygon to a 3D shape with a surface that has
no holes. That is, it consists of a set of Polygons, which all mutually share some Polylines.
The notation is illustrated with the simple example of the Polyhedron in Fig. 3.3:

{ Polyhedron : [Pol1 : [{start : Pnt2-ID}, Pnt3-ID, Pnt4-ID, {end : Pnt2-ID}], (3.16)

Pol2 : [{start : Pnt1-ID}, Pnt4-ID, Pnt3-ID, {end : Pnt1-ID}], (3.17)

Pol3 : [{start : Pnt1-ID}, Pnt3-ID, Pnt2-ID, {end : Pnt1-ID}], (3.18)

Pol4 : [{start : Pnt1-ID}, Pnt4-ID, Pnt2-ID, {end : Pnt1-ID}] (3.19)

] }. (3.20)

Pnt3

Pnt2

Pnt1

Pnt4

Po
l2

P
o
l3

Pol
1

Figure 3.3: A Polyhedron as the
composition of four Polygons, each
the composition of three Points.
(The fourth polygon is not shown in
colour, in order not to overload the
drawing.

The model above could have been composed differently: some of the four Polygons could
have their own model already, so that the Polyhedron can refer to them. For example:

Pol1 : [{start : Pnt2-ID}, Pnt3-ID, Pnt4-ID, {end : Pnt2-ID}], (3.21)

Pol2 : [{start : Pnt1-ID}, Pnt4-ID, Pnt3-ID, {end : Pnt1-ID}], (3.22)

Pol3 : [{start : Pnt1-ID}, Pnt3-ID, Pnt2-ID, {end : Pnt1-ID}], (3.23)

{ Polyhedron : [Pol1-ID, Pol2-ID, Pol3-ID, (3.24)

Pol4 : [{start : Pnt1-ID}, Pnt4-ID, Pnt2-ID, {end : Pnt1-ID}] (3.25)

] }. (3.26)

Volume remains a valid property, as is orientation.

Simplex, Frame — The 3D versions differ from the 2D versions in that (i) there are three
Vectors in the Simplex or Frame, and (ii) their mutual constraint is on being non-coplanar.
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Plane — A plane is the third axiomatic primitive of geometry (next to Point and Line),
that represents a surface in the 3D space, or, in other terms, a two-dimensional subspace.
Different ways to represent a Plane are:

• the join of three Points.

• the join of two intersecting Lines.

• these two Lines can come from two Vectors in a Simplex.

All three ways are equivalent in their composition of Points in somewhat different ways. A
fourth Point, or a third Vector, can be used to determine the orientation of the Plane.

Half space — This contains all the points in space which lie on one side of the support-
ing Plane. The defining Simplex of the Plane defines the orientation attribute of the
Half space. A common alternative orientation representation is to give one single Point

outside the Plane.

3.4.3 Position and Motion relations of a Point

This Section extends the semantics of the Point entity and its mereological composition
entities, with the relation of the Motion between two such entities. A Motion of entities is
always relative with respect to each other, or relative with respect to themselves. Hence,
Motion is not a property or attribute of one single entity by itself, but it is the property of the
relation between two entities. Hence, the same geometric entity can have several Positions
and Motions at the same time: one for each other entity involved in a Position or Motion
relation.

Motion has three parts: the Position relation, and the relations of Velocity and Acc-

eleration that represent the first- and second-order variations over time of the Position

relation. All geometric entities are compositions of Points, so it suffices, strictly speaking, to
model the Motion of a Point. Motion has different interpretations, as a mapping over time
and/or over space:

• time mapping: the time derivative of the Position of one particular entity gives
its Velocity, and the time derivative of its Velocity gives its Acceleration.

• spatial mapping: two entities of the same type are a Displacement away from each
other, irrespective of where they are, or whether or not they are moving with respect
to each other. So, the Motion maps the first entity onto the second one.

Motion has passive and active semantics:

• passive: the relation between two moving entities has-a set of properties that represent
their mutual Position, Velocity and Acceleration.

• active: a Displacement can be interpreted as an action to move one particular entity
from one Position to another Position.

The following paragraphs introduce the notations and terminology used in this document to
represent Motion.
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Position and Displacement — These are the relations between two Points that represents
where they are with respect to each other in space. Both relations are mathematically equiv-
alent, represented by a Vector, because this is already a geometric relation between a start

point and an end point. The nomenclature Position and Displacement is used to indicate
the following semantic interpretations of the Vector:

• Position: the two Points in the Vector are two Points with a different identity; the
Vector’s geometric interpretation is that of the instantaneous relative position of these
two Points.

• Displacement: the two Points in the Vector are twice the same Point (that is, with
the same identity) but at different moments in time. The time scale is not represented
explicitly, because it is not considered relevant. Only the order over time is relevant.

The notation of the Position of Point “ePoint” with respect to Point “fPoint” is an
obvious extension of that of a Vector, with the tags start and end replaced by contextually
more meaningful synonyms:

{ Position : [{of : ePoint-ID}, {with respect to : fPoint-ID}] }, (3.27)

where ePoint and fPoint are two Point entities. Hence, a Position has a direction

property, equivalent to the orientation property of the equivalent Vector. There exists an
(obvious) inverse relation:8

{ Position : [{of : fPoint-ID}, {with respect to : ePoint}] }, (3.28)

that is, the position of point fPoint from point ePoint. The notation of the Displacement

is a very simple extension to the Vector:

{ Displament : { (3.29)

{Point : Point-ID},

[{start : sPoint-ID}, {end : ePoint-ID}],

}.

Velocity, Acceleration — These are the first and second time derivatives of the Position
relation. The Velocity of Point “ePoint” with respect to Point “fPoint” is denoted as:

{ Velocity : [{of : ePoint}, {with respect to : fPoint}] }, (3.30)

The velocity of a point with respect to itself is a physically valid relation.

3.4.4 Position and Motion relations of a Rigid body

The Motion relation of a Rigid body in Euclidean space is the set of the Motions of all of
the Points in the Rigid body. However, there is the constraint that the Motion preserves
the distance between all these Points, and, hence, also length, angle, area and volume.

8In other words, both Position relations are constrained by a higher-order relation, that of being each
others’ inverse relations.
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Mathematicians have realised that this constraint allows to represent the above-mentioned
possibly infinite set of Motions of all Points on the Rigid body, to a finite-dimensional math-
ematical group structure, irrespective of how many points are considered in the Rigid body.
That group structure has three dimensions in E(2) and six dimensions in E(3). For the
Position part of a Motion, these groups got the names of, respectively, SE(2) and SE(3),
the special Euclidean groups of the Displacements of a Rigid body. For the Velocity part,
the dimensionalities of the groups are the same as for Displacements, and they are denoted
by, respectively, se(2) and se(3), the special Euclidean algebras; “algebra” indeed, because
there is not just the addition operation in the group of Velocities, but also a multiplication
operation, the so-called Lie operator. In all mentioned three-, respectively six-dimensional,
spaces, any Motion relation can be separated into:

• two, respectively three, translational degrees of freedom of one Point that is chosen
arbitrarily on the rigid body.

• one, respectively three, rotational degrees of freedom, independent of whatever choice
of Points or Frames on the rigid body.

This observation was already made in the 19th century, by the French mathematician Michel
Chasles (1793–1881), [18], who formulated9 the following theorem: the most general Dis-
placement for a rigid body is a screw motion, [5, 7, 14, 35], i.e., there exists a line in space
(called the screw axis, [7, 41, 69], or “twist axis”) such that the body’s motion is a rotation
about the screw axis plus a translation along it. This theorem (and hence the screw axis
relation) holds for Velocities too.

Although a rigid body is a composition of points, the Euclidean metric for points has
no equivalent metric on the space of rigid bodies, [45, 52, 53]; in other words, the distance

between two rigid bodies, the length of a rigid body Displacement, and the magnitude of a
rigid body Velocity, are not well-defined properties of the Motion: these values change when
one changes the Point on the Rigid body that is used as reference in the Displacement or
Velocity parts of the representations.

The following paragraphs summarize the notations and relations of the Motion of a
Rigid body.

Position — A Rigid body (or Simplex, Orientation or Frame) is a geometric entity for
which the above-mentioned Rigid body constraint holds. As for Points, the representation
of the Position of a Rigid body or a Frame, is always relative to another Rigid body or a
Frame:

{ Position : [{of : aBody-ID}, {with respect to : bBody-ID}] }, (3.31)

that is, the position of rigid body aBody with respect to rigid body bBody. Similarly for other
combinations of Rigid body or Frame, such as:

{ Position : [{of : aBody-ID}, {with respect to : fFrame-ID}] }, (3.32)

and

{ Position : [{of : fFrame-ID}, {with respect to : gFrame-ID}] }. (3.33)

9The notion of twist axis was probably already discovered many years before Chasles (the earliest reference
seems to be the Italian Giulio Mozzi (1763), [17, 33, 57]) but he normally gets the credit.
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Orientation — The above-mentioned Position between two rigid bodies A and B specifies
only the three translational relative degrees of freedom between both bodies. The missing
three degrees of freedom represent the relative orientation of the two rigid bodies. The
notation is:

{ Orientation : [{of : {Rigid body : aBody-ID}}, (3.34)

{with respect to : {Rigid body : bBody-ID}}]

}.

Pose — This is the name of the composite relation of the Position and Orientation of a
Rigid body. That composition adds no extra semantics, it’s just the set of both composing
relations. The notation is symbolically identical to the Position and Orientation ones:

{ Pose : [{of : {Rigid body : aBody-ID}}, (3.35)

{with respect to : {Rigid body : bBody-ID}}]

}.

Linear velocity—The time derivatives of a Position of a Rigid body. Again, the notation
is symbolically identical to the ones above. The Linear velocity is a Line vector because
it is constrained to point through the Point on the Rigid body whose change in Position

is represented. That choice of Point is arbitrary. Hence, and in general, the same Motion

of a Rigid body can have an infinite amount of Linear velocity attributes. The difference
must be made semantically clear by adding an extra semantic tag to the Linear velocity

model, namely the ID of the velocity reference point that is chosen in the model.

Angular velocity — The time derivative of the Orientation of a Rigid body. Again, the
notation is symbolically identical to the ones above. The Angular velocity is a Free vector

since it does not depend on any choice of Point on the moving Rigid body.

Velocity of a Rigid body — The time derivative of the Pose of a Rigid body. There are
a large number of possible and equivalent representations. For example, the Velocity of at
least three Points on the Rigid body.

Twist — This is a very popular choice to represent the Velocity of a Rigid body, due to
the fact that is requires only the minimum possible number of independent variables to rep-
resent a motion, namely three in 2D and six in 3D. A Twist is indeed the combination of a
Linear velocity vector and an Angular velocity vector. (In a 2D space, the latter reduces
to the choice of a scalar.)

Similar formal models hold for the second-order time derivatives, that is, the time deriva-
tive of a Twist: Linear acceleration, Angular acceleration, Acceleration (or Accel-
eration twist, or Rigid body acceleration). There are two different types of time deriva-
tive of a Twist, hence introducing the need for two extra attributes:

• Eulerian (or ordinary) time derivative: one looks at the matter that flows under one
particular fixed point in space, and reports on the change of velocity observed at that
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place over time. So, the Acceleration is the difference between the Velocities of two
different particles, at the same place in space but at different instants in time.

• Lagrangian (or material) time derivative: one follows one particular point fixed on
a rigid body, reports on the change of that body-fixed point’s velocity over time. So,
the Acceleration is the difference between the Velocities of the same particle at two
different instances in time, and hence also at two different places in space.

The difference between Eulerian and Lagrangian time derivatives is only relevant for Accel-
erations; to derive Velocity from changes in Pose, the Eulerian time derivative and the
Lagrangian time derivative give the same results. Both derivatives also give the same re-
sult for Acceleration from rest, i.e., from zero initial Velocity. Different domains use
these two different definitions, most often without explicit information, which results in non-
composability problems in robotic systems that must integrate different domain choices.

3.4.5 Constraint relations on mereo-topological entities

The previous Sections provide imperative models: the geometric entity or relation is con-
structed by a “recipe”; this Section describes declarative ways to model geometric entities
and relations, that is, the latter are describe by a set of constraints, and a constraint solver is
needed to find or check the entity or relation. The constraint relations make use of only the
mereo-topological semantics; constraint relations on numerical sec:geom-relations-abstract-
data-type]Coordinates values are introduces in the sec:meta-model-geometric-chain]Section
on geometric chains.

Examples of such mereo-topological relations are depicted in Fig. 3.5: a distance be-
tween a Point pPoint-ID2 and a Line Line1 can be interpreted as the shortest distance
between pPoint-ID2 and another point lying on the Line, or as the length of the projection
of pPoint-ID2 on the Line. Table 3.4 and Table 3.5 resume the different interpretations of
linear distances and angular distances.

Intersection (E, A, P):

Cross ratio (E, A, P):

Parallel (E, A):

Orthogonal (E):

Projection (E, A):

{ Projection : [{from : AsSeenBy entity}, {to : FromEntity}, {result : ?projection}]}.
(3.36)

Distance, Length (E): In the Euclidean context, length of a Vector or Line segment (or
the distance between the two Points in these entities) is a property of the Line segment,
with a real scalar value of physical dimension length.
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Angle (E):

A Vector field is a set of one Vector in each Point in (a subset of) space.

Line segment — An unordered set of two Points is enough to represent all the points on
the Line that runs through the two Points in the set; it is also enough the represent all the
points between the two Points in the set, and that geometric entity is called a Line segment.
The notation is

{ Line segment : [ aPoint, bPoint ] }, (3.37)

where a and bPoint are Points.

Line: is an entity that has a axiomatic meaning, in the Euclidean, projective and affine
contexts; that means that one cannot define it formally and completely from more primitive
concepts. So, this document represents (not “defines”. . . ) a Line as the join of two Points,
that is, the linear combination of the start and end points in a Line segment.

Half line — The positive or negative part of a Line, derived from the defining Line -

segment.

Half space — This contains all the points in space which lie on one side of the supporting
Line. The defining Vector of the Line defines the orientation attribute of the Half space.
A common alternative orientation representation is to give one single Point outside the
Line, to represent the interior of the Half space.

(TODO: distance between Lines, [42]?; harmonize symbols of points and lines with previous
subsections in this Chapter.)

Frame_AsSeenBy

Point_WithRespectTo

Point_A

1.3 3.4

2.5

1.8

y

x

Figure 3.4: The three geometrical entities involved in
a generic Coordinates abstract data type (in a 2D
case): the Point (“Point A”) whose coordinates are be-
ing represented; the entity with respect to which the
Position coordinates are represented (in this case, this
is also a Point, namely “Point WithRespectTo”); and
the numerical values of the coordinates are as seen by

a reference Frame, with name “Frame AsSeenBy”. The
coordinate values are x:1.1 and y:1.3.

3.4.6 Abstract data types for Coordinates of Position and Motion

An abstract data type (or coordinate model, or coordinate representation) adds (i)
numerical values to the mereo-logical models of the previous Sections, and (ii) the semantic
tags to identify the correct interpretation of those numbers. Recall that for each geometric
entity and relation, there exist multiple equivalent possibilities to represent its Motion, and
for each of these possibilities one can make multiple choices for coordinate model. In general,
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such choices already exist for each of the three essential semantic parts of a Coordinates

model for a Point (Fig. 3.4 and Table 3.1):

• the identity (“Point A”) of the Point whose Coordinates of Motion (i.e., Position or
Velocity) are modelled.

• the identity (“Point WithRespectTo”) of the Point with respect to which the first
Point’s Motion is modelled.

• the identity (“Frame AsSeenBy”) of the Frame in which the Motion Coordinates nu-
merical values are computed. In other words, these numbers represent the Motion as
seen from the Frame. They are computed as the Projection of the Motion’s Vector
on the axes of the Frame.

{ Coordinate_Point_Entity_Frame_Array_Meter :

{ { relation: Position },

{ of: { Point: a} },

{ with_respect_to: { Entity: e} },

{ as_seen_by: { Frame: F} },

{ coordinates: [ {F.x: 1.2}, {F.y: -0,1}, {F.z: 3.2} ] },

{ units: meter },

{ ID: Coordinate143sGa },

{ MID: Coordinate_Data_Structure },

{ MMID: { Coordinates, Euclidean_space,

Point, Entity, Frame, QUDT } }

}

}

Table 3.1: Example of Coordinates model, in this case the Position of a Point.

For the specific case in which one represents the Motion of a Rigid body by a Twist, two
extra semantic tags are needed (Table 3.2):

• the screw tag, identifying the Linear velocity and Angular velocity vectors in the
Twist model.

• the identity of the Point that serves as velocity reference point of the Linear velocity

part of the Twist.

Some common choices of velocity reference point are:

• a point on the entity whose Motion is represented.

• a point on the with respect to entity.

• the origin of the as seen from Frame.

• a point on the screw axis.

• a point that is relevant for the robot’s current Task.
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{ Coordinate_Twist_Frame_Frame_Array_Meter :

{ { relation: Twist },

{ screw: [ linear_velocity: v}, { angular_velocity: w} ] },

{ of: { Frame: b} },

{ with_respect_to: { Frame: r} },

{ as_seen_by: { Frame: F} },

{ velocity_reference_point: as_seen_by_frame_origin },

{ coordinates: [ {v: [ {F.x: 1.2}, {F.y: -0,1}, {F.z: 3.2} ] },

{w: [ {F.x: 0.2}, {F.y: 0.8}, {F.z: -2.2} ] } ],

{ units: meter, seconds },

{ ID: Coordinatehd4if7 },

{ MID: Coordinate_Data_Structure },

{ MMID: { Coordinates, Euclidean_space,

Twist, Frame, QUDT } }

}

}

Table 3.2: Example of a Coordinates model of the Twist of a Frame "b" with respect to a
Frame "r". The screw representation has a Linear velocity and an Angular velocity

part. For the Linear velocity and Twist of a Rigidbody, the extra semantic tag
velocity reference point is needed; its value is one out of an enumerated set of possi-
bilities: of point, on screw axis, as seen by frame origin, with respect to point, etc.

Because (almost) all geometric entities and relations are compositions of the Point entity,
defining the abstract data types for all these entities and relations is rather straightfor-
ward, using the approaches of higher-order relations (Sec. 1.2.3) and semantic ID meta data
(Sec. 1.2.5), respectively; Table 3.1 shows examples. So, the complexity of modelling abstract
data types does not come in the first place from the inherent complexity of the models, but
from the large number of different but equivalent choices that are commonly used in practice.
This freedom of choice is often the source of incompatibility, and of lack of composability, of
models and implementations created by independent development teams, for the simple rea-
son that not all choices are made explicit, and are not available in formalized form via which
system software can check semantic compatibility at runtime, and introduce the appropriate
model transformation when an incompatibility is identified. Table 3.3 summarizes the most
common choices; the arguments in each composition come from the following list:

• the name of the composition relation (from Table 3.3). For example, Position, or
Twist.

• semantic ID meta data. This contains entries like Geometry, E(3), and QUDT.

• the list of the arguments in the relation, each representing a composed entity in the
relation. This includes the three or four semantically tagged entities, for example a
Frame, that serve as references for, both, the with respect to and as seen from fields.
Each argument can be a composition relation in itself, with its own semantic ID. A
common practice is “to raise” meta data that is the same in different arguments, to the
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Geometrical relation Abstract data type

Position Position vector

Orientation

Euler-axis angle array
Rotation matrix
Euler angles array
Roll-Pitch-Yaw angles array
Quaternion array

Pose

Homogeneous transformation matrix
Finite displacement twist array
Screw axis array

Linear velocity Linear velocity vector

Angular velocity

Angular velocity vector
Rotation matrix time derivative
Euler angle rate array
RPY angle rate array
Quaternion rate array

Homogeneous transformation matrix time derivative
six-dimensional twist array

Twist Pose twist array
Rigid body velocity Screw twist array

Body-fixed twist array
Instantaneous screw axis array

Table 3.3: Commonly used abstract data type representations for geometrical relations.
(TODO: update and complete.)

highest level of composition in the relation; for example, it makes sense to use the same
physical dimensions for all quantities in a composite model.

• the key-value pairs to represent the numerical values for each of the entities. For exam-
ple, for the Position of a Point that means a set of named scalars values on the real
line:

{ [ x: { type = "real" }, y: { type = real" } ] },

in 2D spaces, and a triplet

{ [ x: { type = "real" }, y: { type = real" }, z: { type = real" } ] },

in 3D spaces. The symbol "x" in the Position relation must refer to the argument
of the reference with the same name. That is why its semantics is that of a “symbolic
pointer”, because in the context of abstract data types, “to represent” just means “to be
able to refer to symbolically”. For example, an application can already check formally
whether the "x", "y" and "z" fields in a model indeed all have the correct type of
"real". It can also add extra constraints, for example, a range limit on the "z" field.

No concrete numerical values are given in the representation (yet), just their symbolic
type names. The numbers get filled in later, in the next level of composition, namely
that of the Coordinates data structures.

• a set of key-value pairs that describe the properties of the composition relation. (Or,
equivalently, the attributes that the composition relation gives to the entities it com-
poses.) For example, the start and end tags for the two points in a Line segment.
And the physical dimension of the numbers: length, length/time, angle,. . .
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No physical units are encoded, yet, just their symbolic names. Physical units, such
as meter or radian, are filled in later, as attributes in the above-mentioned concrete
Coordinates data structures.

There is seldom a unique abstract data type representation for a given geometric concept.
For example, it is possible that more than three reference values are used to represent a
geometric entity in 3D space; That means that there must be a constraint that links the four
or more reference values, and that constraint must be modelled too. (The advocated way
to do this is by refering to a meta meta model in the Semantic ID where the constraint is
formally encoded.) Another example comes from the fact that the abstract data type contains
symbolic information about the reference with respect to which its model has meaning; that
involves the choice of a reference Frame, and while Cartesian reference frames are a common
choice, some use cases are better off with variants like, for example, polar, cylindrical or
spherical references. In a projective space, one uses homogeneous coordinate representation,
allowing also the points at infinity to be represented by finite coordinate values. In an affine
space, one uses Barycentric coordinates, as soon as a Simplex is given as the basis for the
coordinates.

3.4.7 Operators on Coordinates

Because Coordinates are not unique attributes of Motion of geometric primitives, there
exist many transformations between equivalent Coordinates representations. This Section
describes the different categories of such transformations, and the operators with which to
realise them.

Changes of Coordinates under changes of:

• with respect to: (TODO)

• as seen by: (TODO)

• velocity reference point: (TODO)

Addition of Velocity:

• the Coordinates of two Twist representations can be added, numerically, but only if
all the semantic meta data of both representations are identical: same geometric entity,
same with respect to, same as seen by and same velocity reference point.

• non-Twist representations of Velocity do not allow the numerical addition of their
Coordinates representations. For example, for the representation of the Velocity of a
Rigid body by means of the Velocity representations of three or more of its Points,
it does not make sense to add individual Point’s Velocity coordinates, because there
are constraints to be satisfied between these Velocity representations.

From Velocity to Position, and back:

• the exponential map from Velocity to Positionmaps a Velocity to a Displacement
(that is, a change in Position) of a geometric entity that corresponds to applying the
Velocity on that entity for one unit of time.

• the logarithmic map is the inverse of the exponential map: it maps a Displacement

to the Velocity that is required to cover the Displacement in one unit of time.
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3.4.8 Data structures for Coordinates

A data structure model adds to things to the abstract data structure model:

• the Coordinates data structure of a concrete programming language with a set of
numerical values representing the quantity of each coordinate. In the example of
Fig. 3.4, the coordinates are an array with two values, the projections of the Point’s
Position onto the x and y axes of a Frame.

• the semantic tags of the Physical units of the numerical values; for example, meter
or radian.

The mapping from the abstract data type to the coordinate data structure is one-to-many,
because of the choices that can be made in, for example, (i) the naming and the ordering
of the values in the data structure, (ii) the reference Frame, (iii) the physical units of each
numerical value, (iv) how the data access is performed (e.g., via named keys or via anonymous
indexing), (v) whether the numerical values of the coordinates are projections of the point
on real-valued coordinate axes, or integer-valued indices on a grid,10 or (vi) whether several
coordinate representations share the same units and reference frame.

One pragmatic approach in the choice of a coordinate representation is to use an already
existing standard for the data structure part of the Coordinates model. Prominent exam-
ples are Hierarchical Data Format (“HDF5”), GeoJSON, or Geography Markup Language;
Sect. 3.9 gives a more detailed overview. Standards like HDF5 cover multiple levels of ab-
straction, i.e., the abstract data type, data structure and storage representations.

Important facts about coordinate representations are:

• a Point has no (need for a) coordinate representation; a unique symbolic Semantic ID

suffices.

• coordinates are needed in the quantitative representation of the Position of a Point.
The coordinates represent the relative position of the Point to other geometric primi-
tives.

• the same Point can be an argument in multiple Position data structures at the same
time.

• the relation between a Point and the coordinate representation of a Position, is not
that the Point has-a data structure of coordinates, but the other way around: the
Position has has-a relations to, both, the Point abstract data type, and the data
structure of the numerical coordinate values.

(TODO: Coordinates representations of all other geometric entities and relations.)

3.4.9 Constraint relations on Coordinates — Geometric chain

Robotic applications must keep track of the relative Positions and Motions of several geo-
metric entities, while (i) some of these parameters are observed by sensors, and (ii) some of
them are coupled by a model that, in general, is a graph of relative Position and Motion

constraint relations. The combination of observations and constraint models allows the

10The TopoJSON standard uses this approach.
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line-point

distance

proj.

(a) Line 1 is expressed in {o1}, Point 2 in {o2}.

distance

between lines

proj.
proj.

(b) Lines 1 and 2 are expressed in {o1} and {o2},
respectively.

Figure 3.5: Graphical representations of the five possible relations between a point and a
line 3.5a, and between two lines 3.5b.

Table 3.4: Summary of linear distance relations between point and line entities.

point line

point point-point distance

line
line-point distance

projection of point on line

distance btw lines

projection (p1-f1)

projection (p2-f2)

plane point-plane distance

robot to work with a “sufficiently full” world model, even when it can only observe a subset
of all parameters in that model. An example from human driving: drivers have a mental
model of a particular layout of traffic lights, traffic signs, and ground markings, and when
they see one or more of those they can infer where to expect the others, even without spending
perception efforts in that direction. Another example is a robot that estimates its Position
with respect to a cup on a table (Fig. 3.6) by (i) observing how it moves with respect to the
table, and (i) remembering where the cup was on the table previously.

Figure 3.6: A Geometric chain rep-
resenting the relative Poses of a cup,
a block and a table, where the con-
straints between them are of the
on-top-of type.
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Table 3.5: Summary of angular distances relations between versor and plane entities.

versor plane

versor angle btw versors

plane incident angle angle btw planes

Figure 3.6 shows Frames as representations of all geometric entities involved, but the con-
straint relations can also involve less than six-dimensional relations. For example, only a
two-dimensional constraint can be used to represent that the block is resting on the table:
one of its bottom Points must lie in the top Polygon of the table.

The simplest constraint graph is a chain of relations, sometimes called a Geometric chain:
there is a sequential order of some kind in which poses and their time derivatives are to be
computed. For example, a cup can be placed on a block, that is itself lying on a table, that
itself is standing on the floor, which itself is located in a particular room (Fig. 3.6). This
situation represents the common case where the motions of several (rigid) bodies have rela-
tive motion constraints due to natural causes, such as gravity and the stiffness of the bodies’
materials. A later chapter describes the case of engineered motion constraints, in the form
of “robots” or Kinematic chains; any Kinematic chain is also a Geometric chain, but not
vice versa.

3.5 Meta models of mechanical dynamics: composing force
and motion

The previous Section considered only the Motion behaviour of geometric primitives (Position,
Displacement, Velocity and Acceleration); this Section adds the dynamics behaviour re-
lations of the mechanical domain, that is, the relations between force and Motion, and any
composition of such relations. In other words, in what ways can forces influence the motion
of rigid bodies?

3.5.1 Abstract data types and data structures for dynamics

The abstract data type for a Force is (formally but not semantically) equivalent to that of a
Twist: it has Coordinate representations that look very similar, but only the semantic tags
for the same parts are different. It is sometimes given the name of Wrench, and is composed
of the two parts of a screw: a force Vector in 2D or 3D, and moment Vector in 1D or 3D,
respectively.

A similar observation as with Twists was already made in the early 19th century, by the
French mathematician Lous Poinsot (1777–1859), [64], who formulated the following theorem:
any system of forces applied to a rigid body can be reduced to a single force, and a couple in a
plane perpendicular to the force. This is a formulation of the screw axis in disguise. Table 3.6
shows an example of a Force representation using the screw axis model.

(TODO: complete formal semantics, with examples. Including transformation and mapping
operators.)
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3.5.2 Motion as result of constrained optimization — Gauss’ Principle

The motion of a rigid body under the influence of forces (including gravity) is represented by
theNewton-Euler equations. This is a procedural approach to describe motion; declarative
alternatives exist too, via the general, differential-geometric concept of a geodesic motion on a
manifold equipped with a metric, the latter being the mass distribution in the manifold; or via
the dedicated methods of d’Alembert [23], Lagrange [49], Hamilton [38], Gauss [32], Jourdain
[44] or de Maupertuis [25]. The declarative (or “variational” or “constrained optimization”)
approaches are overkill for the free motion of a rigid body, but become practical whenever
constraints occur on the free motion of the body, such as via mechanical contacts.

The most generic “Principle of Least Constraint” is that of Gauss: it provides an op-
timization relation between (i) the instantaneous acceleration of a non-constrained point or
rigid body, (ii) the geometrical properties of a motion constraint, (iii) the instantaneous ac-
celeration that satisfies that motion constraint, and (iv) the constraint force.

The major modelling step in this context (that is, the composition of the inertial effects of
two rigid bodies connected by a frictionless and rigid one-degree of freedom motion constraint)
is the topic of Chapter 4.

3.5.3 Energy relations — Bond Graphs

The previous Sections describe knowledge relations about how force and motion are coupled
via the “dynamics equations” of a Point or a Rigid body. These relations represent the
instantaneous coupling between force and motion, but any mechanically moving system has
state entities that determine the force-motion couplings over longer periods of time. energy
is a major state entity, that appears at all time scales of Motion:

• Acceleration energy: the map of mass and acceleration into a form acceleration

times mass times acceleration. Hence, it is linear in the mass and quadratic in the
acceleration. This form of “energy” can not be stored or dissipated, but is the measure
that is optimized in Gauss’ principle, to find the instantaneous motion of a constrained
point or rigid body.

• Kinetic energy: the map of mass and velocity into a form velocity times mass

times velocity. Hence, it is linear in the mass and quadratic in the velocity. This is
one way of storing energy in a moving point or rigid body.

• Potential energy: the map of mass and displacement/position into a form g(mass,

displacement), which is linear in the mass but can be nonlinear in the displacement.
Two major examples in mechanics are: the potential energy of a mass in the gravity
field, and the potential energy of a deformed spring. This is another way of storing
energy in a moving point or rigid body.

• Work: the map of force and displacement into a form force times displacement.
Hence, it is linear in both arguments. This mapping has the physical dimensions of
energy, and can not be stored or dissipated, but is a measure to represent how much
energy is needed to realise a particular non-instantaneous, finite displacement motion
of a point or rigid body.

• Damping/Friction: the map of force and velocity into a form h(force, velocity.
It is linear in force but can be nonlinear in velocity. This mapping has the physical
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dimensions of energy, and represents energy dissipated in an instantaneous motion via
mechanical friction or damping.

Physics has resulted in generic composition meta models that represent the (instantaneous)
exchange of energy between rigid bodies (or non-mechanical equivalents in other system dy-
namics domains such as electromagnetism, thermodynamics, or chemical engineering). Bond
graph theory is major example11 of such a meta model, with its foundations built on the flows
of energy via Block-Port-Connector mechanism.

3.5.4 Differential geometry: manifold, (co)tangent space, linear forms

Differential geometric entities and relations have been introduced superficially earlier in this
document, but now the domain of mechanical dynamics provides a good context in which the
complexity of a differential geometric representation can add value to the modelling. Indeed,
differential geometry has a rich nomenclature and formalisations with which the modeller
can differentiate unambiguously between entities and relations that are often confounded in
mainstream engineering contexts, and hence to bring structure in the models based on a solid
scientific foundation. Here is an overview of the entities and relations to be used in models
of the dynamics of mechanical systems:

• manifold M(P, p) of Positions p of a Point P .

In robotics, a “point” in the manifold can also be a line, a plane, and often also a
Rigid body. These manifolds are not metric space, since “the” distance between two
elements in those manifolds has no unambiguous meaning.

• tangent space TM(P, p, v) of all Velocities v of the Point P at a given Position p

in the manifold M .

• second-order tangent space TTM(P, p, v, a) of all Accelerations a of a Point P

at a Position p in the manifold M that has the Velocity v in the tangent space at
that Position . There is a constraint between p, v and a, in that a is the acceleration
of P at p when v is already the velocity of the same Point P at the same Position p.
This constraint relation is sometimes refered to under the name of “jet”, [22].

• the composition of Motion relations has the following properties:

– Displacement compositions form a multiplicative group in the manifold M . (So,
not the more familiar additive one!)

– Velocity compositions form an additive group on TM . Is has no natural metric,
but does have a natural origin, namely the “zero velocity”.

– Acceleration composes additively on TTM(P, p, v), and depends nonlinearly on
the Position p and the Velocity v. So, it is not really a group operation, just a
continuous manifold.

11Unfortunately, its designers did not have the same separation of concerns principles in mind when formal-
izing the theory, which has led to too much coupling between the mathematical and the abstract data type
levels of abstraction.
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• co-tangent space TM(p, f) of linear forms f at Position p that map Velocities

v in the tangent space at p into a real scalar value w:

f : TM(p)→ R : v 7→ f(v) = 〈f, v〉 = w. (3.38)

In mechanics, f is called a Force, and the pairing w of force and velocity is Power, that
has the physical units of Energy per unit of time.

• mass (inertia)M is a linear mapping from a Velocity v from TM onto an element
p from TM , called the Momentum of the massM with the Velocity v:

M : TM(p)→ TM(p) : v 7→ M(v) = m. (3.39)

The relation between momentum m and force f is Newton’s law: force is the change of
momentum over time. It is a conserved quantity.

The mass can also serve as a metric on the manifold of velocities, by combining the
momentum map with the force-velocity pairing, applied to the same velocity. The result
is indeed a bilinear form that maps that Velocity v from TM onto a real scalar w:

M : TM(p)→ R : v 7→
1

2
〈M(v), v〉 = w. (3.40)

The resulting energy is the Kinetic energy stored in the moving mass. It can serve as
a metric on TM [16].

A mass M can also serve as a metric on TTM , the space of Accelerations, and in
this case the scalar is sometimes given the name of Zwang [32], or acceleration energy
[83].

• damping D is a (not necessarily linear) mapping from a Velocity v from TM onto a
linear form fd (“friction force”) in TM .

D : TM(p)→ TM(p) : v 7→ D(v) = fd. (3.41)

Hence, the pairing of the friction force fd with the velocity v which causes the friction
maps into a real scalar w:

D : TM(p)→ R : v 7→ D(v) = 〈fd, v〉 = w. (3.42)

The resulting energy is Heat lost in friction; it has physical units of Energy. Damping
can only serve as a metric on TM when it is linear.

• elasticity K is a (not necessarily linear) mapping from a Displament d between two
Positions on M onto linear form fe (“elastic force”, “spring force”) in TM .

K : M(p)×M(p′)→ TM(p) : (p, p′) 7→ K(p, p′) = fe. (3.43)

Hence, the pairing of the elastic force fe with the displacement (p, p′) which causes it
maps into a real scalar w:

K : M(p1, p2)→ R : Displacement(p, p′) 7→ K(p, p′) = w. (3.44)

The resulting energy is the Potential energy stored in a spring. Because the limit of
a Displacement (p, p′) is a Velocity, K can serve as a metric on TM .
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• impedance: the combination of one or more of the relations mass, damping, and/or
stiffness. In general, impedance relations are non-linear, but in many engineering
contexts, their linear approximations suffice:

f = M a, (3.45)

f = Dv, (3.46)

f = K∆p. (3.47)

{ Coordinate_Force_Frame_Array_Newton_Meter :

{ { relation: Force },

{ screw: [ force: f}, { moment: m} ] },

{ on: { Frame: b} },

{ as_seen_by: { Frame: r} },

{ moment_action_point: as_seen_by_frame_origin },

{ coordinates: [ {f: [ {r.x: 1.2}, {r.y: -0,1}, {r.z: 3.2} ] },

{m: [ {r.x: 0.2}, {r.y: 0.8}, {r.z: -2.2} ] } ],

{ units: newton, meter },

{ ID: Coordinatehd4if7 },

{ MID: Coordinate_Data_Structure },

{ MMID: { Coordinates, Euclidean_space,

Force, Frame, QUDT } }

}

}

Table 3.6: Example of a Coordinates model of the Force on a Frame "b" with respect to a
Frame "r", and using the screw representation.

3.6 Composition relations: Map as set of geometric entities

The sections above used sets of geometric entities, more in particular Points and their compo-
sitions. These compositions are denoted by square brackets "[" and "]", and they represent a
collection. (An equivalent name is “set”.) The Polyhedron is clearly already a collection
of collections, and this is the primary mereological compostion of all geometric enti-
ties of Secs 3.4.1–3.4.2. However, there exist many geometric entities and relations that do
not conform-to the Point-Polyline-Polygon meta model; for example, spheres, ellipsoids
and cylinders; or clothoidal and spline curves. Each of those geometric types can also be
given meta models, and each instance of these types can be connected to an instance of the
Point-Polyline-Polygon type. So, the concept of collection of collections is a fun-
damental and generic composition relation for all sorts of meta models, especially but not
exclusively, the geometric meta models.

This document uses “Map” as the generic name for any collection of collections of
geometric instances, of whatever type. By definition, a Map can just be a set of other Maps.
Figures 3.7–3.8 show examples of Maps (with only instances of the Point-Polyline-Polygon
type). The Maps represent only some geometry, but the captions with the Figures already
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interpret this geometry in the context of an application; some of those additional semantic
tags are described in Sec. 3.7.

That Section, and other later Sections, will add constraints (topological, geometric, as
well as other types of constraints) to the mereological sets in Maps. According to the best
practices advocated in this document, such extra semantics require new entity-relation meta
models on their own, and those compositions will not (just) be called “Maps” anymore.
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3.7 Composition relations: Semantic map, World model

A Semantic map is a Map composed with semantic tags (or “annotations”, or “meta data”)
for some of the Map’s entities or relations. The meaning of the tags is relevant in the context
of the Semantic map model ; the simplest versions uses tag names that hint at application
contexts, “stored” implicitly in the “background knowledge” of humans. Examples of such
Semantic maps are bus or metro lines, the public road map, or a ski area, all have their own
specific tags: a metro station does not appear in a ski resort, while, conversely, a green ski
trail does not make sense in a metro system, although both types of world models make use
of the same geometric primitives.

An important topological constraint that a Semantic map adds to a Map model is that
of Layer, View, and Model diff: collections of geometric primitives that “make sense” to
be referred to together.

When the meaning of the semantic tags is modelled in the context of this document’s
sec:metameta-task]Task meta model, a Semantic map becomes a World model. Figures 3.9–
3.10 give examples, where the floor plan semantic tags get meaning in an application that
help robots navigate through an indoor environment.

The composition relations in world models are trivial and mereological, and not restricted
to just the geometric primitives introduced above. Relevant extensions in the context of this
document are those of geometric chains and of kinematic chains, but also tags that refer to
the parts in the Task meta model (plan, control, perception and monitoring). This docu-
ment also assumes that a World model contains models of the state of the system it models;
or rather, of collections of system states, because many applications need to represent
various versions of reality: versions measured with different sensor sets; actual and desired
versions for planning; multiple hypothesis of the world in perception; etc.

(TODO: resolutions, state of a world model, stream of (diffs) of state.)

C1

C1-P-interior

Figure 3.9: The Map of Fig. 3.8 is ex-
tended with one particular extra area
that receives the semantic meaning of
a corridor. That is, the semantic
tag carries an intention of the pur-
pose of that area.
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Figure 3.10: Map of the motion and
perception areas that are relevant
for a particular Task in the Map of
Fig. 3.9. In order to follow that (vir-
tual) “corridor”, the robot software
should take into account the light-
green “control” constraints, and the
light-red areas that are best fits for
the robot’s “perception” capabilities.

3.8 Uncertainty in geometric entities and relations

An uncertainty model represents the variability over the Coordinates representation (nu-
merical, category, symbolic class,. . . ) of a geometric entity or relation. It adds the extra
semantics of a Probability distribution, with abstract data type, numerical Coordinates
representation, and a representation of physical units and dimensions.

An example is to represent the uncertainty on the Coordinates of the Position of a
Point in Euclidean space with a Gaussian probability distribution (also called “normal distri-
bution”), which can be numerically represented by its mean vector and its covariance matrix,
Fig. 3.11. This model is also a composition of mathematical models (vector and matrix);
additional constraints, like that the covariance matrix must be symmetric, are not modelled,
for now. Similarly, a Gaussian mixture model can be created by composing an array of the
presented Gaussian models with the constraint used for scaling them appropriately.

There is little choice, in how to represent uncertainties on Position. The situation is
more complex for most compositions of two or more Points, such as Line segments, Lines,
areas, Frames,. . . For example, representing the uncertainties on a Line segment by means
of Gaussian uncertainties on its two end points is different from representing it by means of
a Gaussian uncertainty on its start Point together with an uncertain direction Vector.

3.8.1 Sources of uncertainty

Sources of uncertainties can be, but are not limited to:

• uncertainties by construction, which are those uncertainties that represent approx-
imations over the description of the geometric entity attached to it. This is the case for
mechanical constraints, such as the coupling tolerance in a joint;
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instance-of

conforms-to

{

  "id": "http://robmosys.eu/schemas/uncertainties/gaussian#",

  "$schema": "http://json-schema.org/draft-04/schema#",

  "type": "object",

  "description" : "Gaussian Distribution",

  "properties": {

   "Mean" : { 

     $ref": "http://robmosys.eu/schemas/math/vector#",

     "description" : "mean vector"

    },

   "Covariance" : { 

     "$ref": "http://robmosys.eu/schemas/uncertainties/cov_mat#",

     "description" : "covariance matrix"

    },

   "Dimension" : { 

     "type" : "integer",

     "description" : "dimension of the mean vector and the

                      covariance matrix"

    }

  },

  "additionalProperties": false,

  "required": [ "Mean", "Covariance", "Dimension" ]

}

Model

{
  "Mean" : [2.1,5.72],
  "Covariance" : [[0.14,1.2],
                  [1.2,2.37]],
  "Dimension" : 2
}

Data

http://json-schema.org/draft-04/schema#

Meta-model

Figure 3.11: A valid data instance of a JSON-Schema model representing a Gaussian distri-
bution. The schema is a composition of other schemas (for vectors and covariance matrices)
and includes a few constraints on the data structure, such as the values required for the vali-
dation of the JSON document. Moreover, the schema conforms-to a specific meta-model of
JSON-Schema.

• sensor noise, which is a property of the sensor but can be influenced by other factors
such as environmental condition or robot motions;

• process noise, which represents the uncertainty in the modelling of a behaviour.

• categorical confusion, which represents the uncertainty in knowing to which category
a particular entity belongs.

3.8.2 Covariance of a Frame has no meaning

An important mathematical fact is that SE(3) does not have a bi-invariant metric; in
engineering terms this means that it makes no sense to talk about the “distance” between
two Frames or “to add or subtract” two Frames, or to compute their “mean”. Hence, also
the “covariance matrix” on rigid body Motion or Force is void of any physical meaning.
In practice this means that one always must introduce a a weighing factor to balance the
physical dimensions of the translational and angular parts, and this weighing factor is always
arbitrary.

A representation of the uncertainty on a Frame, with consistent physical meaning, consists
of choosing three Points on the Frame (e.g., the Point at the Frame’s origin and the end

Points of two of the Frame’s three Cartesian unit Vectors), and adding a Position covari-
ance matrix to the coordinate representations of all of them. This results in a non-minimal
representation of the uncertainty; the constraints that have to be added reflect the facts that
the two Vectors must have unit length and are orthogonal. Of course, this representation also
introduces an arbitrary weighing between translation and orientation, albeit in an indirect
way, via the choice of which points to select in the representation.
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3.9 De facto meta model standards for Coordinates

Including specific built-in datatypes provided by different programming languages, there are
several digital data representation models (and tools) available, each one covering a (set of)
specific features or use-cases. In most cases, a digital data representation model can be
described by means of an Interface Description Language (IDL), with the purpose of being
cross-platform, and/or decoupling from the programming language that implements a certain
functionality, thus allowing communication between different software components.

Section 2.12 gives an overview of common standardized “host languages” that can (hence)
also be used to model Coordinates representations But it is common to find a digital data
representation format (meta-model) dedicated to a specific framework or communication
middleware (e.g, CORBA, DDS ); in the latter case, the digital representation instance is also
called Communication Object. Nevertheless, the relations between the data, its digital data
representation model, and the meta-model used to define a specific data represention holds
among the different alternatives, as depicted in Figure 3.12; a concrete example is discussed
in Figure 2.18.

The following Sections explain the popular Coordinates representation approaches in
robotics.

Instance

concrete data
x=1, y=2, z=3

Model
x is number
y is number
z is number

 

Meta-model
ASN.1 language
ROSMSG format
JSON Schema

instance-of

conforms-to
Figure 3.12: Digital representation models: a
data structure in software is an instance-of

a digital data representation model, which
is a formal description that conforms-to a
meta-model. A concrete example is shown in
Fig. 2.18.

To evaluate the positive impact of a digital data representation meta-model (and its
underlying tools) as bones of a composable software solution, the following aspects must be
evaluated:

• expressivity of a meta-model to describe different properties over the data, including:

– basic, built-in data types available;

– possibility to indicate constraints on the data structure;

– customisation over the memory model to store the data (instance of the model);

• validation: availability of a formal schema of the digital data model, meta-model and
tools to validate both data instance and model schema;

• extensibility: the possibility to extend (by composition) the expressivity level of a
digital data representation model;

• language interoperability (also called neutrality): the capability of a model of being
language-indipendent; this requires a specific compiler to generate code-specific form of
the digital data representation model;
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• self-describing: optional capability of injecting the model in the data instance itself
(meta-data), or at least a reference to it; this enables reflection and run-time features.

Below follows a non-exhaustive list of those models, with a special attention to models used
in robotics.

Position Position Vector 

Symbols:

X is number
Y is number
Z is number

Geometric 

Relationship

(concept)

Coordinate 

Representation

Choices: digital data 

representation

meta-models

Digital Data 

Representation

Models

Position ::= SEQUENCE {

   x REAL,

  y REAL,

  z REAL

}

Datatypes

C
o
m

p
il
e
r

choice

choice

choice

geometry_msgs/Point

float64 x;

float64 y;

float64 z; C
o
m

p
il
e
r

order 

index

ROS MSG

ASN.1 Position ::= SEQUENCE {

  values SEQUENCE(SIZE(3)) OF REAL

}

typedef struct {    

    double arr[3];

} Position;

typedef struct {

    double x;

    double y;

    double z;

} Position;C
o
m

p
il
e
r

named

Python/C++ Class,

etc

C
h
o
ic

e
: 
in

d
e
x
in

g

named

x : index(1)
y : index(2)
z : index(0)

e.g.,

Linear Distance

Physical Units

(concept)

 

X in [m]
Y in [mm]
Z in [m]

SI -> [m]

choice
dimension

links

Figure 3.13: From geometric relations to digital data representation: choices for the grounding
of the concept of Position.

3.9.1 ROS Messages

The ROS message is a digital data representation meta-model developed for the ROS frame-
work, aimed to describe structural data for serialisation and deserialisation within the ROS
communication protocol, namely ROS topics, services and actions. Precisely, the (non for-
malised) meta-model is strongly coupled with the chosen ROS communication pattern:

• ROS messages (msg format) for streamed publish/subscribe ROS topics;

• ROS services (srv format) for blocking request/reply over ROS;

• ROS actions (action format) for ROS action pattern.

The need of having a different data model for each communication mechanism provided re-
duces the degree of composability of the overall system, enforcing the component supplier
to a premature choice. However, it is possible to compose message specifications from exist-
ing ones, such as services and action models are built starting from messages models. The
expressivity of a ROS message description is limited with respect to other alternatives (e.g.,
ASN.1, JSON-Schema): it allows to specify different types for numerical representations, (e.g.,
Float32, Float64 for floating-point values) but there is no support for constrains over a nu-
merical value, nor specific padding and alignment information. Moreover, there is no built-in
enumeration values, which is usually solved with few workarounds12. However, default val-
ues assignment is possible in the ROS message models. ROS messages are self-describing by

12An UInt8 type with unique default value assigned for each enumeration item.
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means of a generated ID (MD5Sum) based on a naming convention schema of the message
name definition and a namespace (package of origin). Language-neutrality is provided by the
several compilers available within the ROS framework. However, there is no efficient encoding
mechanism applied, reducing the compilation process to a mere generation of handler classes
for the host programming language. Despite the technical shortcomings of the ROS messages,
they are the likely most used digital data representation model in the robotics domain, due to
the large diffusion of the ROS framework (which does not allow another data representation
mechanism13).

3.9.2 RTT/Orocos typekits

The RTT/Orocos typekits for geometry are digital data representation models directly grounded
in C++ code, which are necessary to enable sharing memory mechanisms of the RTT frame-
work. However, it is possible to generate a typekit starting from a digital data representation
model if a dedicated tool is supplied. For example, tools that generate a typekit starting from
a ROS message definition exists.

3.9.3 SmartSoft Communication Object DSL

The SmartSoft framework provides a specific DSL based on the Xtext DSL tool of the Eclipse
Modeling Framework. It describes a digital data representation for the definition of primitive
data types and composed data-structures. The DSL is independent of any middleware or
programming language and provides grounding (through code generation) into different com-
munication middlewares, including CORBA IDL, the message-based Adaptive Communica-
tion Environment14 (ACE), and DDS IDL. Moreover, the tool designed around the SmartSoft
Communication Object DSL allows to extend the code-generation to other middleware-specific
or language-specific representations.

13It is possible to have other representations over ROS messages, e.g., JSON documents, by using a simple
std msgs/String message.

14see http://www.cs.wustl.edu/~schmidt/ACE.html
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Chapter 4

Meta models for a kinematic chain
and its instantaneous motion

One way to describe the motion of a robot is as the instantaneous transforma-
tion of energy between the robot’s motors (in the so-called “joint space”) and
its various end effectors (in the so-called “Cartesian space”). The mechan-
ical structure of the robot’s Kinematic chain thereby acts as the physical en-
ergy transformer. Each kinematic chain constrains the rigid bodies it connects
mechanically, and this constrained behaviour is a semantic extension of the
Geometric chain: the cause of the constraints is related explicitly to mechanical
entities. The major semantic contribution of this Chapter is to model (i) the types
of motion constraints, (ii) the abstract data types that model their coordinates,
and (iii) the behavioural relations of mechanical dynamics.

The next set of extensions make the link with the task meta model: (i) the Forces
in the actuators of the chain are task resources, (ii) the Motions and Forces of
the chains’ Rigid bodies are task capabilities, and (iii) Attachments allow to add
Force and Acceleration constraint models. Together, these semantic entities
suffice to specify any type of instantaneous motion that is physically allowed by
the kinematic chain.

Later Chapters introduce even further extensions, which relate the specifications
to (i) the controlled execution of the specification, and (ii) the intended effects of
such control.

4.1 Meta models

This Section introduces the entities and relations that the meta models of the Kinematic -

chain add to those of geometric meta models.

4.1.1 Mereo-topology

Themereo-topologicalmeta model of a Kinematic chain has the following parts (Fig. 4.1):
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kinematic chain

Link

Attachment

Joint

Geometric
model

Abstract
data type

Figure 4.1: A Kinematic chain model is a graph of Link and Joint entities, which are
themselves defined as compositions of geometric entities (Sec. 3.4, Fig. 9.1) and their abstract
data type representations. Each link can have one or more Attachments, to allow extensions
by means of model composition, such as, geometric shape, dynamical properties, sensors,
actuators, or handles for task specifications. This sketch only represents the mereo-topological
parts of the Kinematic chain meta model; an arrow represents a is-part-of relation, which
is the inverse of the has-a relation.

• a collection of Links. Link is just another name for Rigid body, in the semantic
context of kinematic chains, that is, it refers to a Rigid body that gets semantic tags
to build a kinematic chain with.

• a collection of Attachments rigidly connected to each Link. An Attachment is a
geometric entity (e.g., Point, Vector, or Frame) that serves as an argument in com-
position relations between Links and other relevant domain models. For example, at
an Attachment, the geometrical properties of a Link can be connected to (models of)
mechanical inertia, geometric shape, perceivable markers, or motors, sensors and tools.

• a collection of Joints, each being a special case of the mentioned composition rela-
tions, namely a constraint relation on the relative Motion between two Links. Major
arguments in each such constraint relation are:

– the Attachments on each Link. There should be one and only one such Attachment

on one particular Link for one particular Joint.

Each Link can be constrained by more than one Joint; for example, most Links
in robot are part of a serial connection of Joints.

One Joint can constrain more than two Links; for example, human joints like the
shoulder have tendons that are attached to (and hence, constrain) multiple bones
via multiple muscles.

– the type of the motion constraint.

4.1.2 Types

The two common families of mechanical motion constraints are:

• lower pair motion constraints, with the one-dimensional Revolute (Fig. 4.2) and
Prismatic joints as major representatives. These are bi-directional constraints (gen-
erating positive and negative constraint forces) and have a state variable (“q”) whose
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Figure 4.2: The most common kinematic design of in-
dustrial manipulator arms, using only revolute joints
as bi-directional motion constraint between seven rigid
bodies. This particular geometric configuration is a
kinematic family parameterized by the symbols in the
drawing. What is not symbolically represented on the
drawing are the facts that (i) joints 2, 3 and 4 have paral-
lel axes, (2) joints 4, 5 and 6 have intersecting axes, and
(iii) joints 1 and 2 have orthogonal axes. All members of
that family have the same mereo-topological model and
the same geometrical parameters of the attachments of
joints to links, but each member has different numerical
values of these parameters.

value and its time derivatives are a one-on-one representation of the relative Motion of
the two constrained Links:

Position (Link 1, Link2) = f(q), (4.1)

Velocity (Link 1, Link2) = g(q, q̇), (4.2)

Acceleration (Link 1, Link2) = h(q, q̇, q̈), (4.3)

• higher pair motion constraints, with wheels and cables as major representatives. These
constraints do not have position-level state variables, but only velocity-level variables;
hence their name of non-holonomic motion constraints: the constraint can not be
“integrated” to an equivalent constraint formulation with position-level variables.

Higher pair constraints have some uni-directional constraint subspaces, in which con-
straint forces in only one direction are possible. For example, cables (Fig. 4.3), edge-
surface contacts (Fig. 4.4) as in wheels, or vertex-surface contacts (Fig. 4.5).

Figure 4.3: A cable support as
uni-directional motion constraint be-
tween two rigid bodies. The mechan-
ical framework on the top contains
motors to control the length of the
cables, as well as their position on
the horizontal guides. The load is de-
picted at the bottom of the drawing,
with unspecified “attachment tools”
between cables and load.
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Y Z

Figure 4.4: An edge-surface contact as uni-
directional motion constraint between two
rigid bodies. This model represents (part of)
the geometrical abstraction of real-world mo-
tion constraints such as wheels or skates.

Figure 4.5: A vertex-surface contact as uni-
directional motion constraint between two
rigid bodies.

4.1.3 Coordinates and behavioural state for Motion

Coordinate representations of motion constraints are needed to formalise the geometric mo-
tion behaviour of a kinematic chain, that is, the constraints that the chain adds to the rel-
ative Motion (Position/Pose, Velocity/Twist and Acceleration) of its individual Links.
Figure 4.2 shows an example of a geometrically parameterized model of a Kinematic chain.
The abstract data type for Coordinates is a collection with the following entities:

• the geometrical dimensions of the Link.1 This is done via the meta models of Sec. 3.4.

• the Coordinates of each Attachment. These Coordinates use the same as seen by

reference frame as the Coordinates in which the Link’s geometrical dimensions are
expressed.

• the type of Joint that is meant to be connected to each Attachment.

• the model of the Joint’s mathematical expression as a motion constraint. Some param-
eters in that model come from the Attachments on the Links involved in the motion
constraint, some come from the type of the Joint, and still others represent the motion
limits of the specific Joint instance.

• the state of a Joint is the subset of the parameters in a Joint’s mathematical model
that represent the motion behaviour of the Joint. That is, the numerical values of
the actual relative Position, Velocity and Acceleration of the Links connected by
the Joint.

The type of the Joint must be represented formally, to allow software tools to check whether
(i) both Attachment and Joint have the correct geometric primitives in order to be composed
together, and (ii) the motion constraint model below links its state variables to appropriate
geometric entities.

1A Link is considered to be a Rigid body. Flexible links are not treated in this document. However, the
mereo-topological modeling still applies, since rigidity is a geometric concept.
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geometric relationship

joint constraining value
kinematic constraint

Figure 4.6: A generic model of the
mathematical expression for the simplest
Kinematic chain, namely one with two
Links and one Joint. The Joint has an
unspecified type, but it has a state rep-
resentation. That means that the relative
Pose relation can be expressed as a bijec-
tion between relative Poses and one single
joint position value Jcstrval. The frames
{i} and {j} serve as Attachments, fixed
to the Links L1 and L2, respectively.

For some Joint types (such as Revolute joint and Prismatic joint), a finite set
of state parameters can be given: one joint position for the relative Position, one
joint velocity for the relative Velocity, and one joint acceleration for the relative
Acceleration. The span of these numerical values is called the joint space of that Joint,
and that joint space model (always) has constraints on the allowable range of the state pa-
rameters. The set of spatial configurations of the Links that correspond to the joint space
range is called the Cartesian space of that Joint.

Figure 4.6 depicts the generic mathematical model for a Joint motion constraint that
has a state representation. The drawing sketches only the position level of the motion
constraint, with a joint position state value Jcstrval; the straightforwardly extensions to the
velocity and acceleration levels include the time derivaties of the joint position state. The
dimensionality of that state parameter Jcstrval is a number between “6” (rigidly connected)
and “0” (not constrained at all). The coordinate representation of the constraining value
must be compatible with the coordinate representation of the geometric relationship. As
mentioned above, the Revolute joint and the Prismatic joint have constraint expression
as a function of just one variable. More complex Joints (such as the higher-pairs) do not
have clearly defined Joint positions, e.g., the knee and shoulder joints in human bodies, or
the unilateral motion constraints of contacts or cables.

Because a Kinematic chain is just a collection of geometric primitives with seman-
tic tags that have meaning in the Kinematic chain context, the formal representation of a
Semantic map is the obvious model primitive to apply. Table 4.1 shows an abstract example
of a mereo-topological Kinematic chain model.

(TODO: examples of concrete models; e.g., for a robot arm of the 321 kinematic family. Make
the model in Table 4.1 complete and consistent with the textual description.)

4.1.4 Geometrical operations — Forward, inverse and hybrid kinematics

Modelling the Motion behaviour of all Links in a Kinematic chain requires no extra operaions
in addition to the geometrical ones already introduced in Sec. 3.4.7. At the level of abstraction
of the whole Kinematic chain however, extra operations are needed:

• structural operations of composition and decomposition of Kinematic chain models.
These operations are introduced in Sec. 4.4.
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{ Semantic_map :

{ { ID : KC_ID_123XYZ },

{ MID : Kinematic_chain },

{ MMID : [ Geometry, Euclidean_space, Frame, QUDT ] }

{ links : [ Link_1_ID, ..., Link_2_ID ] },

{ attachments : [ { Link_1_ID : [ Link_1_Att_1_ID, Link_1_Att_2_ID ] },

...,

{ Link_6_ID : [ Link_6_Att_1_ID, Link_6_Att_2_ID ] },

{ Link_7_ID : [ Link_7_Att_1_ID ] }

] },

{ joints : [ { { ID : Joint_1_ID },

{ MID : Revolute },

{ first : Link_1_Att_2_ID},

{ second : Link_2_Att_1_ID }

},

...,

{ { ID : Joint_6_ID },

{ MID : Revolute },

{ first : Link_6_Att_2_ID},

{ second : Link_7_Att_1_ID }

} ] } }

}

Table 4.1: Example of Coordinates model, in this case the Position of a Point.

• operations on the Coordinates of the dynamical behaviour of Kinematic chains. These
operations are introduced in Sec. 4.2.

• operators that transform between joint space entities and Cartesian space entities.
These are further descrbed in the paragraphs below.

One identifies the following three categories of the latter transformation relations, where a
later one encompasses all of the earlier ones:

• Position transformations: some joint space position values are given, as well as some
Cartesian position values, and the operator takes these as inputs and generates as out-
puts all the non-specified entities. An additional outcome is a measure of the consistency
of all specified inputs.

• Position–Velocity transformations: similarly of for the Position-only transforma-
tion, but now with inputs and outputs also at the velocity level of abstraction.

• Position–Velocity–Acceleration transformations: idem, now including also the ac-
celeration level of abstraction.

Special cases of these transformations are when the inputs consist of only a complete set of
joint space values, or a complete set of Cartesian values; the terminology is, respectively,
Forward kinematics and Inverse kinematics, with a semantic tag indicating the relevant
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level of motion abstraction. The generic case is seldom used; this document names it the
Hybrid kinematics.

Formalization of these transformations is straightforward:

• add an Attachment for each of the input and output entities. Or reuse an alreadty
existing one; this holds in particular for the joint space specifications, because the
model of a Joint already required the introduction of Attachments.

• add a Specification relation for each of the input entities, with as arguments:

– the part of the Attachment that is used for the specification.

– the symbolic tag input.

– the value of the specified input entity, together with its physical units.

• add a Specification relation for each of the output entities, with as arguments:

– the part of the Attachment that is used for the specification.

– the symbolic tag output.

– the symbolic variable of the desired output entity, together with its physical
units.

• add two symbolic status variables, one input status and one output status, that
encode, respectively, the desired and actual consistency of inputs and outputs.

It is indeed possible that the specified inputs can not give rise to a uniquely computable
set of outputs (Sec. 4.1.5). The input status symbol encodes the choices that can be made
in computing the transformationl the output status encodes the consistency that is realised
by the transformation. These choices depend on the type of transformation, and on the
numerical solver that is used to implement the transformation computations.

4.1.5 Inconsistency, redundancy, singularity

Because kinematic chain relations are non-linear functions of their constituent geometric
entities, some input-putput functions can be:

• inconsistent: the requested output can not be computed with the given inputs and
the given kinematic chain model, because, for example, the chain has two loops when
one is expected, or it has one loop when none is expected, etc.

• redundant: more than one output is consistent with the same input.

• singular: the computations to find the outputs are numerically ill-conditioned, be-
cause the physical energy transformation between Cartesian and joint space reaches an
extremum.

While these insights are already part of the meta models, it is really only in software im-
plementations that they pose challenges: simplistic implementations will crash because the
problems often occur only in specific configurations of a kinematic chain, or with specific
input-output combinations.
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4.2 Meta model for the mechanical dynamics of a kinematic
chain

This Section extends the geometrical Coordinates meta model by adding the mechanical
entities and relations. These represent the physical phenomena that:

• a physical body has mass and hence its (change in) motion is (always) related to an
(inertial) force, via Newton’s laws.

• a force can (in some situations) act on a body via a spring or a damper connected
between a force and a body.

• the interaction between force and motion is regulated by mechanical energy constraints.
More in particular the conserved energy components of potential and kinetic energy,
and the tribologic energy (friction, lubrication and wear) that is dissipated into thermal
energy.

For a robot, the forces have “external” sources (interaction forces or gravity) and “internal”
sources (torques at the joints generated by actuators connected to the robot’s Kinematic -

chain).

4.2.1 Coordinates for dynamics state

Coordinates representations for these forces are formally very similar to, but obviously se-
mantically different from, the Coordinates representations for Velocity and Twist:

• Cartesian Force: these Coordinates have already been introduced in Sec. 3.5.1, as the
dual concept of the Cartesian Twist.

• joint state space torque or force: many robot designs have motors that act on the same
mechanical axis as the one that realises the 5D motion constraint, or equivalently, that
drives the 1D motion freedom. So, the Cartesian Force that is generated by the motor
to drive the relative Motion between the two Links constrained by the mechanical axis
is faithfully represented by one scalar number, called (joint space) torque or force, for
rotational or linear motors, respectively.

The formalizations of these Coordinates are analogous to those of Motion, just differing in
the relevant semantic tags, see Table 3.2.

4.2.2 Coordinates and behavioural state for impedance

“Impedance” is the collective term for the mechanical mappings of mass, elasticity and damp-
ing. Their models are easily composed with the Kinematic chain model:

• one Attachment is added to a Link, to represent the abstract data structure of the
Link’s rigid body mass. That abstract data structure is always a matrix (“inertia
tensor”, “mass matrix”,. . . ), because the mapping between Velocity and Force is
always linear, as is Newton’s Law that connects Acceleration to Force.

• one Attachment is added to each of two different Links, to serve as connection arguments
in elasticity and damping relations between the two Links.
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• the mapping relations of elasticity (between Displacement and Force) and of damping
(between Velocity and Force) are higher-order relations that are typically non-linear
functions of the state of the Motion. In practice, their linear approximations in the
form of a stiffness matrix (and Hooke’s Law) or a damping matrix are popular.

The formal Coordinates representations of all of the above semantic primitives are straight-
forward, either as models of matrices, or as symbolic expressions of mapping functions.

(TODO: make formal models explicit, with examples.)

4.2.3 Geometrical operations revisited — The role of “virtual dynamics”

It seems logical to decouple the geometrical and dynamical meta models of kinematic chains,
because the models of masses, springs and dampers (introduced in this Chapter) can be
composed onto the geometric models (of Chap. 3) via Attachment primitives. But dynamical
relations do occur already at the geometric level, albeit in disguise:

• whenever the specification of a (forward, inverse, or hybrid) kinematics transformation
does not lead a unique solution, redundancy and singularity relations are to be intro-
duced to determine the relative magnitude of the contribution of various components
to the solution of the problem. Such trade-offs are typically realised by introducing
“weighing” or “cost” functions with the components as arguments.

• the mathematical formulation of these weighing and cost functions reveals that they
must have the physical dimensions of mass or elasticity.

Hence, the behavioural meta model for kinematic chains couples the geometrical and (mechan-
ical) dynamical entities and relations together, all the time; the difference at the geometrical
level of abstraction is that the impedances introduced by the solvers are artificial and arbi-
trarily chosen by the solver programmers; that is, they typicaly do not correspond at all to
the real mechanical properties of the kinematic chain under consideration.

F 

F 

X  

X

1

2

2

1

..

..
M1

M
2

Z

Figure 4.7: The entities involved in
the dynamic behaviour of a (revolute)
joint constraint. The spatial direc-
tion (Z), force (F ) and acceleration
(Ẍ) have six degrees of freedom; the
mass (M) is a 6× 6 relation between
them.

4.2.4 Dynamic relations under a 5D motion constraint

The simplest possible serial composition in a kinematic chain has one single bi-directional
Joint between two Links, and that Joint has only one degree of motion freedom. In other
words, the Joint constrains the two connected Links in five degrees of freedom, that is, the
genreated constraint forces span a five-dimensional space. Figure 4.7 sketches the components
involved in the dynamical behavioural relations for such a Joint. (The Figure shows an
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unactuated revolute joint (that is, there is no motor present on the mechanical joint axis),
but adding a joint torque is obvious. (TODO)) The modelling for other types of Joints uses
similar entities, relations, and constraints.

The forces F 1 and F 2 on both links are connected to their accelerations Ẍ1 and Ẍ2,
their inertias M1 and M2, and to the Vector Z representing the joint axis, by the following
dynamical constraint relation (expressed as six-vector mathematical representations, and
not coordinate representations):

F 1 = Ma
1Ẍ1, (4.4)

with Ma
1 = M1 +

(
I −Z

(
ZTM2Z

)−1
ZT

)
M2.

︸ ︷︷ ︸
P

(4.5)

Ma
1 the so-called articulated body inertia [29], i.e., the increased inertia of Link 1 due to the

fact that it is connected to Link 2 through an “articulation”, that is, the revolute joint in
this case. Ma

1 of Link 1 is the sum of its own inertia M1 and the projected part P of the
inertia of the second Link. The term “projection” is adequate because the matrix P satisfies
the conditions for being a projection matrix, namely the idempotence relation PP = P .

4.3 Meta model for instantaneous motion of kinematic chains

Figure 4.8 (left) gives a schematic overview of all the variables needed to represent the state of
a kinematic chain: position, velocity, acceleration and force, in each of the joints as well as of
each of the links in the chain. Of course, all these variables are interconnected by the geometric
and dynamics constraint relations introduced by the joints, gravity, and/or contacts with the
environment. These constraints are sometimes called the natural constraints, because they
are introduced by the physical world and are to be satisfied all the time. In addition to the
natural constraints, robot controllers introduce artificial constraints, by means of artificially
chosen forces and/or acceleration energy constraints at the joints and/or the links.

4.3.1 Gauss’ Principle of Least Constraint

Several centuries of research on the equations of motion of mechanical systems have led to
the insights that all natural and artificial constraints on the instantaneous motion of (a
connected or not-connected set of) rigid bodies can be formulated by one single theory, namely
Gauss’ Principle of Least Constraint [32, 65, 83, 84]. The consequence of this Principle
is that there exist three, and only three, possible ways to change the instantaneous motion
state of a kinematic chain (Fig. 4.8, right):

• joint space forces and/or torques on the Links, generated by the actuators at the
Joints. These are sometimes called the “posture control” torques/forces, because a
major use cases for them is to control the internal posture of the kinematic chain.

• Cartesian Forces on the Links, caused by “active” force sources, or resulting from
“passive” contacts with the environment.
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Figure 4.8: The entities in a geometric and mechano-dynamical model of a kinematic chain.
On the left, all the type of variables that make up the state of the chain. On the right, the
three possible types of drivers for the instantaneous motion (change of state) of a chain: (i)
a torque generated by a motor at a Joint; (ii) a Cartesian force at a particular Attachment
on a Link (with or without a mechanical contact at that Attachment); and (iii) a constraint
on the allowable Cartesian acceleration energy at a particular Attachment on a Link.

• constraints on the Cartesian acceleration of Links. The constraint function to
optimize in this case is the acceleration energy Z (from the word “Zwang” in the
original German literature). Z is the sum of all terms of the form acceleration

times mass times acceleration, which is the “second-order” version of the similarly
expressed kinetic energy.

4.3.2 Specification of instantaneous motion

Because the physics of mechanical dynamics provides three complementary ways to make a
kinematic chain move, it is appropriate to introduce a meta model to represent these physical
facts as instantaneous motion drivers for robots. The formalization of Cartesian and
joint space forces has already been introduced in earlier Sections, but a meta model for an
acceleration constraint needs a bit more work; the solution uses the approach of Lagrange
multipliers:

• the constraint is modelled indirectly, by the introduction of unit constraint forces
that counteract any acceleration in the constrained directions.

Figure 4.9 gives some examples of how Cartesian motion constraints on a Link can be
represented as a collection of constraint Forces on the Link.

• the acceleration energy that the constraint forces are allowed to generate, needs to
be specified.

In the most common case, the allowed acceleration energy will be zero, representing the
desire not to have any acceleration in a particular direction at all.
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constraint
force in X: A1

constraint
force in Y: A2

unconstrained
acceleration in Z

constraint
force in X: A1

constraint
force in Y: A2

constraint torque
around Z: A5

constraint torque
around X: A3

constraint torque
around Y: A4

Figure 4.9: Two examples of artificial motion constraint specification via acceleration con-
straints. On the left: the last Link of the chain is constrained to have one of its Points move
on a vertical line (irrespective of the orientation of the Link with respect to that line), by
introducing two constraint forces that push the Point towards the line whenever it deviates
from it. The right-hand specification adds constraint torques around all three orientation
directions, in order that also the full orientation of the Link remains unchanged during the
motion.

• the magnitudes of the constraint forces are then to be computed by solving the con-
strained dynamical equations.

Section 4.6 explains the algorithmic foundations for such solvers.

In practice, acceleration constraints are not popular to specify motions, and velocity con-
straints are used more often (and sometimes even position constraints). However, because
only acceleration-level constraints have physical meaning, the velocity and position specifi-
cations constraints only make sense when composed with the acceleration-level physics via a
constraint controller [9].

The formalisations of forces and accelerations have already been introduced in Chap. 3,
which leaves only acceleration constraint and its acceleration energy as the new se-
mantic relations to be modelled. The mereo-topological formalisation of a instantaneous
motion specification of a Kinematic chain then becomes a simple composition of the
models of the Kinematic chain with:

• the Attachments to connect motion drivers to.

• the motion driver specified in each Attachment.

Table 4.2 gives an example of such a mereo-topological specification model. The extension
with abstract data type models is done in Sec. 4.6.

4.3.3 Operations: forward, inverse and hybrid dynamics transformations

A specification of the drivers for an instantaneous motion of a Kinematic chain is equiva-
lent to specifying an operation on the chain, namely the transformation between the forces
represented in the motion drivers and the forces one, and instantaneous (change in) motion
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{ A_motion_specification :

{ { ID : Motion_Spec_ID_XX64Hy },

{ MID : [ HybridDynamicsMotionDrivers, KC_ID_123XYZ ] },

{ MMID : Kinematic_chain }

{ motion_driver : [ { { attachment : Link_1_Att_2_ID },

{ force : joint_torque_ID_34df } },

{ { attachment : Link_4_Att_1_ID },

{ acceleration_constraint :

{ dimension: 2 },

[ { unit_constraint_force :

{ ID : CF_1 },

{ attachment : Link_4_Att_1_ID.x },

},

{ unit_constraint_force :

{ ID : CF_2 },

{ attachment : Link_4_Att_1_ID.y },

}, ] }, } ] } }

}

Table 4.2: Example of Motion driver model, with one joint torque and one acceleration
constraint (in the X and Y directions of a Frame attached to a Link. The symbols used in
the model refer to the Kinematic chain with ID "KC ID 123XYZ", Table 4.1.

of, each of the Links in the chain. For now, this transformation is still implicit, since one
needs a solver to make the transformation explicit. A solver that accepts all forms of motion
drivers is sometimes called a hybrid dynamics solver [29]. When only joint torques are
provide as inputs (together with the Motion state of the Kinematic chain), the transforma-
tion is known under the name of forward dynamics. Similarly, in the inverse dynamics
formulation, only the Cartesian forces are provided as inputs, together with the Motion state
of the Kinematic chain.

4.4 Composition and decomposition of Kinematic chains

The primitive Kinematic chain has one single Joint connecting one Attachment on each
of two Links. Compositions of this primitive result, in general, in a graph of intercon-
nections, and this Section describes the entities and relations pertaining to such graphs of
interconnected Joints.

4.4.1 Composition — Serial, branch, loop

The following categories of composition relations are relevant:

1. serial composition (Fig. 4.10): either a primitive Kinematic chain, or an already
existing serial composition to which one connects an extra Link, via a Joint to a
Link in the Kinematic chain that has already only one other Joint.
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3

k
Figure 4.10: Serial composition of kine-
matic chains.

The result is a strict order of all Links, Attachments and Joints in the composite
Kinematic chain. The first and the last Link in this list get the semantic tag leaf -

link. The order does not have an absolute sense, in that there is no reason to call one
of the leaf links the “first” and the other the “last”. This sense is often added by
models that compose the Kinematic chain into a particular context, where that sense
has a natural meaning. For example, it is natural to give one leaf link in the industrial
robot arm of Fig. 4.2 the tag "0" (the one that is the “base” of the robot, bolted to the
ground), and count up from there till the other leaf link (the “end-effector” of the
robot, to which tools are connected).

Serial composition does not require new semantic operations; the composition relation
of the mass matrices of two serially connected Links has already been introduced in
Sec. 4.2.4.

3

k

4

Figure 4.11: Branch composition of kine-
matic chains. The composite chain has
three branches, and Link L2 is the
branch link.

2. branch composition (Fig. 4.11): the connection of one Kinematic chain to another
not yet connected Kinematic chain via a Joint between (i) a leaf link in the former
Kinematic chain, and (ii) a non-leaf link in the latter Kinematic chain.

Both Links loose their leaf link tag; the latter Link gets the a branch link tag instead
(in case it does not already have that tag). Each of the connected Kinematic chains
is a branch of the composite Kinematic chain.

Branch composition requires one new semantic operation, namely the composition the
mass matrix of a branch Link and the mas matrices of two of its branches. This
composition is linear, so the Coordinates of the mass matrices can be added, as soon as
all their semantic tags are identical, that is, all cordinates use the same velocity reference
point, the same as-seen-by reference, the same physical units, the same ordering of linear
and angular parts.

3. loop composition (Fig. 4.12): this is a composition in which a leaf link is connected
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Figure 4.12: Loop composition of kine-
matic chains.

via a Joint to a different Link in the Kinematic chain to which the leaf link belongs.

The leaf link looses its semantic tag. The other Link looses that tag too, in case it
was one before the connection; if it had already two or more Joints, it gets the semantic
tag of branch link.

Closing a loop has a non-trivial impact on the operation of composing the mass matrices.
There is not one single way of realising this operation, because an arbitrarily chosen
“cut” of the loop into two branches is required (Sec. 4.4.2), after which the mass matrix
of the cut link must be divided over the two branches, the serial composition of mass
matrices is to be applied to each branch, and the branch composition of mass matrices
has to be aplied at the branch link of the cut loop.

Of course, higher-order composition relations are possible too; for example, loops within loops,
like one finds in the musculo-skeletal structure of animals and humans.

4.4.2 Decomposition — Spanning tree

Many applications need to work with only those parts from a Kinematic chain that are
relevant to the applications’ tasks; for example, only one arm of a two-arm mobile manipulator
is needed to grasp an object. The semantic relation of the Spanning tree supports such
decomposition of a Kinematic chain into sub-chains. It composes a model of a particular
kinematic graph with another kinematic graph model (the so-called “Spanning tree”) to
select a particular view on the original graph, and has the following properties:

• tree: the Spanning tree graph is composed of only serial chains connected at branching
links, and each of them are sub-graphs of the original graph. For example, one way to
map a kinematic graph onto a Spanning tree is by cutting all of its loops.

• semantic tags: each serial sub-chain and each branch point get a Semantic ID that
identifies them as part of the original graph and as part of the Spanning tree derived
from it.

The model of the Spanning tree stores the information about which cuts where made, and
adds an extra Attachment at both ends of the cut. This allows to add loop closure relations,
that mathematically represent the information about how to close the original loops again,
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or, equivalently, how the state of a Spanning tree violates the motion constraint relations of
the original kinematic graph.

One particular Kinematic chain model can be mapped onto multiple Spanning tree

models at the same time. The concept of the Spanning tree is relevant for all topological
models, with serial, tree as well as graph topologies.

4.4.3 Policy: iteration via sweeps

A tree topology structure simplifies not only the mechanical construction of a robot, but
also the computational solvers needed to make computations with its kinematic state. For
example, a tree topology has only one single path between any two of its nodes, which
simplifies computational iterations over lists of Links, Joints and Attachments. The hybrid
dynamics solver makes extensive use of different sweeps.

The symbolic, model-centric equivalent of the computational iterator over a data structure
is the database cursor, to make graph traversals over a property graph more effective when
one has to solve a series of queries on the same graph, i.c., the same Kinematic chain.

For the above-mentioned reasons, the majority of commercially used robot mechanisms
have already a tree topology, and even the simplest form of a tree, a serial topology. For
similar reasons, the majority of numerical solvers are designed to work on tree topologies
only; that means that applications that need real graph topologies must compose their task
specification with a Spanning tree policy.

4.4.4 Policy: input-output causality assignment

The meta models represent relations between motion entities, which are the a-causal mech-
anism describing how the properties of the various entities in the motion are related. Most
applications require causal relations, or input-output functions as they are called more often,
with the following arguments:

• a model of the kinematic chain;

• the list of geometric primitives which are given as inputs; and

• the list of geometric primitives which must be computed as outputs.

One single a-causal relation gives rise to many conforming input-output functions, one for
each combination of input and output choices.

4.5 Taxonomy of kinematic chain families

From a modelling point of view, it makes sense to introduce “families” of models, as a simple
mereological higher order model for classification, because (i) the kinematic chain structure
of most robots falls within one such category, and (ii) each category has a specific numerical
solver, optimized for the particular geometric properties of the family. Concretely speaking,
a Kinematic family relation collects the constraints that are shared between all members of
the family, such as: the number of joints, the type of the joints, the singular configurations,
and the abstract data types representing joint space and Cartesian space state.

This Section introduces the top-level members of the Kinematic family taxonomies.
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4.5.1 Serial chains

Serial kinematic chains, or “arms” (Fig. 4.13):

• Kinematic family::Serial-321: traditional industrial robots

• Kinematic family::Serial-3-X: many “cobots” like Universal Robot, or Mabi.

• Kinematic family::Serial-313: KUKA iiwa, ABB YuMI,. . .

• Kinematic family::SCARA

• snake or “elephant trunk” family.

Cartesian
point

trajectory

joint
limits

Cartesian link
trajectory

rigid connection
to environment

contact with
environment

centre of
gravity
trajectory

soft Cartesian
point trajectory

sensor
space

joint stiffness
and damping

soft interlink
interaction

Figure 4.13: Sketch of the kinematic chain
model of a dual-arm manipulator, with all(?)
possible motion constraints on links and
joints.

4.5.2 Mobile platform chains

• DifferentialDrive

• Holonomic:

• EightWheelDrive: (Fig. 4.14)

actuated
wheel

actuated
wheel

actuated
wheel

actuated
wheel actuated

wheel
actuated
wheel

actuated
wheel

actuated
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passive
hinge

passive
hinge

passive
hinge

passive
hinge

platform

2-wheel
unit

2-wheel
unit

2-wheel
unit
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Figure 4.14: Sketch of the kinematic chain
model of an over-actuated mobile robot: eight
actuated wheels, connected in so-called 2WD
(“two-wheel drive”) pairs, that in turn are con-
nected to a rigid platform via passive revolute
joints with a caster offset. The design drivers
behind this platform are (i) passive backdriv-
ability in all configurations, and (ii) holonomic
motion behaviour in all configurations.
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4.5.3 Parallel chains

• Delta:

• Stewart-Gough:

(Fig. 4.15):

end-effector
passive

spherical
joint

actuated
prismatic

joint

two passive
revolute joints

base

Figure 4.15: Sketch of the kinematic chain
model of a parallel kinematic chain, with six
legs each with six 1D joints.

4.5.4 Multirotor chains

4.5.5 Hybrid chains

featuring one or more “loops” in the chain’s topology.

Figure 4.16: Sketch of the kinematic chain
model of a cable-driven robot, with a “hybrid”
topological structure.

4.5.6 Cable-driven chains

Fig. 4.16,

4.6 Solver for hybrid kinematics and dynamics

Section 4.2 introduced the entities and relations needed to specify the instantaneous motion of
an ideal kinematic chain. This Section adds the information about the functions and abstract
data types needed to create a solver algorithm that computes such an instantaneous motion
from the model and its specification.
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4.6.1 Mechanism–I: motion drivers

Section 4.3 introduced the mereo-topological models for the three different “motion drivers”
with which to specify the instantaneous motion of a kinematic chain: joint torques, Cartesian
forces, and Cartesian acceleration energy constraints. Acceleration energy is represented as
a product of acceleration and inertia, whose formalisation with abstract data types gets the

form Ẍ
T
MẌ; or, equivalently, of force and acceleration, of the form F T Ẍ. In the Figures

below, the matrix A represents the matrix of the constraint force basis, that is, the set of
“unit” versors along the spatial directions in which the acceleration constraints can generate
constraint forces. For example, to constrain the motion of a reference point on the segment
partially in the vertical direction, the constraint matrices can be chosen as follows:

constraint
force in X: A1

constraint
force in Y: A2

unconstrained
acceleration in Z

A =




0 0
0 0
0 0
1 0
0 1
0 0




, b =

(
0
0

)
. (4.6)

The columns of A are constraint forces in the horizontal X and Y directions, that must
keep the acceleration in those directions to zero; the three rows of zeros on the top indicate
the absence of acceleration constraints on the rotational degrees of freedom. The b vector is
used in a motion task specification, indicating that one wants zero acceleration energy to be
generated/consumed in the constrained directions.

A second example is about moving the segment vertically without allowing rotations.
Hence, the constraint matrix A now represents five constraint forces:

constraint
force in X: A1

constraint
force in Y: A2

constraint torque
around Z: A5

constraint torque
around X: A3

constraint torque
around Y: A4

A =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0
0 0 0 0 0




, b =




0
0
0
0
0




. (4.7)

That means that the constraining forces and moments are allowed to work in all directions,
except the vertical Z direction.

Here is the “traditional” case of giving the segment a desired acceleration energy bd in full
6D:

A = 16×6, b = bd. (4.8)
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4.6.2 Mechanism–II: procedural sweeps

All of the solver algorithms introduce an ordering in their computations, constrained by the
structure of the kinematic chain. These control flow schedules are commonly referred to as
“sweeps”; Fig. 4.17 depicts the three sweeps in the generic example of a tree-structured kine-
matic chain. Algorithm 1 summarizes the computations2 that provide the “inverse dynamics”
of a serial robot, bolted to the ground, with N joints, one external force, and one acceleration
constraint.

A  X = b
N

T

NN

A  X = b
T

000

A   X = b
T

N-1N-1N-1

2nd inward sweep:
Inertia, Bias Force,
Acceleration Energy

3rd outward sweep:
Constraint Force,
Acceleration Twist

1st outward sweep:
Poses, Twists

A   X = b
T

N+1N+1N+1

Figure 4.17: A hybrid dynamics solver uses the topological structure of the kinematic chain
to schedule all the behavioural functions required to answer a particular query.

The core properties of such hybrid dynamics solvers are that:

• there are three drivers in the hybrid dynamics solver that can make the kinematic
chain move; these are visible in the second last line in the solver Algorithm, via (i)
joint torques τ , (ii) the external forces F on links, and (iii) the Lagrange multipliers ν
generated by the constraint acceleration energies b.

• when a Cartesian force is given as input, the chain’s motion (first of all, acceleration,
but via simple integration also velocity and position) is computed as an output of the
solver. It is often appropriate to introduce a monitor in the third sweep, to check
whether that computed motion is not violating any specified task constraints.

• when an acceleration constraint is given as input, the resulting force is computed as
an output. As in the previous case, a monitor can be introduced in the third sweep to
check whether this computed force is not violating any specified task constraints.

2The bookkeeping of the indices is not yet fully consistent in the presented pseudo-code. . .

151



Algorithm 1: Hybrid dynamics solver, according to Popov-Vereshchagin [84]

begin
// outward sweep, to compute the motion state:
for i← 0 to N − 1 do

pi+1
pi T = di

pi
T

pi+1

di
T (qi) ;

ωi+1 = ωi + q̇i+1Zi+1 ;
vi+1 = vi + ri+1,i × ωi ;

Ẍb,i+1 =

(
q̇i+1ωi ×Zi+1

ωi × (ri+1,i × ωi)

)
;

// inward sweep, to compute the force and acceleration factorization:
for i← (N − 1) to 0 do

P i+1 = 1−M i+1(Z
T
i+1M

a
i+1Zi+1)

−1ZT
i+1 ;

Ma
i = M i + P i+1M i+1 ;

F i = P i+1F i+1 −Ma
i+1Zi+1(Z

T
i+1M

a
i+1Zi+1)

−1τi+1 + F b
i + F e

i ;
Ai = P i+1Ai+1 ;

βi = βi+1 +AT
i+1

{
Ẍi+1 +ZiD

−1
i

(
τi+1 −ZT

i (F i+1 +Ma
i+1Ẍi+1)

)}
;

with Di = ZT
i M

a
iZi, and βN = 0 ;

Z i = Z i+1 −AT
i+1ZiD

−1
i ZT

i Ai+1, ZN = 0 ;

// Lagrange multipliers of acceleration constraint forces:
Z0 ν = bN −AT

0 Ẍ0 − β0 ;
// outward sweep to compute joint torques and link accelerations:
for i← 1 to N do

q̈i = (ZT
i−1M

a
iZi−1)

−1
{
τi −ZT

i−1

(
F i +Ma

i Ẍi−1 +Ai ν
)}

;

Ẍi = Ẍi−1 + q̈iZi + Ẍb,i;

• the chain has a dynamic singularity if the articulated mass matrix projection goes
to infinity, that is, one or more of the D scalars is close to zero.

• the τi are the (only) coupling with the physical actuator dynamics, where electrical
power consumption or torque limits have to be specified, monitored, and/or optimized.

4.6.3 Policy: scheduling options in the third sweep

• when solving for the Lagrange multipliers ν, one can weigh the various acceleration
constraint drivers.

• prioritization between the three types of drivers can be done by sequentially scheduling
third sweeps for each of them separately: later third sweeps “win” over earlier ones.

• the effect of gravity can be computed separately from the effects of the motion drivers.

• joint torques caused by joint friction and/or elasticity can be added to the τi drivers,
as feedforward functions.
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• after the second sweep, one has factored the whole kinematics and dynamics in pieces
that can be (linearly) composed together in various ways in third sweeps.

For example, one could do a linear search to find the acceleration energy driver b

that gives a desired constraint force (via a re-solving of the linear system of equations
connecting the b to the Lagrange multipliers ν ), or, conversely to find a Cartesian force
F that generates a joint torque with a desired magnitude and sign, or one that just
does not saturate the joint actuators.

4.6.4 Policy: free-floating base

(TODO)

4.6.5 Policy: tasks in the mechanical domain

This Section explains how to configure the properties of the different sweeps in a hybrid dy-
namics solver to satisfy various types of mechanical Tasks, i.e., motions.

(BEGIN TODO:

• How can one let the robot do two (or more) tasks at the same time, and give relative
priorities to the different tasks?

“Task” means: instantaneous motion, via force and or acceleration.

• How can the hybrid dynamics solver be used on a robot which does not have a torque
control interface, but only a velocity control interface?

• What is the dynamic equivalent of a kinematic singularity?

Remember: at the velocity level, and for a serial robot, a singularity was defined as
a joint space configuration in which the Jacobian matrix looses rank; or where some
Cartesian forces require no joint torques to be supported; or where some joint space
velocities result in no Cartesian velocity.

• Is it possible that acceleration constraints are not consistent with each other? How
would one find out? What can one do about this situation?

• How can the algorithm be used to model the propulsion of a ship?

• How can one find out whether joint limits are violated? What can one do about this
situation?

• Give an example where applying a force somewhere on the robot will not make the robot
accelerate in that direction. What can you do to guarantee such minimum acceleration?
How is this guarantee dependent on joint limits?

• How can one separate the parts of the joint torques that contribute to compensate
gravity from those that work against the inertia of the robot to make it move?

• How can you find out to what extent two instantaneous motion specifications on the
same kinematic chain are (in)consistent?
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• How can you find out whether one could regenerate energy in a particular joint motor?

END TODO)

4.6.6 Policy: deployment in an event loop

The discussions around Algorithm 1 in Sec. 4.6 have made it clear that the computation of the
hybrid dynamics solver, and any of its many variations, are just instances of an event loops,
with (maximum) three iterations. As illustrated by later Sections, also other computations
can be composed into the same event loop, extending the iterations over longer time horizons,
e.g., for sensor fusion, control, world model updating, and/or task monitoring.

(TODO: explain which event loop schedules correspond to: prioritization between inputs,
optimal control, guaranteeing joint limits or Cartesian force limits )

4.6.7 Composition with dynamics of resources

(TODO: how to compose which parts of the hybrid dynamics solver for a kinematic chain
with the dynamics of actuators and energy resources, if the latter also come with a Task

description in the form of a constrained optimization problem.)

4.6.8 Composition with dynamics of perception and world model

Most kinematics and dynamics solver libraries offer programming interfaces that are only
solving the kinematic and dynamic state entities (hence, they use joint space and Cartesian
space entities as inputs and outputs), and have a fixed control flow that is optimized for this
purpose. However, many robotics applications need to “fuse” the motion computations with
computations for perception, control, planning and world modelling, Fig. 4.18.
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Figure 4.18: The mereo-topological
model of the entities and rela-
tions needed to model motion-
perception fusion. The model con-
forms to the meta models of, both,
“Bayesian networks” and Tasks.
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For example, a visual servoing task (depicted as one of the many types of task specifications
in Fig. 5.20), requires a perception algorithm that has access to the instantaneous pose and
velocity of the camera, when that is attached somewhere on the kinematic chain, so that the
motion inputs can be used in the control flow of the vision processing and vice versa. The
good news is that the presented models for kinematic chains and their algorithmic solvers
have a high level of decoupling between models and control flows, via the “sweeps”, in which
compositions with other types of solvers (control, estimation, etc.) can be composed. So, a
major composition modelling and tooling that still needs to be developed is that to compose
algorithmic work flows.

4.6.9 Composition with motion trajectories

(TODO: what to add to the instantaneous motion tasks in order to be solve for non-instantaneous
motions, such as trajectories and paths; special traditional cases of linear and circular arc
trajectories.)

4.6.10 Dynamics of serial kinematic chain

(TODO: queries for forward, inverse, hybrid transformations; motion, force and solving
sweeps.)

4.6.11 Dynamics of branched kinematic chain

(TODO: queries for forward, inverse, hybrid transformations; motion, force and solving
sweeps.)

4.6.12 Dynamics of kinematic chain with a loop

(TODO: queries for forward, inverse, hybrid transformations; motion, force and solving
sweeps.)
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Chapter 5

Meta models for robotic tasks

This Chapter extends the generic task meta model of Sec. 2.7 (repeated below for the con-
venience of summarizing its essentials) with the natural and artificial relations that appear
between entities in actions executed by robots. The “task” represents what has to be done
and under which constraints, while the “action” represents how a task is realised while sat-
isfying the task constraints. In other words, a task model provides the property graph with
the higher-order relations that give the context of a robot’s actions, and the execution of
the actions requires reasoning in that context, via graph traversals. This Chapter provides
several structures to guide both the context modelling and the reasoning.
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Figure 5.1: Figure 2.8, repeated for conve-
nience. At the end of the day, there is only
one thing that makes a robot really move, and
that is its continuous-space control. All other
parts in the Task meta model are “just” there
to provide the right context in which to set
the control parameters (setpoints, gains, sys-
tem model,. . . ). The paradigmatic foundation
of the presented task meta model is that all
couplings between these parts take place via
the entities and relations in the representation
of how the world looks like, including the rela-
tions that exist between different entities in the
world. In other words, the important knowl-
edge relations in the figure are the ones that
are not there, that is, relations between only
two parts of the mereological entities on the
right-hand side of the schema.

5.1 Simplest task: proprioceptive guarded motion

Figures 5.2–5.2 show examples of robot task specifications, in the form of so-called guarded
motions. This is a robot programming approach that goes already a long way back in the
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history of robotics [39, 56, 88], because it is the simplest way to realise the full task meta
model:
• the robot’s model is the world model.
• the plan has only one action.
• the control has a constant specification.
• perception and monitoring use only state variables from inside the robot controller.

The “guard” part of the term refers to the monitoring: the motion goes on until a particular
relation between observed state variables is reached.

d.x

qb

qc
d.y d.z

a

d.x

qb >10deg

qc
d.y

0.1ms <d.v.z
< 0.2m/s

50cm

75cm

qc >10deg

Figure 5.2: Example of a proprioceptive guarded motion. The model of the robot’s
Kinematic chain is extended with the Attachments a, b, c and d, via which the task is
formally specified as a set of desired/monitored parameter ranges.

The following specification example makes these statement more concrete for the robot ma-
nipulator example of Fig. 5.2. (The example does not make a statement about which concrete
syntax to use for the guarded motion domain-specific language.) Ideally, all “magic numbers”
in the specification above come from contextual relations; in the example above, three such
relations are used: PreCon provides the “pre-conditions” magic numbers, Spec provides them
for the “per-condition” specifications, and Post provides them for the “post-conditions”.

CONTEXT: Pre, Spec, Post

MOVE: d.origin in direction d.z

WHEN: // pre-conditions

d.origin further than Pre.[50 cm] away from a.origin

d.z is larger than Pre.[75 cm]

WHILE: // per-conditions

keeping d.origin.speed between Spec[0.1 m/s] and Spec[0.2 m/s]

keeping d.origin further than Spec[50 cm] away from a.origin

keeping q.b angle larger than Spec[10 degrees]

keeping q.c angle larger than Spec[10 degrees]

UNTIL: // post-conditions

d.z is smaller than Post[75 cm]

The above-mentioned specifications must, obviously, be composed with a lot of other things,
such as:
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• algorithms with which to realise control, perception, and monitoring.
• discrete control and world model updating.
• relations with which to fill in and adapt “magic numbers” at runtime.
• relations that add constraints from robot and environment.

Figure 5.2 sketches another specifcation example, this time for a mobile robot moving inside
of a room:

corridor
constraint

c( xi )

d1 d2

x1

x2 x3

x6

x4
x5

Figure 5.3: Guarded motion specification to
make a mobile robot drive within a “corridor”
that is defined with respect to the wall of a
room. The specification uses the IDs of rel-
evant points in the world model: d1 and d2
are the points on the robot where (virtual) ac-
tuation forces can be applied by the control
system; x1, . . . , x6 are the corner points of the
room.

CONTEXT: MPre, MSpec, MPost

MOVE:

d1.force in direction d1.z

d2.force in direction d2.z

WHEN: // pre-conditions

d2.origin further than MPre.[100 cm] away from Line(X3,X4)

WHILE: // per-conditions

keeping Line[d1,d2] within MSpec[Tube(X1,..,X6)]

UNTIL: // post-conditions

d1.origin OR d2.origin is closer than MPost[150 cm] to Line(X2,X3)

5.2 Action, actor, actant (object), activity, agent

This Section explains the relations between terms that occur often in this document.

The “action” noun is a semantic hypernym for the two nouns motion and percep-
tion, and it represents a model of what happens in the world. (The same action model
can have various interpretations: “actual”, “desired”, “possible’,. . . ) Action models appear
in all robotic systems, at various levels of abstraction and various levels of resolution, en-
coded with various (often hierarchically) interconnected higher-order relations, and with a
large variety of “performance”.

More semantic concreteness comes from the identification of (i) the actor that is respon-
sible to execute the action, and (ii) the actants (that is, objects) that are required to make
the actoin succeed, or that the actor has to take into account as possibly impacting the suc-
cessful execution of the action. Any robot can move itself (hence the actor and tha actant
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are the same), but a hand grasps “something”, that is, the grasped object is the actant; a
pinch grasp is performed with only the thumb and the index finger. This example makes it
clear that the spatio-temporal scope of each term becomes smaller if the term is attached
“deeper” in the hierarchy.1

The terms action, actor and object, as introduced above, represent knowledge models
in this document. This knowledge is used in a an activity, which is a software process that
implements the execution of an action, with “digital twins” for actor, actant(s) and action.

Finally, the name (software) agent is given to the system of activities that belong to-
gether, as being executed by one single physical system in the real world.

5.3 Natural hierarchies in task models

The design of task models is a creative process, with a lot of possibilities for new compositions
and the trade-offs that they bring. On the other hand, there are some natural, hierarchical
constraints that have to be satisfied in the task design.

5.3.1 Hierarchy in motion capabilities

Most existing robot systems have intended functionalities that are the composition of two
or more of the following:

• mobility: to take care of the global navigation towards targets over the earth, driven
by wheels, legs, propellers,. . .

• balance: the extra motion capabilities to do any combination of the above capabilities,
at the same time,while keeping the robot in a desired range of configurations that the
task context considers to be “in equilibrium”.

• reach: the “arms” or “manipulator” navigate towards targets in local 6D space.

• grasp: the “gripper” or “hands” to manipulate objects by force closure, form closure,
or non-prehensile grasps. (TODO: references.)

• touch: to sense and manipulate by form features such as nails, finger tips, or whiskers.

The robotics domain has (informally) introduced semantic tags like “mobile manipulators”,
“humanoids”, “gantries”, or “welders”, as specific compositions in particular application do-
mains. How to specify the desired motion behaviour of a kinematic chain brings in the
application’s task context, and is the subject of Chapter 5

5.3.2 Hierarchy in world model scope

This Section elaborates on the robot-centric part of composite task models, that is, those in
which the motion capabilities of only the kinematic chain play the central role. (Later
Sections add the possibility to extend these kinematic chain motion tasks with models of other
robot action parts, e.g., perception actions to monitor the motion execution, or to update the
world model information.) Robot motion capabilities grow in complexity according to the

1The oldest(?) reference that explicitly introduces such natural hiearchy of increasing order of intelli-

gence with decreasing order of precision is [71].
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complexity of the plans the robots have to execute,2 and another very useful hierarchical
structure is represented by the following semantic tags:

• move: this represents the plans that can be realised by only the robot’s instantaneous
hybrid dynamics (Sec. 4.2). In other words, the kinematic chain model of the robot is
the world model, and its behaviour is that of an ideal mechanical energy transforming
system.

For example, the instantaneous motion under the influence of a pushing force at the
end-effector of the kinematic chain, or the instantaneous open loop motion under the
influence of torques applied at the joints, possibly together with instantaneous (artificial)
acceleration constraints.

• moveGuarded: one adds monitoring to a move plan, that is, some algorithms around
the proprio-sensing of the robot determine when to stop the motion that goes on with
a constant instantaneous specification.

Two typical use cases exist: (i) the motion makes the robot reach the planned position in
space, as far as this can be interpreted by the robot’s own sensors, or (ii) the motion stops
when a contact transition is detected via using current, force, tactile or IMU sensors
mounted at various attachment points on the kinematic chain. Hence, world model,
perception and object affordances models are restricted to what is directly attached to
the robot’s kinematic chain.

• moveTo: one adds extero-sensing perception to a move or moveGuarded plan, so
that the sensors localise and track object features in the environment, and adapt the
move/moveGuarded properties accordingly.

The world model contains features of robot-external objects, with their robot-centric
perception affordances, for example, visual servoing .

• moveConstrained: one adds contact perception to moveTo; these “contacts” can be
physical, but they can also just exist as artifical constraints in the world model, to guide
the robot’s motion.

For example, the robot is expected to slide a tool over a table, maintaining an interaction
that is safe for the robot, the environment, and the tool.

When more than one robot is being composed into a motion task, the following “system of
systems” coordination models are added:

• moveCoordinated: one sub-system (a robot or not) provides all other robots or non-
robot sub-systems, online, with (i) individual motion specifications, and (ii) the events
for the coordinated execution.

For example: dual-arm tasks performed by an ABB Yumi, two KUKA iiwa’s, a PR2,. . .

• moveOrchestrated: all motion subsystems have already the motion specifications
on-board, and only the coordination events must be communicated.

2The plan complexity has, obviously, impact on the complexity of the other mereological parts of a task:
control, perception, and world modelling.
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For example: a robotic manufacturing cell, where all robots gets the assembly programs
from the cell supervisory system, together with the events to trigger their execution and
(re)configuraiton.

• moveChoreographed: all subsystems generate coordination events themselves based
on their sensor-based observation of the other platforms; hence no communication
is needed but only perception.

For example: human-aware robotic manufacturing cells, where the reactions of the
robots to the presence of humans in their neighbourhood are pre-programmed (or, bet-
ter, modelled), but the coordination events inside and between robot control systems
are to be generated by the latter control systems themselves.

The modelling suggestions above are only mereological, hence a lot more detailed models
must be provided, topological, geometrical, dynamical, etc. Section 5.4 provide a start of
these modelling efforts.
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Figure 5.4: The natural hierarchi-
cal dependencies between compo-
nents in the generic perception graph
for robotic systems.

5.3.3 Hierarchy in perception graph

(TODO: explain Fig. 5.4.)

5.3.4 Hierarchy in cascaded control levels

The natural hierarchy in robotic motion stacks implies a hierarchy of cascaded control
loops:

• power inverter, with typical time constant of 1/100.000th of a second.

• electrical motor: transforms electrical power into mechanical torque, via mech-
anisms such as field oriented control, with typical time constant of 1/10.000th of a
second.
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• mechanical acceleration: the generated torque results in acceleration of the attached
mass; the time scales required in robotic applications lie around 1/1000th of a second
and up.

• mechanical velocity: integrating acceleration results in velocity; again, an order of
magnitude less in required time scale is order.

• mechanical position: further integration into position is the final step in the mechan-
ical level of abstraction, with again an order of magnitude lower time scale.

The battery is not part of the cascade hierarchy because:

• its time scale is determined by the chemical dynamics of conversion of chemical energy
into electrical energy, and this is orders of magnitude slower then the dynamics inside
the electrical DC-to-AC energy conversion.

• its energy production need not follow the time scales of the control, since that is the
responsibility of the DC-to-AC power inverter.

5.3.5 Hierarchy in energy transformations

This Section combines all the semantics of the physical world introduced in the previous
Sections, in a mereo-topological hierarchical structural model of motion stacks, from the
“bottom” of energy sources up to the coordinated motion of several robotic systems. As
always, the purpose of introducing an explicit hierarchy model is to provide a fundamental
structure that can be exploited in the decision about how many formal models one uses to
describe a domain, and about how they can be composed. For the sake of concreteness, the
example of a battery-driven mobile robots (e.g, Fig. 5.5) is used to illustrate the structure:

1. battery as an electrical energy source: it can provide electrical energy (current and
voltage) via well-known impedance relations, and with constraints on maximum and
minimum power, voltage levels, temperature dynamics, etc.

2. energy transformation between AC or DC electrical energy into AC energy for
(a)synchronous motors: the battery energy is transformed into mechanical energy via
impedance relations of multi-phase, multi-pole motor models, and with constraint curves
for torque, speed and efficiency.

3. energy transformation via a mechanical transmission from the electrical motor
to the mechanical joint: the joint “consumes” not only the electrically generated torque
for its own motion, but the dynamics of the whole chain are coupled in. A transmission
can, itself, introduce extra (mechanical, thermal,. . . ) dynamics, for example, via friction
and elasticity, heat generation,. . .

4. energy transformation between the joints and kinematic chain to produceCarte-
sian space motion of end effectors (and other link attachment points): these are the
“hybrid dynamics” introduced in Sec. 4.6.

5. task specification relations between Cartesian attachment points on a robot
and motion targets in the environment: only when the robot is in contact with
objects in the environment, the interactions are dominated by mechanical relations of
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the same type as those of the kinematic chain, but contact-less “interactions” are often
specified as artificial constraints of the same type as the physical constraints.

6. task specification relations between multiple moving robots: again, these coordi-
nated motions are not impacted by physical relations, but only via artificial ones.

The model semantics speak about “energy transformation”, because that is the more declar-
ative and non-instantaneous way of expressing the relations, instead of the imperative and
instantaneous terms “force” and “velocity”. (This is also the difference in approach repre-
sented by the (equivalent!) Newton-Euler and Euler-Lagrance theories of dynamics.) Instan-
taneously, the energy is indeed transmitted via forces (Fig. 5.5), and this is a very important
fact that must be represented faithfully in all models (and hence also software). Indeed, dif-
ferent sources of force can be added together instantaneously, which is a major instantiation
of the composability ambition of the modelling efforts. Position-based relations (positions
and poses and their time derivatives), however, are not composable consistently in an additive
way.
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ec
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n_
1

specification_2
Figure 5.5: Transmissions of forces between
actuated wheels (blue traction vectors along
wheels’ rolling direction) and the (red) force
and moment on the platform the wheels are at-
tached to. (The green duo of forces represent
an alternative way to specify desired/actual in-
puts to the robot platform.) This relationship
model is composable because the combined ef-
fect of all actuator forces are physically realised
by simple vector addition.

5.4 Mechanism: task specification as constrained optimization
problem

A composable way to formulate a task specification is by means of a constrained optimisation
problem that is formulates by the following collection of entities, relations and constraints,
e.g. [8, 11, 26, 50, 60, 61, 74]:

• configuration space, of all the parameters in the models of the hierarchy in Sec. 5.3.5,
e.g., the joint space parameters of a robot and its actuators, q, and Cartesian space
parameters X;

• desired configuration (Xd, qd), which are the sub-sets of the whole joint and Cartesian
configuration spaces that the execution of the task should have as its outcome.

• objective function(s), that is, relations f(X,Xd, q) on these parameters that the task
execution is expected to minimise, e.g., the delay in “progress” of the task execution,
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the energy consumption of the robot, the distance to obstacles, or the closeness to a
target pose;

• constraints, that is, equality relations g(X, q) = 0 and/or inequality relations h(X, q) ≤
0, on the configuration space parameters, that must be satisfied during the execution
of the task, e.g., joint limits, or singular configurations in a kinematic chain.

• tolerances d(X,Xd, q, qd) ≤ A describe how well the constraints have to be satisfied,
or how far the objective functions have to be optimized.

The mathematical formalisation of a constrained optimization problem follows the template
of Sec. 7.10, repeated here for convenience:

task state & domain X ∈ D
robot/actuator state & domain q ∈ Q

desired task state (Xd, qd)
objective function minq f(X,Xd, q)
equality constraints g(X, q) = 0
inequality constraints h(X, q) ≤ 0

tolerances d(X,Xd) ≤ A

solver algorithm computes q
monitors decide on switching

Representing a Task in this way gives a declarative specification, that is, it is a model
(generated off-line or online) that expresses the logic of the (desired) task execution without
describing its control flow. One then needs a solver to generate (at runtime, taking the lastest
sensor information into account) the imperative (or, “procedural”) flow of control actions
(actual setpoints in joint position, velocities, accelerations or torques to send to the actuators)
or plans (more detailed declarative task models, with a more focused scope in time and
space), required to realise the task. The above holds both for control-based approaches [1, 55]
(which are online, reactive but they may suffer of local minima problems) and for plan-based
solvers [50] (which are (typically but not necessarily) offline, and less reactive since they
explore a bigger search space).

The term “Task” was used in the paragraphs above as a container term for each of its parts:
plan, control, monitoring, perception, capabilities and resources. Often, the configuration
spaces of two or more of them are taken together. A common example appears when specifying
active perception tasks: the plan contains motions that have as sole purpose to improve the
perception and monitoring aspects of a task. This is what humans do, often unconsciously,
for example when double checking their location in an environment, they focus their attention
to a series of important landmark, in a particular order and with a frequency of revisiting the
relevant landmarks, that depends on the tolerances required for that localisation.

5.4.1 Policy: specify as objective function or as constraint

One should be careful about what to use as objective functions to optimize, for several reasons:

• functions like time, energy consumption, or safety, are derived quantities, whose values
can not directly and uniquely be influenced by the actuator signals q. Hence, it’s often
better to select them as inequality constraints, that monitors must follow during the
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task execution to allow the plan to switch to another control approach when the realised
time, energy, etc., falls outside of the prescribed boundaries.

• motion and effort variables are more directly influenced by the actuators, hence it is
typically easier to use objective functions that combine one or more of such variables.
For example: deviations from geometric paths; or predicted violations of tubular regions
after a certain time horizon in the future.

• while it is mathematically easy to specify a multi-objective optimization, via a weighted
combination of various objective functions, this requires a choice of weighing factors,
but that is often impossible to derive from the task context in a unique or deterministic
way. Hence, the weighing factors often remain very arbitrary, and not motivated by
knowledge insights into the task challenges.

The resulting best practice is to choose one single objective function per state in the
Task plan, and to foresee other control states to switch to whenever one or more of the other
monitored (but not optimized) functions exceed their expected ranges.

5.4.2 Policy: integrating mutliple levels of abstraction in one task

Most real-world applications must combine several levels of abstraction (Sec. 5.3.4) in their
control and the above-mentioned best practice is then applied in this multi-level control
context in the following way: a “higher” control level influences a “lower” level (and vice
versa) preferably via the addition of constraints and tolerances, but not via extra terms in
the objective function.

For example, an electrical motor influences the mechanical joint motion control via motor
heating and energy efficiency constraints; and that mechanical joint motor control influences
the kinematic chain motor control via position or torque limits. The objective functions to be
optimized for the motors and for the kinematic chain can be designed independently of these
constraints, and it is only by the solution of the whole constrained optimization problem
that the integration takes place. That is, the monitoring of the constraints gives rise to
switches between several optimization problems to be solved. This approach yields a very
composable way of sub-system integration, and the overall system behaviour emerges from
the individual components’ behaviours with high predictability, except for (i) the exact time
on which the controller will react, and (ii) the exact sequence of controller states that the
system will evolve through.

5.4.3 Policy: event loops for task execution

(TODO: fastest loop: feedback control and its control-centric perception; second loop: prepa-
rations for next feedback control; third loop: perception, with its world modelling monitors
and updates; fourth loop: task FSM.)

5.4.4 Policy: monitoring for hybrid constrained optimization

In general, task models require monitoring functionalities to determine, at runtime, whether
the execution of the task specification is progressing correctly, that is, whether all the rela-
tions and constraints in the composed task model are satisfied within tolerance. Such online

165



monitoring allows to react to modeled conditions, both desired (i.e., the task execution ob-
tained the desired outcome) and undesired (e.g., foreseen cases of non-nominal execution), and
then to modify the behaviour of the robot. At the same time, the introduction of monitoring
functionalties makes the Task specification into a hybrid constrained optimization prob-
lem, since the plan now needs a finite state machine to switch between different constrained
optimizations, when reacting to the monitoring events.

The moveGuarded example in Fig. 5.6, applicable to a six degrees of freedom serial
robot arm equiped with a force sensor, is probably the simplest model of a task specification
that is composed with an online monitoring specification; the example specifies a nominal ter-
mination condition, which fires a task accomplished successfully event as soon as the condition
is met.

move compliantly {
  with task frame directions
  xt: velocity 0 mm/sec
  yt: velocity 0 mm/sec
  zt: velocity v_des mm/sec
  axt: velocity 0 rad/sec
  ayt: velocity 0 rad/sec
  azt: velocity 0 rad/sec
} until zt force < -f_max N

Figure 5.6: Example of a guarded-motion task definition [15].

However, the task specification in Figure 5.6 does not specify:

• non-nominal conditions, which enable to react to non-nominal situations. In general,
at least one non-nominal termination condition should be indicated, and it is denoted
as a maximum deviation over the expected execution time of a motion task. Moreover,
non-nominal conditions are not only used to evaluate a possible failure after the end of
a motion, but also during the execution of the motion itself (i.e., continuous monitoring,
and not only discrete monitoring);

• tolerances, both on the condition of nominal and non-nominal task execution.

In literature, there are few task specifications that include a monitor specification as a prim-
itive (e.g., [1]). A composable robotic modelling approach requires a task specification mod-
elling language that includes all kinds of monitoring, and this inevitably leads to a graph
of relations around the nominal specification model. Some initial modelling efforts can be
found in [74].

5.4.5 Policy: iterating feasible solutions during task execution

If one uses a constrained optimization formulation for a task, it is seldom mandatory that the
computation of the optimum is effectively finished before the robot can start to act. Indeed,
any feasible solution can be used, and the iterations towards a better solution can be spread
over subsequent control time instances.

(TODO: examples.)
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5.5 Bad practices in Task specification

(TODO: intantaneous reactive control, e.g., via potential fields; weighting of translation and
rotation; weighting of objective functions and contstraints; not making parameters dependent
on the context, but use as fixed magic numbers; solving problem to the optimum, every
sample again instead of tracking solutions and using a satisficing approach; defining the error
functions as instantaneous errors on setopints in position, velocity and acceleration; neglecting
the fact that constraints on joint velocity have seldom physical or economical sense.)

5.6 Task examples: indoor and outdoor robot driving

The traffic system, or “driving” in general, is used throughout the Chapter as a familiar
example of a formal representation of motions (i.e., driving in indoor corridors and rooms
(Fig. 5.7), or in outdoor traffic lanes and parking lots) and of the perception required during
those motions (i.e., recognizing building features or traffic signs, localizing them in their
spatial context, and infering their influence on the robot’s current action). Traffic lanes and
signs are semantic tags in the world, that influence (i.e., constrain, as well as optimize) the
driving behaviour of AGVs, cars, bikes and pedestrians, individual as well as groups. They
model “motion” in a fully declarative way, because they do not model how a traffic user
should move, but rather which relations the actual motion should satisfy. The real-world
implementations of traffic signs are designed to be perceivable by human drivers in (almost)
all weather conditions, and the areas they cover in the world are designed to fit to the control
bandwidths that can be safely expected from (almost) all actors that take part in the traffic.
Together, a traffic layout is an architecture of semantic traffic primitives in the world that
(almost) guarantees that humanly controlled systems can drive safely and efficiently.

The main purpose of this Section is to explain how engineered systems can make use
of the rather abstract task meta model of Fig. 5.23 by concrete of examples of motion and
perception models for a mobile robot driving around in the “traffic” of an office-like indoor
environment. The first step in that direction is to add the geometric level of abstraction
to the mereo-topological level of abstraction in the earlier task meta model. More in partic-
ular, the world model will now be filled with (models of) the shape of the environment in
the neighbourhood of the robot, the location and shape of the traffic areas, as well as the
shape and motion of the robot’s kinematic chain itself. In addition, the world model gets
relations that link some of its geometric primitives to perception capabilities that are present
in the robot control system; more in particular, there are some “walls” in the environment of
the robot that its laser scanner sensor processing algorithm can detect and track, so that the
position of the robot in the world model can be updated when new sensor information comes
in.

The task specifications given in this Section will illustrate that the world model is indeed
the modelling primitive that couples all of the other task aspects, of control (discrete plan,
and continuous control) and perception (discrete monitoring, and continuous perception), to
realise particular motion capabilities, and using particular resources.
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Figure 5.7: World model of an indoor “two-corridor-with-intersection” area: the solid black
lines represent walls, and the red lines represent doors, while all other map entities are the se-
mantic tags of the traffic signs and markings. These tags model the motion constraints that
every robot must respect when it drives through the area, but they do not give information
about how exactly the robot should move its wheels.

Figure 5.8: Semantic world model, featuring
perception tags, for a laser range finder with
sensor processing capabilities that can detect
straight wall segments and rectangular corridor
corners.

5.6.1 Geometric world models for control & perception integration

Figure 5.7 depicts a world model, with information at the geometric level of abstraction: it
has geometric primitives such as points and planar polygons, and it has semantic tags
(each attached to a geometric primitive) to model landmarks (i.e., task-relevant places in
the world) that have features (i.e., task-relevant properties of a landmark used in motion

and perception models). The Figure sketches an indoor area of two intersecting corridors,
with doors to rooms and elevators. These doors and walls form geometric constraints for
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any motion that robots execute in the modelled world, since they have to steer clear from
collisions with these “hard” world landmarks. Some (possibly different) landmarks also serve
the robots’ perception; for example, Fig. 5.8 represents the perception tags for a simple
laser range finder type of sensor.

Figure 5.9: Semantic world model, extended
with a motion control specification, in the
form of a tube (the shaded gray area that repre-
sents the constraints of the control) andmotion
drivers (the blue arrows that represent (artifi-
cial) forces that generate the instantaneous
motion of the robot).

The next step after the modelling of the world, is the modelling of the task plan. The
simplest form of such a plan is a finite state machine, with in each state a choice of a model
for the control, the perception and the monitoring that the robot is expected to realise in that
state; the monitoring provides the events to trigger a state change in the plan.

Figure 5.9 sketches how to use world model landmarks to attach some essential tags used
in a plan model: a “tube” is connected to some tags in the traffic model, to indicate the
area within which the control must keep the robot, while its perception measures whether
it is making “good enough” progress towards some other traffic tags; various monitors will
follow the approach to one or more of these target tags, and signal the plan when the robot
has “reached” one of them. More concretely, the robot should (i) not drive into the natural
constraint of the wall but follow it, (ii) satisfy the artificial constraint of the traffic lane, and
(iii) be ready to stop in time in front of the intersection.

The control model can be as simple as the two blue arrows in Fig. 5.9, that represent two
driving forces attached to the kinematic chain of the robot, and whose direction is determined
by some of the target tags in the world model. These artifical forces are the inputs to a
motion controller, that transforms them to actual actuating torques on the motors. The
control algorithm in itself is simple and constant, and all of the time and context dependent
model information is embedded in the world model.

Figure 5.10: Semantic world model of Fig. 5.9,
extended with the local perception tags: the
green area focuses the perception of tracking a
“wall” feature, at a resolution high enough to
support the motion control; the red area fo-
cuses the monitoring on the detection of “any”
feature in the direction of motion to react to,
at a resolution low enough to react in time.

The same approach holds for the perception: Fig. 5.10 extends the world model with
semantic tags for the perception part in the robot task model. Based on that information
in the world model, the robot controller can focus its perception on just two areas: (i) the wall
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to be followed in the motion, and (ii) the nearby “rest” of the environment in the direction of
motion, to be monitored for the presence of “obstacles”. Detecting them signals the switch to
another part of the plan. An important added value of the represented task knowledge is that
all the sensor data that comes from beyond this local horizon need not be processed, since it
does not have an impact on the currently executed parts of the plan. In resource-constrained
applications such as robotics, it is indeed as important to know what not to spend effort on
as it is to know what must be done.

Figure 5.11: Semantic world model, with a task
horizon that covers the sequential composition
of two or more sub-tasks.

A more advanced task plan can include a preview controlmodel, as depicted in Fig. 5.11:
one can compose two or more sequential sub-tasks “to look ahead” to the next area on the
map that the robot has to drive through, and to provide more extensive natural and artificial
constraints that come with this extended context. The composite task plan is again a “tube”
as in Fig. 5.10, but now one with a bend around the next expected corner. Again, nothing
changes in the perception, control and monitoring functionalities, since all extensions are
added to the world model, and to the plan.

world
model

L1

L2
L3

Figure 5.12: The task of the robot is to drive
out of a rectangular room with a hole in one
of its walls. The size and position of room and
hole are unknown. The small figure on the left
refers to the generic task model of Fig. 2.8,
and indicates its parts that are involved; in this
case, only the world is being modelled.

5.6.2 Example task plan: escape from a room

This Section provides the next step in the concrete design of the different task parts of the
previous Section, for the capability shown in Fig. 5.12: escape from a room. One of the
simplest possible versions of a plan has the following nominal sequence of states:

1. initialize sensors and motors, without motion control, perception or monitoring;

2. move forward till wall is detected, with the simplest possible control and monitoring;

3. move while following wall on the right, with somewhat more extensive control and
monitoring, and with wall detection perception.
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4. turn right at first large enough hole, with extra hole detection perception and monitor-
ing.

5. stop.

The sequence above only represents the nominal plan, that is, it is not ready to cope with
an execution of the robot’s actions that would bring it in other states than the mentioned
sequence. A robust plan, i.e., one that can cope also with non-nominal executions, must
have monitors in all of its states, to check whether the sensor measurements still satisfy the
assumptions that hold in each plan staet, within a task-specific tolerance. Typically, a robust
plan requires an order of magnitude more design efforts than a nominal one.

The resources available to realise the task are assumed to be:

• laser range finder : it provides at regular intervals in time an array of rays, regularly
spaced in a range of orientations, and indicating the free space within a minimum and
maximum range of distances.

• encoders: they provide the change of the robot’s wheel rotations over time, and hence
an estimate of the instantaneous velocity of the robot.

• velocity control : it tries to realise the instantaneously specified desired velocity of the
platform, via control of the corresponding wheel velocities.

• effort value: one scalar that represents the percentage of “full” available power used for
the current motion.

• keyboard button: events from the keyboard of the human operator.

At initialization, the following knowledge is assumed to correspond to the real environment
of the robot:

• the robot is inside a room.

• the room has a rectangular shape as in the figure, with unknown lengths of the walls.

• the room has one door, wide enough to let the robot pass through.

plan
world
model control

Figure 5.13: A possible control strategy for
the escape-from-room capability in Fig. 5.14:
to select from between a discrete set of pre-
computed open loop trajectories, each corre-
sponding to one particular time-invariant im-
put at the actuators.

The control part of the task can as simple as making a selection between various “open loop”
motion trajectories, Fig. 5.13:

171



• when a set of constant speeds is applied to each wheel, the result is a set of known
trajectories of the robot in the near future. These trajectories can be obtained from a
model only, or can be identified on the real robot.

• the sparsity and density of these trajectories can be chosen, in a plan-directed way,
to reduce the computational requirements to a level that does not allow to separate
between trajectories that are closer together than the sensing resolution, or than the
tolerance allowed in the task specification.

• time and space horizons can be chosen for the trajectories, again in a plan-directed way.

• the control action can then be as simple as selecting the best open loop trajectory and
apply the corresponding wheel constant velocities.

perception

world
model

plan

artificial,
task-centric
boundaries
on sensing

knowledge
about

the world,
thus far

Figure 5.14: A possible perception strategy for
the escape-from-room capability in Fig. 5.14.

The perception part does not need all the data provided by the distance sensor, since it
could use the following algorithm (Fig. 5.14):

• select a region of interest (the grey box in Fig. 5.14) that fits to the plan, because the
latter is only interested in the right-hand side of the robot.

• fit a line through a large enough cluster of measurement.

• do this over a time window of measurements.

In other words, perception is done by means of the least-squares fitting of a line of limited
length, through a clever, plan-directed selection of current and previous hits of the scanner
rays with obstacles.

perception

world
model

plan

monitoring

cluster_2

c
lu
s
te
r_
1 Figure 5.15: The monitoring strategy for the

escape-from-room capability in Fig. 5.14 must
follow the wall on the right (which is needed
for the motion control) and look out for a wall
in front.

The monitoring deals with finding which of the following four hypotheses gets most support
from the sensor data:
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1. one can fit a wall on the right, by looking only at a local horizon of measurements , as
expected by the task context;

2. a further horizon in the forward direction is needed:

(a) to monitor whether there is “something”, to react to in the plan;

(b) to find another line cluster, orthogonal to the first one, to update the world model
with a new corner.

3. the leftmost rays can be discarded, because they are outside of the scope of the plan,
which reduces the computational load.

4. all measurements could be neglected until needed again, based on the planned speed of
the motion.

tube constraint
for motion

on left hand
side of wall

"best fitting"
open loop motion
for tube constraint

is different
from "line" or
"half space"

cases

Figure 5.16: Left: a possible motion
specification, in which a “tube” con-
strains the allowed motions, but does
not command an explicit motion tra-
jectory. Right: a corresponding con-
trol choice.

Themotion specification needed in the control can be as simple as the “tubes” in Fig. 5.16:

• the robot is allowed to move anywhere inside a tube at some distance from the wall.

• it must make progress towards the next waypoint which is at the closed end of the
tube.

The controller then selects one of the open loop trajectories of Fig. 5.13 that fits best, accord-
ing to a task-specific metric. Alternatives for the control design are depicted in Fig. 5.17.

unconstrained
motion area
on left hand
side of wall

ideal
motion
at fixed
distance
from wall

Figure 5.17: Two alternative con-
troller approaches for the motion
specification in Fig. 5.16. Left: a
open half space, to the left of the wall.
Right: a line trajectory at a speficied
distance from the wall.

The world model entities and relations needed in the plan are as follows:

• room has four corners, one door, and five walls.

• each wall is represented by two nodes, that is, a point in the 2D plane.
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• the robot has a pose with respect to the room features.

This gives rise to the topology of Fig. 5.18. The geometrical properties are rather straight-
forward:

• every node gets two coordinate numbers, being its position in the room’s frame1.

• every corner gets a property tag representing that it is a straight angle.

• the position of the robot is given by the coordinates of its local frame in the room
frame.
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Figure 5.18: Right: topology of room model entities (“data structures”) and relations (has-a,
and connects). Left: geometrical properties of all entities. The robot’s pose in the room can
be represented numerically by position coordinates of the frame attached to the robot with
respect to the frame attached to the room.

5.7 Semantic task specification: domain-specific languages

The following Sections give examples of domain-specific languages that bring the specification
of tasks (as introduced in the previous Sections) in line with the terminology used in particular
applcation or technology domains. The provided examples are far from standardized, yet.

5.7.1 Task ontology

Modelling all relevant task-level compositions is a huge undertaking, but will hopefully and
eventually result in a (standardized !) collection of domain/application specific ontologies;
this undertaking is not a main focus of this document, but all of the document’s contents serves
as a foundation for that undertaking. The good news in the short-term is that even the “poor”
mereological top of this structure as introduced here is very useful to support discussions
between human developers, not in the least to make the scope of their developments explicit.

5.7.2 The importance of task ontology standardization

Sooner or later, the stakeholders in the robotics domain must agree on a standard-

ized ontology for all these terms, because that is the only way to realise a vendor-neutral
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digital plaform that can serve as the basis for composable innovation.3 The second added
value of creating a widely supported domain ontology with a hypernym–hyponym hierarchical
structure is for the robot controller software to exploit: only when the mentioned ontological
information is available, at runtime and in formal representations, one can expect robots
to reason about their actions on the “most appropriate” level of abstraction, to assess
whether what they are doing corresponds to what they are supposed to do in their current
task, and to adapt their action plan accordingly.

Metrical Model
(e.g. control component

developer)

Topological Model
(e.g. system developer view)

Robot

Battery

Motor JointTransmission

Kinematic
Chain

has_a

has_a

...

Battery

potential
(stored)
energy

Motor Transmission
Joint

Kinematic
Chain

electrical
energy

mecahnical
energy

mechanical
energy

Torque

Task
Cartesian
Space
Motion

alternative
modelling:

Joint

Kinematic
Chain

Torque

Figure 5.19: The graphs
representing the mereolog-
ical model of a kinematic
chain, with the natural
(since physical) entities
of battery, motors, trans-
missions, kinematic chain,
joints and links, and the
energy-transforming re-
lations between them.

5.7.3 Task as composition of natural and artificial constraints

The models of the instantaneous kinematics and dynamics behaviour of kinematic chains
(Fig. 5.19) play an essential role in all robotic tasks, as the natural relations and constraints
that must be satisfied in order to realise physically consistent robot motions. A similar
role is played by the natural dynamics of actuators. Even together, these natural entities,
relations and constraints are, however, not a sufficient condition to have a well-defined task
for the robot. Indeed, the robot can move in an infinite number of ways, and still satisfy
the laws of physics. So, it is the role of the task model to compose of the kinematic chain’s
natural motion properties with other artificial types of behavioural relations and constraints
(Fig. 5.20), with the purpose of letting the robot actions realise the task requirements in a
predictable way. “Predictable” is not the same as “unique”: as is clear in the context of
traffic, there is seldom a need for a task to impose one particular motion trajectory, but
rather to allow a motion tube in time and space that the robot controller should move in.

5.7.4 Task meta model realises the “dependency inversion principle”

Typically, it is only in the context provided by a composite task that these artificial relations
and constraints are added. They couple parameters in the models of the individual tasks’
control and perception (discrete as well as continuous), and of the world models that
they share, Fig. 2.9, to extra world models, or to information required by Configuration
and Coordination functionalities, or to solvers and monitors (Fig. 5.21) that compute and
assess the robot’s instantaneous motions from the artificial motion constraints of the task(s),

3After more than half a century of robotics industry, there are still no significant results in the direction of
semantic standardization of the field.

175



Cartesian
point

trajectory

joint
limits

Cartesian link
trajectory

rigid connection
to environment

contact with
environment

centre of
gravity
trajectory

soft Cartesian
point trajectory

sensor
space

joint stiffness
and damping

soft interlink
interaction

Figure 5.20: Various types of ar-
tificial motion constraints between
(some of) the natural entities in
Fig. 5.19. The figure uses a sketch
of an “arm” robot, but similar
constraint types apply to “mobile”
robots too.

Fig. 5.20. The coupling of the motion capabilities of the kinematics chain, joints and actuators,
to objects in the environment, is realised by adding model attachment points to the kinematic
chain models: in the latter model, one just has to foresee that “something” can be coupled
in, at any later time, and of any particular type. So, none of the kinematic chain model
parameters should depend in any particular way on the coupled entities, and no information
about the coupling relations or constraints should end up in models of kinematic chains. This
design approach is an example of the best practice of the “dependency inversion principle”.
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Solver Models
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Figure 5.21: Overview of the models involved
in the composition of a motion task. (The ar-
rows represent is-part-of relations, i.e., in-
verse has-a relations.)

5.7.5 Semantic mobile robot motion primitives

Abstracting a bit from the concrete examples in the previous Section, the following semantic
motions could form the basis of a mobile robot’s “platform motion stack capabilities”:

• start-to-cruise (and its inverse, cruise-to-stop): how to get the robot start its motion
and reach a “cruising” motion behaviour, when all it has to do is to drive “straight
ahead” within its current lane, and that lane continues till “far” beyond the dynamic
bandwidth of the robot.

• cruise through tubular area: the world model for this semantic motion has landmarks
on the robot are geometrically constrained by a “tubular” area in the Cartesian space.

• overtake obstable during cruise: this is a composite cruising task, with lange-changing
motion capabilities added. Reference [34] contains already a very worked-out formaliza-
tion of this semantic motion primitive, at a mereo-topological level of abstraction that
fits to that of this Chapter.
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• cruise to approach: this is an extended version of the cruise-to-stop primitive, in that the
“approach target” semantic tag adds extra constraints on the motion behaviour, such as
optimal/expected relative motion positions and orientations, and relative motion speed
profiles.

• approach to stop: similarly, this semantic primitive adds extra stopping behaviour,
determined by properties of the approached target.

• approach to turn right/left in tubular area: this primitive adds extra behaviour of how to
connect two cruise through tubular area motions, one before and one after a “crossing”.
The tubular area in the world model has specific landmarks that guide the robot to
make a right (or left) turn. Examples are: traffic lane indicators on the ground; or
“walls” in the built environment as well as in the natural environment (trees, bush,
river,. . . ).

5.7.6 Semantic robot arm motion primitives

The mobile robot example in the previous Sections is conceptually the easiest to grasp, since
the world is mostly flat, and the shape of the robot is mostly constant. For arm-based
robotic systems, the full 3D Cartesian space and the full nD joint space are to be taken
into account, but at the mereo-topological level of abstraction, very similar sematic motion
primitives can be defined. Figure 5.22 sketches some simple examples, with two levels of
resolution in representing the mentioned configuration spaces.
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Figure 5.22: Model of a “high” (left) and a “low” (right, in blue) kinematic resolution motion
plan for a serial robot arm during a sequence of tubular motion between obstacles.

5.8 Vertical and horizontal composition of Tasks
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Figure 5.23: Composite
task, interconnecting one
or more world-models
with one or more plan,
control, monitoring and
perception models, over
multiple levels of abstrac-
tion of a robot’s kinematic
chain. The extra relations
and constraints in the task

configure some of the many
“magic numbers” in the
modules that exist in its
scope, because they link
the motion capabilities of
the robots, the task expec-
tations, and the constraints
imposed by the resources
allocated in the execution
of the task.
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Chapter 6

Meta models for world modelling
and its integration in tasks

World models are an essential part of task models. . .
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Chapter 7

Meta models for control of
continuous time behaviour

Control is the part in a system’s task model that is responsible for realising
the continuous-domain1 behaviour of the system, in order to bring the “world”
from its actual state to its desired state, as specified in the plan. This Section
introduces the mereo-topological meta model of control diagrams, and some of
the natural structures and “best practices” in the control domain.

feedback
controller

system

feedforward
controller

Figure 7.1: Feedback and feedforward control loops: simple version.

7.1 Mereology of control behaviour: feedback, feedforward,
and adaptation

Figure 7.1 shows the (alomst) simplest case of a control system, that is, with only feedback
and feedforward contributions. Figure 7.2 shows the (almost) complete case of a control
system, with the following contributions to the actuator input signal:

• feedback: this is a function that converts the desired and actual “state of the world”
into an actuator signal to reduce that “error”. Feedback functions typically are parame-
terized, in order to be configurable for different applications and domains; e.g. to adapt
the gains and errors to the control problem at hand.

1“Space” or “effort” versus time, for example. Discrete control comes back in other Sections, like Sec. 2.10.
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feedback
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E S

task, robot and
environment context:

configuration & adaptation

sensor
processing

Figure 7.2: Feedback and feedforward control loops: extensive version. With the setpoint
error as the main input to the controller computations. This is a special, “local” case of the
generic controller of Fig. 2.10, since it considers only the instantaneous error between desired
and actual state value y.

• feedforward: this is a (typically parameterized) function that generates an actuator
signal based on the current “state of the world” and on a model of how the system
is expected to react to actuator signals.

model
predictive
controller

plant Figure 7.3: Predictive controller.

• predictive: the actuation signal is computed as the “best” value resulting from a
simulation of how the plant behaviour is expected to be over a certain time horizon into
the future, when the control inputs are varied over a specified domain, Fig. 7.3.

• adaptation: this is a (typically parameterized) function that converts the observed his-
tory of the control signal and plant state into an adaptation of one or more parameters
in the models of the control functions, of feedback and/or feedforward. For example,
it adapts the gain in the feedback control. So, it does not change the structure of the
control behaviour models, only the behaviour itself.

reference
model

controller

monitor/
adaptor

plant

parameters Figure 7.4: Model-reference adaptive
controller.

• preview: this does change the structure of the control behaviour models, because
it adds a model of (part of) the control in the next task in the sequence of task
specifications, as long as that addition is not expected to compromise the ongoing
control performance beyond a specified tolerance. For example, when moving a robot
hand towards a door handle, one can already start controlling (from a certain distance
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to the door) the opening of the hand as well as the orientation with respect to the door,
such that the hand is already better aligned when it is going to have to open the door
in the next sub-task.

signal sum
Σ

+

-

split function block

out-1
in-1
in-2

f(.,.,.,.)

Figure 7.5: The four entities in the controller meta model that conform to the algorithm

meta model: the data blocks signal and split, and the function blocks function-block
and sum block.

7.2 Mechanism: state and system dynamics relations

Any controller (or control diagram) is the composition of only four entities (Fig. 7.5) that
conform-to the algorithm meta meta model:

• signal: the data that flows between two function blocks; its numerical representation
is a traditional data structure.

• signal split: special case of a “signal” that appears in quasi every control diagram,
and that represents the fact that the same signal is used as inputs to more than one
function block. The split has a direction: there is only one connection to an output of
the function block that creates the signal, but the signal can be the input of more
than one function block.

• function block: this is a pure function, with one or more signals as inputs and one
or more signals as outputs.

• sum block: this is a special case of a function block, that appears in quasi every control
diagram, and that gives as its output the sum of all its inputs, each possibly with a
“−1” sign inversion.

The following signals are common to all controllers, so the meta model adds them as first-
class modelling primitives:

• setpoint: the entry point of a controller, which is not connected at its input side, at
least not inside the scope of the current control diagram. Its meaning in the context of
an application is that this signal gives the desired value of the plant state.

• measurement: the other entry point of a control-diagram, which provides state infor-
mation of the plant, possibly after some processing of the raw data from the sensors
that are physically connected to the plant.

• error: the “difference” between setpoint and measurement, whose “magnitude” is a
measure for the quality of the controller.2

2“Difference” and “magnitude” are written with quotation marks, since it is not always the case that the
state space of the controlled system is a vector space (where “subtraction” is well defined) and/or has an
invariant metric (via which “magnitude” is well defined.
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• actuation: the exit point of a control-diagram, which provides information for the
actuators that can change the state of the plant.

• state: a selection of signals somwhere in a control diagram, that make sense to the
application that used the controller, when their values are taken together, at the same
execution instant of the control diagram.

• sample-instant: the signal that represents the time of one particular execution of
the control-diagram.

• sample-period (and its inverse, the sample-frequency): the signal that represents
time between two subsequent executions of the control-diagram.

• event: a signal that represents the fact that “something” has happened during the
execution of the control-diagram.

The following function blocks are so common that the meta model adds them as modelling
primitives too:

• plant: this is the part of the real world whose state the control-diagram tries to
influence, and with which it interacts via sensors and actuators that convert physical
values into digital signals.

• feedback loop: a function block that takes setpoint and measurement signals as
inputs, and computes a signal that can be used by an actuator. The topology of
feedback is a “loop” because the plant couples the measurement and the actuation.

• feedforward chain: a function block that takes setpoint signals as inputs, and uses
a mathematical model of the plant dynamics to compute a signal that can be used by
an actuator.

• sensor: a function block that gives signal values to some physical values of the
plant.

• actuator: a function block that converts signal values in the controller to physical
values of the plant.

• adapter: a function block that takes a state of the control-diagram as input, and
computes a signal that another function block in the control-diagram can use to
change the value of one or more of the parameters it uses in its computations.

• monitor: a function block that takes a state of the control-diagram as input, and
computes an event for the application software that uses the controller. The event itself
is not further used in the control-diagram itself, but it can give rise to a change in
one or more parts in the control-diagram.

• control-diagram: this is the composition of all of the above, which conforms to the
constraints of the controller meta model, discussed below. It has one trigger entry
point, to execute all computations inside the diagram; to this end, every control-diagram
contains a data structure to represent its schedule. In other words, the control-diagram
is the model of the function that takes the output state of the plant as one of its argu-
ments, and the desired state of the plant as its setpoint argument, and computes the
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input that should be applied to the plant to make it evolve towards the desired state.
In general, a control-diagram model is a cyclic graph, because of the presence of
feedback loops.

• delay, or buffer:

In order “to run” a control-diagram, all its function blocks must be serialized into an
execution spanning tree, or unrolled control loop. Extra constraint in case of cascaded
loops:. . .

Properties of the execution are:

• latency:

• jitter:

• loop-time:

Not all compositions of entities in the meta model result in meaningful control-diagrams,
since the following constraints must be satisfied:

• feedback loop constraint. The following chainmust be present: setpoint, feedback,
actuation, plant, measurement.

• feedforward chain constraint. The following chain must be present: setpoint,
feedforward, actuation.

• cascaded feedback loops constraint. More than one feedback loop can be present in
the same control-diagram, and the proper composition of an “inner” and an “outer”
loop requires that the setpoint for the “inner” loop is an actuation signal of the
“outer” loop.

• adapter chain constraint. Any adapter has at least one state as its input, and its
output goes into a feedback, feedforward or monitor block.

• monitor chain constraint. Any monitor has at least one state as its input, and
has no output that goes into a feedback, feedforward or adapter block.

7.3 Policy: model-reference adaptive control (MRAC)

One particular policy of adaptive control has been given the name Model Reference Adaptive
Control (MRAC); its computation uses a model of the desired plant behaviour.

7.4 Policy: model-predictive control (MPC)

One particular policy of predictive control has been given the name Model Predictive Control
(MPC); its computation uses a cost function that includes samples along the full predicted
trajectory.
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7.5 Mechanism: setpoint, trajectory, path and tube control
inputs

A second ordering in control approaches is according to the type of the input that the
controller is expected to accept:

• setpoint: only one single instantaneous value of the desired state of the plant is
being used in the control computations. In other words, the control horizon is only
one time instant “deep”.

• trajectory: instead of just an instantaneous value of the plant state, a trajectory
of desired plant state values at multiple sample times over a certain horizon is used
in the control computations. This mechanism brings more constraints than one single
setpoint; the latter is a boundary case of the former.

• path: another mechanism is to use a path instead of a trajectory, which is less con-
straining since the time is not imposed, i.e., the state is constrained to follow the
geometry of the path in state space, but not any timing along that path.

• tube: this is an even less constrained control specification, in that the controller is
expected to keep the plant state inside a “tube”, or “region”, in the state space, and
no extra constraints are attached to the concrete trajectory that the controller generates
within the tube boundaries.

The design choice about what is the input to a controller defines, implicitly, also the meaning
of the term (control) error.

7.6 Policy: control progress objective

For setpoint and trajectory control, the objective of the controller is the same: to reduce
the error to zero. But path and tube constraints are not complete enough specification to
determine the behaviour of the controller. That behaviour also depends on the progress
objective that is specified for the controller. There are an infinite number of ways in which
such a progress objective can be chosen, so this becomes a policy decision.

7.7 Policy: PID, sliding mode, gain scheduling and ABAG

A third ordering in control approaches considers the choice of how the “error” is taken into
account in the feedback/feedforward parts, without using any specific knowledge about
the dynamics of the controlled system:

• only a setpoint error is used in the feedback, with PID control as typical represen-
tative.

• an error area is used to select the control feedforward, with sliding mode as typical
representative. Similarly, an area in the configuration space of the controlled system
is used to select the feedback part, as in gain scheduling.
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Figure 7.6: The concept of sliding mode control : the state space of the robot is divided into
areas, each with a particular a priori determined control approach. In the strictest version
of the concept, the middle area is the specified trajectory.

The control designer determines, at design time, the areas in which the plant error can
be, and for which a different feedback-feedforward control action is prepared off-line,
Fig. 7.6.

• the trend in the error is used to adapt the control feedforward, with ABAG control
[30] as a representative.

The control computes a bias (the “B” in “ABAG”) that represents the control signal
needed to keep the plant in its current state, and that follows the trend in the error at
“slow” speed, while there is also a gain (the “G” in “ABAG”) to react “fast” also to the
direction of the error. (The “B”s in “ABAG” indicates that both parts are adaptive.)

The feedback part of the ABAG control algorithm is in the fact that it reacts to the error,
and the feedforward part comes from the fact that the waveform of the bias is determined
beforehand; in addition, both bias and gain are limited to chosen maximal values, before
they act on the control signal and not afterwards, as in the case of the anti-windup policy
in a PID controller.

The waveform of a PID controller is not known in advance since it is completely determined
by the error, while the waveforms are determined by the control designer for the ABAG and
sliding mode cases. Hence, the latter have more predictable behaviour (and hence stability).

The “I” in a PID controller, and the “B” in an ABAG controller have a similar intention: to
compute the signal that the controlled plant needs for a steady state evolution. For example,
the force to compensate for gravity, or for friction. The contribution from the integral term
is proportional to both the magnitude of the error and the duration of the error, which is a
lot more difficult to predict than the adaptation behaviour of the fixed-waveform “B” term.
Not in the least since the building-up and reduction of the I term depends on the concrete
error signal, and not on decisions introduced by the control designer.

The traditional policy for a PID controller is to be used as one single algorithm, irrespective
of the error. The traditional policy for a sliding mode controller is to be used as a hybdrid
algorithm, in the sense that it identifies different areas in the error state space and selects an
algorithm on that basis. The traditional policy in the ABAG controller is to allow adaptation
of its B and G parameters. Of course, there is no fundamental reason why these different
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policies can not be used all together. In the context of control for system-of-systems, the trend
is obviously even stronger, since practice shows that every controller must be hybrid and
adaptive:

• hybrid : the computation of the control action requires different modes (or states, or
regimes,. . . ) because (i) the output must be limited (no actuator has infinite effort
resources, no application tolerates infinite control inputs, etc.), and (ii) the inputs must
be thresholded (no sensor has the same accuracy over the whole dynamic range of the
plant, so some “too high” or “too low” values must be discarded).

Of course, many particular tasks will introduce extra reasons to limit or threshold
control signals.

• adaptive: no plant has ideal linear system dynamics behaviour, so control designers
will introduce different dynamical regions for the plant, and design controllers for each
of them separately. (The choice of which regions to identify and select is often not a
property of the plant itself, but rather a design trade-off between task requirements and
resource capabilities.) The simplest form of adaptation is to select different parameters
for the same control algorithm, in the different plant dynamics regions.

control-
ler A

plant
B

plant
A

control-
ler B

Figure 7.7: Cascaded control loops.

7.8 Mechanism: cascaded control loops

The natural hierarchy in the physical domains that are relevant in robot system control, and
especially the differences in the natural time constants in these domains, leads to the best
practice of cascaded control loops, Fig. 7.7: the innermost loop deals with the control
of the fastest physical time scale (in particular, the DC-to-AC conversion), and the loops
around it cover the next time constants in increasing order: torque, acceleration, velocity and
position. In every loop, a new part of the plant dynamics must be taken into account; e.g.,
the inner loop sees the electrical dynamics of a motor, and the loop around it also sees the
mechanical inertia.

(TODO: figures.)

7.9 Mechanism: asynchronous distributed control

The Sections above made the assumption of synchronous control:

• all computations can be done in zero time.

• the computations are executed at the right time, say in 1kHz loop.
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• the scheduling of the execution of the computations is the same every time one computes
the whole control loop.

This assumption does not hold anymore for many modern machines, like cars or robots, that
have multiple fieldbusses inside, and many of the computations (e.g., sensor processing) must
run on separate processes or even computers. In addition, demands are shifting towards
system-of-systems applications, in which separate machines come together in temporary
systems and must realise tasks together; for example:

• multiple tugboats maneuvering a tanker.

• multiple cranes moving same load.

• multiple drones transporting same load.

• getting cars into and out of a platoon.
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Figure 7.8: Many modern systems must rely on communication between sub-systems, in order
to realise cascaded control loops.

So, such control loops involve communication between control computing processes, Fig. 7.8.
Such a distributed cascaded control architecture introduces asynchronicity into the con-
trol problem:

• the closing of feedback loops is disturbed, because the latest state information is not
available at the theoretically ideal time.

• there is now a need for monitoring : each subsystem must monitor how well its own
control responsibilities are progressing with respect to what the overall system expects
from it. It must provide this information to the other system components, and in
turn must use the similar progress quality information that it receives from the other
components.

• the result is the need formediation: each subsystem must have a (safe, effective) reaction
to the situation where the control progress, of itself or of its peers, is “not good enough”.

The result is that every distributed controller becomes an hybrid event controller:
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• each sub-controller needs a Finite State Machine, with different control configuration
in each state.

• all sub-controllers must also send events to each other, to coordinate their FSMs.

7.10 Policy: optimal control

The control mechanism in Sec. 7.5, setpoint, trajectory, path and tube control, still allows
multiply ways of how the control input is realised. Constrained optimization has become
a popular approach, because there are almost always contextual pieces of information that
can help to formulate the input as the optimum of some objective function and a set of con-
straints. Here is the generic version of a formalisation of a constrained optimization problem
from which a control setpoint could be computed:

task state & domain X ∈ D
desired task state Xd

robot/actuator state & domain q ∈ Q
objective function minq f(X,Xd, q)
equality constraints g(X, q) = 0
inequality constraints h(X, q) ≤ 0

tolerances d(X,Xd) ≤ A

solver algorithm computes q
monitors decide on switching

The domain fills in the types for f , X, q for a particular “robot”, and a particular type of
solver. The application then adds choices for the parameter values for f , X,. . . , and the
concrete solver and monitor implementations.

(TODO: concrete examples.)

7.11 Policy: behaviour tree for semi-optimal control

A behaviour tree is a mathematical model, with a limited but very composable number of
entities and relations, to decide what next action to take in a control loop. (It is a more
specific version of a decision tree, focused on “control”.) It trades off optimality of the
quality of the solution for speed of finding a feasible solution. The knowledge encoded in a
behaviour tree model is typically known (i) to be “good enough” in particular use cases, and
(ii) reflects experience in how to detect the (or rather, “a”) relevant use case via a series of
decision making conditions that are fast to compute.

7.12 Event loops revisited: control behaviour composition

“Control” is an essential part of all robotics and cyber-physical systems, and the composition
of the material introduced by all previous Sections now allows to model the meta model of
controllers. In summary, a controller event loop (with a simple example depicted in Fig. 7.9)
composes the task, algorithm, Finite State Machine, control diagram, and event loop meta
models, and adds specific policies (i.e., model configurations):
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Figure 7.9: A one-dimensional position controller, generating the actuating force F from the
desired position xd, velocity ẋd and acceleration ẍd, via nested velocity and position feedback
loops with gains kv and kp The “world model” of the controller consists of an estimate m̂ of
the moved mass.

• control diagrams as in Fig. 7.9 represent the dataflow model of an algorithm. The
structural model is a graph, but typically unambiguous ways exist to find its span-
ning tree (typically cutting the diagram at the “summators” 1,. . . , 5 in Fig. 7.9), with
equally unambiguous ways to serialize it into a schedule.

• dataflow buffers (i.e., the “arrows” in the control diagram) are often just “one deep”,
since the controller is only interested in the most recent version of measured data (“Last
Write Wins”), such that older versions can be overwritten when new measurements
arrive. However, modern controllers see an increasing use of Model-Predictive Control
(MPC) or Moving-Horizon Estimation (MHE), which require data flow buffers of size
N > 1.

• if necessary, pre-processing of measurement data takes place in the prepare step for each
loop, and gives the result as “new measurement” to the control loop. Such pre-processing
can consist of averaging operations, or curve fitting, or other types of observers or
estimators, like the MPC or MHE approaches mentioned above.

• several nested (or cascaded) loops can exist (e.g., Fig. 7.9): the natural causality
hierarchy is to schedule the computations of an inner loop more frequently that those
of an outer loop.

• many variables computed in control loops must be monitored, and these computations
must be integrated in the “right way” into the scheduling of all other control loop
computations.

• similarly, some monitors do not only generate events to trigger discrete changes in the
control loop configuration, but also adaptation of some continuous parameters in the
controllers, such as feedback gains or model parameters.

• last but not least, realtime requirements of the application have an impact on the
model of the event loop.
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7.12.1 Example: one-dimensional position control

For example, the event loop of the one-dimensional position controller depicted in Fig. 7.9
specializes this generic pattern as described below. The data blocks are the arrows in the
control diagram:

• state of the system x(t), i.e. position of the massm. The state changes continuously over
time, but the controller only needs the most recent versions of the state measurements.

• setpoint inputs xd, ẋd, ẍd, e.g. desired position, velocity and acceleration of the mass.

• measurement inputs x and ẋ, e.g. actual position and velocity of the mass.

• feedback gains kp, kv, i.e. proportional position/velocity control gains computed, for
example, via pole placement (off line) or an observer/adapter combination (on line).

• outputs of control is desired acceleration, reached after summation “4”.

• feedback output is transformed, via feedforward multiplication by the estimated mass
m̂, into force F to system actuators.

• disturbance force Fdist applies after control, at summation “5”. This is not a summation
that is performed in software, because it is realised by nature, in the real world. The
measurement actions (that turn real-world values into digital numbers) are not depicted
explicitly.

• that real-world system is depicted in the Figure within the dashed rectangle. It is
modelled to be a perfect double integrator with real mass m.

The function blocks are the rectangles in the control diagram, and they represent a mul-
tiplication; each circle represents a summation function block. The arrows in the diagram
represent data blocks, but also some of the rectangles have data inside, e.g., the estimated
mass rectangle. The high-level schedule that realises the controller’s event loop (by triggering
function blocks) is the following:

when triggered // = OS executes controller every, say, 10 milliseconds

do {

communicate() // read desired position/velocity/acceleration

// from input data block(s)

// read actual position/velocity from sensors

schedule() // trigger function blocks, in the following order:

// sums 1 & 2, multiplications k_p & k_v,

// sums 3 &; 4, multiplication \hat{m}

communicate() // write computed control force to actuator data block

}

It is possible that the computation of the control loop generates events itself. Or rather, such
events are generated in monitor functions that are not shown explicitly in the Figure, and
that the schedule() function adds to some data blocks in the controller. For example:

• when an error between desired and actual state parameters is too large.
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• when the trend of the error is undesired, e.g., always positive.

• when the computed control force F is too large for the actuators.

• when the actual execution sample time deviates too much from the desired one.

It is possible that the computation of the control loop must react to events that come from
the outside (and that are different from the timer events that most control loops rely on).
For example:

• a new motion plan is started, so that some control parameters must be reset, such as
the setpoints and the gains.

• the current plan is interrupted, so that the controller must bring the system to a safe
stop as quickly as possible. In practice, this boils down to the controller starting a new
motion plan itself.

Hence, the control loop event queue must be extended with coordinate() functions to react to
(and/or generate) events, and configure() functions to realise the reconfigurations triggered
by the coordination execution. The “safe stop” functionality would require the addition of
extra functions blocks, hence by a new schedule.

Implementations of control loops used to require no asynchronous Communication, but
just synchronous reading and writing from data in the memory of the computer; the Pro-
grammable Logic Controller (PLC) works like this, and while it still is the workhorse of
the automation industry, all modern versions implement the asynchronous and hybrid vari-
ants. The key hardware-supported technology here is memory-mapped IO. But most modern
robotic systems now have one or more field busses, such as CAN, EtherCat, or another Indus-
trial Ethernet variant, so some asynchronous Communication parts have become necessary
in the event loops. Such software architectures require at least two asynchronously running
activities: the field bus device driver takes care of the communication over the network, and
writes/reads messages into the data blocks that the controllers use in the their event loops.

Interrupts are another very important source of events in control systems; many modern
interface devices can be configured to generate events to which the operating system will
react. The application can configure the operating system to schedule a specific interrupt
handler function as soon as the interrupt arrives. (The above-mentioned communications
most often work in such an interrupt-driven way.)

7.12.2 Policy: hybrid event control

No realistic task can be realised by just one single control loop, and so-called hybrid event
controllers are needed:

• the continuous control behaviour is realised by feedback control loops, like the one
introduced above, or by a constraint optimization solver.

• some discrete control behaviour is added, often in the form of a Finite State Ma-
chine, where each state executes a different continuous controller, together with other
continuous time and space computations, such as monitors, observers, adapters, etc.
Transitions between continuous controller modes are triggered by events, generated by
the actually running continuous controller itself, or by external activities.
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Obviously, such hybrid controllers fit perfectly in the event loop approach, since that struc-
tures the computations, communications and configurations of the control loops, the FSMs,
the event triggering and processing, with synchronous as well as asynchronous activities.

7.12.3 Policy: throughput and latency

Applications require a variety of controllers, and one of the major design trade-offs is that
between optimising the controller’s scheduling for either of the two following Quality of
Service measures:

• throughput: the more data is processed, the better. This is important when the
behavioural performance of the controller depends on the amount of information that
can be extracted from the raw sensor data.

• latency: the faster functions are executed, the better. This is important when (i)
the natural dynamics of the real-world system under control is “fast”, and/or (ii) the
control design method requires “exact” timing of the controller computations since the
behavioural performance of the controller depends on it.

In many applications, Tasks have a need for both types of computations, the former typically
to update their world models, and the latter to realise their feedback control. An often seen
adaptation of the generic high-level control schedule first does the feedback control as fast as
possible and only then spends the remaining computing cycles to world model updating:

when triggered

do {

communicate() // read only sensor data needed for control actions

schedule-feedback() // now do all Tasks’ feedback control actions

communicate() // write computed control efforts to hardware

// read extra sensor data needed for world model updates

schedule-updates() // now update all Tasks’ world models

coordinate() // only now process events that could

configure() // trigger reconfigurations

communicate() // do all remaining non-control communications

}

7.12.4 Policy: realtime activities via the “multi-thread” software pattern

Many robotics and cyber-physical systems contain one or more activities whose execution
must be predictable (“deterministic”, “realtime”) with respect to the computational
resources they have available:

• time: the execution must take place within a small tolerance of the ideal instance in
time. The two key performance measure are latency and jitter .

• memory: the execution must respect consistency constraints on the data structures
that are operated upon by the various dataflows used in the activities. A key perfor-
mance measure is mutual exclusion, or locking .
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• interrupts: interrupts can preempt most of the software citivies on a computer, so
realtime applications must configure the interrupt capabilities appropriately. The com-
mon configuration options are: to inhibit (“mask”) some interrupts before a realtime
activity is launched, to inhibit interrupts on the set of cores that share cache memories
with the realtime core, or to assign only the realtime relevant interrupts to the CPU
core on which the realtime activity is running.

The good practice solution, Fig. 7.10, splits the event loops of these activies into multiple
parts, each in a separate thread, and all contained within the same process:

• the mediator thread is the one that comes with the process that is deployed in the
operation system, to create the other threads in the process, and to manage their Life
Cycle State Machines:

– resource creation & deletion:

– resource configuration:

– capability configurations :

– running capabilities :

– pausing capabilities :

• the realtime thread executes (i) all Computations that must be executed immediately,
(ii) all Communications that are done via non-blocking memory-mapped I/O, and (iii)
the Coordination that is triggered by the realtime event loop itself and must be dealt
with immediately (e.g., deciding to switch to a fail safe control mode).

• the workers are other threads, each with one single responsibility, such as (i) feeding
the realtime thread with the dataflow it needs, (ii) getting the realtime dataflow and
distribute it to the registered clients higher up in the control stack, and (iii) getting
the diagnostic information back, to allow for online or offline analysis of the control
performance. (Without loss of generality, the latter can be seen as just a special case
of (ii).)

hardwareo
p
e
ra

ti
n
g

s
y
s
te

m
k
e
rn

e
l

p
ro

c
e
s
s

thread
(mediator)

message
queue

message
queue

thread
(event loop)

thread
(worker)

asynchronous
I/O channels

Figure 7.10: Multi-threaded process archi-
tecture for the concurrent and parallel ex-
ecution of activities. The “message queues
depicted in the figure represent any type of
fast and local inter-thread communication;
e.g., lockfree buffers, circular buffers, etc.

The realtime performance of multi-threaded design depends to a large extend on the choice
of buffers between both threads; the two common policies are to use either a locked buffer
approach (by means of amutex or another locking mechanism), or a lockfree buffer approach.
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The first thread is sometimes called the hard realtime thread, and the other ones the soft
realtime thread. These adjectives have no absolute meaning, and the major best practice
design requirement is that there can be only one hard realtime thread on the whole
computer; and giving that thread the highest priority allowed by the operating system is
just a necessary but not sufficient condition for reaching this requirement. Putting the hard
realtime part on a dedicated computer system that runs no other software, is often the only
really deterministic design. The state of the technology allows to make dedicated chips (e.g.,
FPGAs) that can even do away with any dependency on the software of an operating system.

7.12.5 Policy: event loops for Task control

The Task meta model is the core structure for the design of cyber-physical systems, so it
is necessary to identify and model the impact every specific Task model has on the design
of the event loops in its activities. More concretely, all ‘property graph ‘arrows” in Fig. 2.8
must be turned into decisions on how to exchange model data in an activity, synchronously
or asynchronously. So, the generic event loop structure of Sec. 2.8 will most probably get
specialisations of the generic communicate(), coordinate(), configure() and compute()

functions, with explicit references to the (interactions between) the Task meta model aspects
of control, monitoring, plan, world model and perception.

195



Chapter 8

Meta models for perception and its
integration in tasks

Perception is dual to control, in many aspects and for all engineering systems,
so that both control and perception “stacks” can be seemlessly integrated, at all
levels of abstraction. However, in a robotics context the amount of perception
opportunities (that is, sensors with sensor data processing activities) is huge;
however, the information and software architectures for the integrated control-
and-perception stacks are copies of those for the control stacks in themselves.

Previous Chapters focused on the motion specification and control aspects of a robotic model
and software stack. Motion in a robotics context always requires various forms of perception:
specifying and controlling motion requires access to information about how “the world looks
like” at any given moment, and that requirement can only be achieved if the (task-relevant
part of the) world is perceived. Examples of such close integration between motion and
perception are visual or force-based tracking of the interaction between a moving robot and
its environment. So, it does not make much sense to develop all stacks independently, or
to deploy their software implementations in only loosely coupled components: the way how
things are perceived by robots, how robots are perceived by other agents, or how robots
can/should move, depends to a large extent on how the world around the robots looks like, and
on what information of that world can be provided by the sensor-based perception; similarly,
motion is in many cases important to help perception, especially to improve observability of
the world model updating process; finally, the task capabilities that a system offers help to
focus the perception to those sensor-processing efforts that are relevant to make progress in
the task execution.

The term “stack” refers to the hierarchical information/model structure of all entities and
relationships involved in perception. The first, mereo-topological, step in that direction is
sketched in Fig. 8.1. This Chapter first explains that mereo-topological model in more detail,
and then adds the meta models with structure and behaviour at the geometrical, dynamical,
information theoretical levels of abstraction, using Bayesian information theory as the
scientific foundation of this meta modelling. The connections are made for the task-centric
integration between motion, perception and world modelling, allowing to model explicitly
how task specifications can add artificial constraints on the perception behaviour.
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Figure 8.1: The meta model of the perception
stack. The semantics of the graphical notation
is that of “Bayesian networks”, hence (i) the
arrow does not indicate information flow but
rather the causality order of all arguments in
the connected nodes in the conditional prob-
ability represented by a connection, and (ii)
n-ary relations are not modelled explicitly by
the structural properties alone.

8.1 Mereo-topological meta model: the natural hierarchy in
robotic perception

The perception stack model has structural parts and behavioural parts. The structural part
uses hypergraphs to model the fact that n-ary relations exist between entities in the stack;
these structural relations conform to the Block-Port-Connector meta model. The behavioural
models describe the dependencies between of the values of the properties in the connected
entities, and these dependencies can be continuous, discrete, or hybrid. For robotic systems,
every perception model has n-ary relations between entities of the following types:

• sensor: to describe the properties of the data generated by sensor devices.

• actuator: to describe the properties of the data to be provided to actuator devices to
make them put energy into the system.

• features: relations between sensor data and object properties that play a role in the
context of a task, or between object properties and their role in a task to determine
how the robot should move, or both of the above within one single relation. “task” can
be replaced by a composition of entities in the models of the task, the robot and the
environment in which the previous two operate.

• objects: have properties that can be linked to data features, for sensing as well as
actuation, and to the tasks that describe what robots have to do with them.

• a robot model represents the sensing and actuation capabilities and resources of robotic
devices and systems.

• environment entities, are often relevant for parametrizing perception algorithms (e.g.
camera parameters due to lighting conditions) or to select appropriate sets of sensors
(e.g. during fog or rain outdoors or when encountering a dark indoor area during night
or in the basement). Obviously, this part of the perception stack contains the links
to world modelling; an important development within the project will be the “right”
separation and composition of perception modelling and world modelling.
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• the task plays a crucial role in constraining the selection of all other entities ranging
from limiting object types that are relevant during that task to the selection of the
perception features that need to be detected.

• the mission model makes choices of which task, robot and environment models must
be used together to realise “long-living” applications.

8.2 Policy: (data) association

Association relations represent the inherent uncertainty of the inference process that must
decide which (sets of) “features” at a lower level of the perception hierarchy are “caused” by
which (sets of) “properties” at a higher level. Such association relations appear (at least!)
in four different complementary ways, as indicated in Fig. 8.1: between sensors and features,
between features and objects, between objects and task/robot/environment, and between a
mission and the tasks, robots and environments it requires. Even a small number of possible
choices in every association relation results in a huge number of uncertainties in the overall
system model; this complexity is most often very much underestimated by the human mind.

The term data association is most often reserved for the association between the sensor
data and feature properties.

artificial,
task-centric
boundaries
on sensing

knowledge
about

the world,
thus far

Figure 8.2: Application example of the escape
from the room task (Sec. 5.6.2) to illustrate
various levels in the perception stack hierarchy
of Fig. 8.1.

8.3 Perception example: robots driving in traffic

This section provides “running examples” for this Chapter’s modelling an application con-
forming to the perception stack meta model.

8.3.1 Escape from a room

Assume the robot has a laser scanner, encoders on the wheels, and a cameras (one looking
down to the floor, to use its texture for self-localisation; one looking to the ceiling, for similar
purposes; and one looking forward). Part of the sensor models describes the physical units,
the mathematical, numerical and digital representations of the data that the sensors produce.
For the camera this is a matrix with dimensions defined by the sensors resolution property;
each of the values in this matrix is a vector containing the RGB values, which are in turn
chosen to be represented as integers between 0 and 255. The laser scanner has a similar
representation, but with the 2D RGB image replaced by a 1D vector of depth values.
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The digital representation of the camera image is used by one or more segmentation
algorithms. For example, one based on color is configured with the size and color properties
of the expected features in the room; assume that there is a wall with a round green drawing.
While the system architect would only choose the type of algorithm, the system builder
needs to choose a specific implementation here (e.g. in which color space to look for “green
segments”). Also the grounding what “green” means in terms of regions in a color space needs
to be grounded in a digital representation (potentially by linking to an ontology describing
colors in various spaces); in addition, also the environment conditions play a role, because
the perceived color depends not only on the object properties but also the lighting conditions.
The output is a set of green regions, which some algorithms might use as prior knowledge for
the next iteration.

To simplify the data association problem, it is assumed that only the circle with the
highest probability will be used. This circle has a state which is represented as its centroid
and diameter. By only looking at the numbers shown in Figure 8.2 it is difficult to say that
these numbers are in image or pixel coordinates. Therefore, it is again important to point at
the meta model describing the digital representation and the semantics of the data.

This centroid and diameter found in the camera image are then used as an input to
a Kalman Filter (some additional pre-processing is not displayed). A Kalman Filter is a
generic, “platform”, algorithm that needs to be configured with a process and a measurement
model, initial conditions, as well as noise parameters. These are configured from the sensor
model, task model, and object model. Please note that, in contrast to the perception stack,
the task is not explicitly shown in this figure since it is influencing the overall architecture
and choices. A Kalman Filter requires a state to work on, which is a (dynamically changing)
property of the ball. Again, its digital representation is important as is the semantical context
like the frame its position is expressed in (see motion stack).

The green round feature typically has many properties that can also change with every
new application. Therefore, the suggested structure allows them to be composed with the
“ball” while keeping their semantic context by pointing to the models they conform to. The
number of possible object properties is huge and will have to grow over time.

8.3.2 Ego-motion estimation with accelerometer, gyro and encoder

(TODO: link the proper time derivatives of the trajectory of the plan with the corresponding
levels in the sensors: linear acceleration in the accelerometer, angular velocity in the gyro-
scope, and wheel position in the encoder. Then do a least-squares parameter identification
for each of the sensors separately, or by weighing them all together with the uncertainty
magnitude of each individual sensor source.)

8.3.3 Ego-motion estimation with visual point and region features

(TODO: point features are abundant in vision, at the detriment of regional features, that are
often more difficult to compute, more dependent on the application, and on other features.
Typical regional features are: entropy, geometric or tecture patterns, and spatial and temporal
frequencies, often on the raw pixels but also on pre-processed pixel values.)
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8.4 Mechanism: Bayesian information theory

A model is a set of relations between entities in a domain, and the model for information
(or uncertainty) is a Probability Density Function (PDF) p(X,Y, . . . ) over the parameter
space of a selection of the properties in the model:

• discrete PDF: parameter space has only finite number of possibilities.

• continuous PDF: parameter space is continuous.

• hybrid PDF: parameter space combines discrete and continuous sub-spaces.

Information representation is subjective, because a PDF is a multi-dimensional, single-valued
function p(X,Y, Z, . . . ) that describes the probabilistic relationship between the variables
X,Y, Z, . . . in a model M :

p(X,Y, Z, . . . |M)

and the model M is a chosen representation of the chosen relationships (assumptions, con-
straints,. . . ) between the variables X,Y, Z, . . . So, the PDF represents what the system
“knows” about the world, not what the world really is. Engineers have to choose what
mathematical representations to use, for domain as well as for information!

x y z

u

x y z

u
Bayes network

Factor graph

Probabilistic relationship: Figure 8.3: Example of a probabilistic model,
in Bayesian network form (top), as a factored
conditional probability density function (mid-
dle), and as a factor graph (bottom).

Information structure = graph:

• node contains variables, with representation of their uncertainty.

• arc (edge, link, arrow, . . . ) contains (probabilistic) relationship between variables
in connected nodes.

• terminology: Bayesian network, belief network, factor graph.

• same real-world system can have various graphical models.
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X,Y Z Figure 8.4: Simplest Bayesian network.

The most important arcs are the ones that are not there!
The simplest Bayesian network is one with just one directed arc, Fig. 8.4. The explicit

relationship Z = f(X,Y |Θ):

• “if I know something about X and Y , so what can I now then predict about Z?”

• arrow direction: “easy” to calculate

• is not necessarily physical causality

• factorizes joint PDF via conditional PDFs:

p(x, y, z) = p(z|x, y)p(x, y).

Mathematical representation of a PDF: a single-valued, positive function p(x) + density “dx”
around the value x. What really counts is the “probability mass” (“expected value”)
over a certain domain D:

D =

∫

D

p(x) dx

Extra “property” of PDF: integral over complete configuration space of x = 1:

• value “1” is arbitrary choice/convention!

• only relative value of probability mass is important.

Measure of (change in) information:

• mutual information, relative entropy of two PDFs P and Q:

H(P‖Q) =

∫

X

log
dP

dQ
dP.

• “how much does information change when new data becomes available?”

• “no information” does not exist → always relative!

Mean µ, Covariance P :

µ =

∫
x p(x) dx, P =

∫
(x− µ)(x− µ)T p(x) dx

(µ is vector) (P is matrix)

Advantages of Gaussian PDF representations:

• only two parameters needed (per dimension of the domain).

• information processing is (often) analytically possible.
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Figure 8.5: Simplest PDF: Gaussian (or nor-
mal) PDF, with mean µ = 0 and variance
σ = 5, 10, 20, 30.
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Figure 8.6: 2D Gaussian.

Disadvantages:

• mono-modal = uni-variate = only one “peak”.

• extends until infinity = never zero.

Efficient extensions:

• sum of n Gaussians: can have up to n peaks.

• exponential PDFs: αh(x) exp{β g(x)}: analytically tractable.

Sample-based PDF is an approximated PDF by means of samples with a weight:
Operations on PDFs (e.g., Bayes’ rule) reduces to operations on samples. For example,

“integral” becomes “sum”:∫
φ(x)p(x)dx ≈ 1

N

∑N
i=1 φ(x

i) =
∑N

i=1w
iφ(xi)

8.5 Geometrical semantics in perception

8.6 Dynamical semantics in perception

8.7 Policy: tracking, localisation, map building

1. tracking: how does an identified object’s position in the world change over time?
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2. localisation: where is the robot in the world?
Recognition is perception of the same type as localisation, but intended to know where
particular objects are in the robot’s environment.

3. map building: what is the map of the world?

The modelling (and hence also computational) complexity increases roughly with an order of
magnitude with every category of perception.

8.8 Mechanism of information update: Bayes’ rule

The essential role of Bayes’ rule: “Inverse probability”:

p(x and y|H) = p(y and x|H)

(product rule) ⇓ (product rule)

p(x|y,H)p(y|H) = p(y|x,H)p(x|H)

⇒ p(x|y,H) =
p(y|x,H)

p(y|H)
p(x|H)

YX
hidden observed

Bayes’ rule, for the inclusion of new data:

p(Model params|Data, H)

=
p(Data|Model params, H)

p(Data|H)
p(Model params|H).

“Posterior =
Conditional data likelihood

Data Likelihood︸ ︷︷ ︸
“Likelihood”

× Prior.”

Data: observed ; Model parameters: hidden

All factors are functions of model parameters, except p(Data|H) = often just “normaliza-
tion factor.”

Bayes’ rule: important properties:

• p(M |D,H): function of M , D, and H.

• PDF on Model parameters “in” ⇒ PDF on Model parameters “out.”

• Integration of information is multiplicative.

• Computationally intensive for general PDFs.

• Easy for discrete PDFs and Gaussians. (And some other families of continuous PDFs.)
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• p(Data|Model params): requires known table or mathematical function Data= f(Model
params) to predict Data from Model.

• Likelihood is not a PDF.

• Optimal Information Processing and Bayes’s Theorem, Arnold Zellner, The American
Statistician, 42(4):278–280, 1988.

8.9 Mechanism of perception solver: message passing over
junction trees

The message passing algorithm in factor graphs [10] plays a similar role in perception as
the hybrid dynamics solver of Sec. 4.6 does for motion. For example, Kalman or Particle
Filters, Bayesian networks or Factor Graphs, ARMAX or Butterworth filters, are algorithms
with very similar structural properties as the hybrid dynamics solver (Sec. 4.6), as far as
they pertain to the “sweeps” over tree structures, and their generation by reasoning about
the structural relations (graph interconnections) and the functional constraints (“dynamic
programming” solvers of constrained optimization algorithms).

(TODO: much more details and examples.)

X(k)

Y(k)

U(k)

X(k+1)

Y(k+1)

U(k+1)

X(k-1)

Y(k-1)

U(k-1)

Figure 8.7: Dynamic Bayesian network.

8.10 Policy: dynamic Bayesian network

Figure 8.7 sketches a typical dynamic Bayesian network, where one of the arrows represents
evolution over time.

Variables :

• U : control inputs

• X: state information

• Y : measurements
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Arrows :

• motion model: X(k + 1) = f(X(k), U(k + 1))

• measurement model: Y (k) = g(X(k), U(k))

Multiple arrows can be represented by one function.
“1st-order Markov” = “time”-influence only one step deep.
A dynamic Bayesian network is the probabilistic extension of the representation of a

physical control system: {
dx
dt

= f(x, θ, u)

y = g(x, θ, u)

• x: domain values.

• t: time.

• θ: model parameters (PDF, relationships).

• u: input values.

• y: output values.

• f : state function, or “process model”

• g: output function, or “measurement model”

State at time State estimate at time 

Transition to next state 

Measurement at time Innovation 

Prediction of next measurement

Prediction of next state

State covariance at time 

Prediction of next state covariance

Innovation covariance

Filter gain

Update of state covarianceUpdate of state estimate

Figure 8.8: Computational schema of the Kalman Filter.

The simplest dynamic network is the Kalman Filter.
Required inference: given Y and U , update X.
Assumptions: fast analytical solution possible!

• Process model: xk+1 = F xk +Qk.

• Gaussian “uncertainty” on xk: covariance Pk.
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• Gaussian “process noise”: covariance Qk.

• Measurement model: zk = H xk +Rk.

• Gaussian “measurement uncertainty” on zk: covariance Rk.

Typical application: tracking = adapting to small deviations from previous values.
Second simplest dynamic network: Particle Filter for localisation.

• functional relationships f(·), g(·): can be non-linear.

• PDF representation: samples.

• each sample is sent through f and g separately, and then a new PDF is reconstructed.

So, a numerical solution is needed. Typical application: localisation with large uncertain-
ties.

8.11 Policy: Factor Graphs

8.12 Mechanism: composition of point and region features

8.13 Policy: feature pre-processing

8.14 Policy: deployment in event loop
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Chapter 9

Meta models for holonic, resilient &
explainable system architectures

Designers of cyber-physical systems create information architectures of ac-
tivities, and hardware architectures of devices, and interconnect both with
a software architecture of components, in which all of the above engage in
peer-to-peer interactions of different kinds.

A resilient1 system has a top-level software architecture that consists of only so-
called holons, (or agents, or digital twins), that is, components/sub-systems that
(i) remain operational under any (lack of) interaction with peer systems (that can
come and go dynamically), (ii) can always decide for themselves when and how
to switch to what kind of graceful degradation behavioural state(s), while (iii)
explaining their decisions to whatever peer holon that is interested in knowing
because, (iv) it needs to build up trust in their mutual interactions.

In addition to this holarchic peer-to-peer behaviour, performance, robustness
and correctness of software components (at all levels of composition) are main-
stream (but inprecise) metrics to evaluate the quality of a system.

It is (probably) useless to try and be precise about “the definition” of a system, because what
counts are the design patterns and best practices that are available to develop, deploy and
maintain systems and their compositions. Seminal work in holonic system design started
in the 1960s and matured around the beginning of this century [40, 47, 62, 76, 80, 78]. The
starting point in holonic design is to design a system in such a way that it is ready to be
composed into a larger system-of-system, sooner or later, and that it can decide for itself
that, when, why, where and how it becomes part of a larger system, or break away from it.

The major responsibilities of the system architects (compared to component developers)
are:

• to provide a design that can predict system-level Quality of Service for those specific
requirements that only show up at the system level: autonomy, safety, security, or
resilience.

1This document uses the terms stable or robust as synonyms for resilient.
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• to realise resilience against software erosion: this is not a physical phenomenon, because
the software does not actually decay, but rather a social phenomenom. Indeed, software
projects can suffer from a lack of developers to remain responsive to the changing
environment in which the software must work.

• to have an information architecture that does not depend on specific choices made in
the software and hardware architectures that happened to be the one available the first
time the information architecture was implemented. In particular, the configuration
values should be changeable for each actual runtime that is deployed from the software
architecture.

Individual components can never guarantee these requirements, but can easily undermine
them by not being able to adapt their own behaviour to the overall behaviour expected at
the system level.

The system design process has major phases: (i) to identify which tasks must be realised
by which activities, (ii) to identify which resources are owned by which of these activities,
(iii) to define how the state of these resources can be shared with other activities, (iv) to
create the software event loops to coordinate the execution of the algorithms that provide
the behaviour of activities and their interactions, and (v) to map these event loops onto
an appropriate number of threads to exploit the performance of the cores and the networks
provided by the hardware architecture.

This document designs a holon around one or more instances of the mediator pattern,
because that allows to guarantee single point of decision making over each of the “re-
sources” the holon is responsible for. Each holon is able to base that decision making on
the formal reasoning it can perform with the knowledge relations it has about its inter-
nal behaviour and about how its externally visible behaviour interacts with other holons.
These are (necessary but not sufficient) conditions to realise the system’s predictability2 under
interactions with any type of external system.

9.1 Robustness, resilience and explainability as system design
drivers

The literature has introduced the concepts of resilience and holarchy [47, 76] to explain natural
and social systems, and compositions of them into system-of-systems; this document redefines
the mereo-topological interpretation of these concepts in the context of the architecture of
engineering systems:

A system has a resilient architecture if its behaviour is explainable, and remains
so under any change in the behaviour of any of the systems it interacts with, as
well as any change in the topology of its interactions.

Explainability is the first step in a hierarchy of system behavioural resilience metrics; adapt-
ability, predictability and dependability are next; and guaranteeability is the holy
grail. A working hypothesis of this document is that the explainability of an architectural de-
sign of a system is proportional to the level of knowledge concentration that the designer
can achieve in providing one unique mediator component that makes the decisions about

2But not necessarily its performance or robustness.
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how to coordinate its own system-level behaviour with that of all of its internal subsystems,
as well as with all of the external peer systems. In other words, explainability can only be
achieved when all decisions the system makes to adapt its behaviour to its context, are made
in one single place, based on one consistent combination of (offline) knowledge relations and
(online) world model data. Of course, trying to apply this design driver blindly, by centralising
decision making, has time and again proven not to be a good approach; the more resilient
architectures have “holarchies” of resilient sub-systems, with the “right” loose coupling of
their behaviours and, especially, their decision making.

(TODO: robustness: explainable reaction to known disturbances; resilience: explainable reac-
tion to unknown disturbances, or rather, to disturbances that one can detect but not classify.)

9.2 Architectures: hierarchy, heterarchy and holarchy

(TODO: hierarchy for knowledge and context, heterarchy for command and control; holarchy:
architecture with, both, explicit allocation and responsibility about ownership of everything,
and theory of mind awareness of each holon’s individual role in an society of peers.)

9.2.1 Information architecture

The software architecture design often gets the lion share of the system developers’ atten-
tion, but the step change that this document wants to realise is to give that central role to
what it calls the information architecture. (This Section gives an overview, and Chap. 10
provides a more in-depth discussion.) This shift in focus strengthens the role in engineering
systems of (i) formally represented knowledge, and (ii) information depending on knowledge
as the method to provide meaning to data. An information architecture consists, in general,
of models for (i) entities to include in the system, (ii) relations between entities that must
be taken into account, (iii) constraints on such relations to be satisfied, and, especially, (iv)
policies, or trade-off choices, to be made every time a new coupling is introduced in the
system. The research hypothesis behind this approach is that such a formalized network of
semantically connected models is the best possible specification for the design of the software
and hardware architectures that must realise the system. The following types of information
models are introduced, as well as the couplings between them:

• domain models: the property graphs of the various pieces of domain knowledge the
application builds upon; for example, the relevant physical units and mathematical
solvers; the rules of traffic; etc.

• application models: the property graphs representing the knowledge needed about
the application: task requirements, social and technical constraints, Quality of Service,
introspection and self-diagnosis models, etc.

• provenance models: information about how data, entities and relations have been
created, who has ownership of them and has the responsibility to make decisions about
what to do with them, including providing them to other “organisations”, etc. Two
established meta models for provenance are Dublin Core metadata, and the PROV
models from the World Wide Web Consortium.
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• abstract data types: from all of the above, select those entities and relations that
the application has to create abstract data types for. This includes models for the data
structures, communication messages, operators, etc.

• activities, with event loops to serve all 5C responsibilities, including managing concur-
rency of algorithms such that state changes in abstract data types remain consistent.

• mediators: each shared resource (communication channel, task, space, algorithm,
world model, CPU, robot hardware,. . . ) needs a mediator activity to centralize the
configuration and coordination decision making about that resource. In some contexts,
also all CRUD operations (Create, Read, Update, Delete) on the shared resource are
run through the mediator.

• solvers: the algorithms that will realise all the activities behaviour need to be modeled.

• contexts: a major design effort in making an information architecture is to make sure
that every part in it (activity, solver, function,. . . ) is always active within the correct
context, that is, the “state” of the system that it is not responsible for itself but relies
on to be correctly filled in by other parts of the system.

• Life Cycle State Machines: each activity needs its own LCSM to manage the re-
sources it uses, and each task and each event loop need a separate LCSM too. One of
the more difficult design challenges is to make the life cycle of the contexts explicit for
the whole system, and for the whole duration of the system’s life.

The result of all these interconnected models is a property graph in itself, representing the
dependencies between all of the above. This document’s working hypothesis is that multiple
levels of abstraction, high coupling, or complex multi-disciplinarity can not be avoided, but
should be dealt with head-on. The way to make this happen is (i) by making knowledge
relations explicit, (ii) available for runtime reasoning in the robot’s control software, and
(iii) with identified natural causality constraints between relations. These steps result in an
information architecture that gives structure to the dependency complexity, and hence also to
the reasoning needed to let the control software explain the robot’s behaviour in the context
of the tasks assigned to it, the capabiities it is expected to provide to others, and the resources
it relies on.

9.2.2 Software architecture

An information architecture’s property graph adds constraints on the data and control flows in
any software architecture that implements and deploys the processes that realise the activities
represented in the information architecture. The software architects must make decisions
about the following implementation aspects:

• data structures:

• functions:

• schedules:

• threads:
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• processes: provide shared memory to threads and system calls to functions. This
infrastructure touches the operating system, hence must be configured at that level.
For example, control groups in Linux.

• device and process interrupts:

• communications:

For many of those, software patterns exist. This Section gives an overview, and Chap. 11
provides a more in-depth discussion.

9.2.3 Hardware architecture

The hardware architects’ role is in this document is focused on how to design the information
and software models of all hardware that the system must bring under computer control;
that is, deploying software onto hardware, taking the decisions about how to execute the
software architecture on computational hardware, communication busses, I/O to peripherals,
and storage mediums.

(TODO: patterns for device drivers, with special attention to interrupt handlers, and how to
realise the LCSM and Traffic Light policies with them.)

9.2.4 Digital platform

This Section is about exploiting the software, that is, taking the decision about which digital
interaction standards to use to let a well-identified set of end-users work with the software
in ways that fit “naturally” to the traditions and semantics of their application domain. A
software/hardware combo deserves the name “platform” only when it allows 100% multi-
vendor interoperability via 100% open standards (for data, events and models). Typically,
a platform is a software architecture that comes with a lot of tools and standard formats to
make working with the software “easier”.

This document is built on the hypothesis that successful meta modelling is the key to
platform success. So, it is mainly concerned about the information architectural aspects,
and tries to be complete in it, for the domain of robotics. The structuring relations that
create most added value to a platform are: containment hierarchies, mediators, event loops,
Coordination and Configuration; hence, these are also the parts of knowledge for which it
makes most sense to introduce intellectual property protections. Fortunately, the amount of
such knowledge models is (often deceptively) small, and the introduced composition models
are optimized to keep these parts easily separated from the “mainstream” parts.

(TODO: add explanations of platform services such as provisioning, configuration manage-
ment and monitoring of physical and virtual servers.)

9.2.5 Meta models for robotic stacks

In the more specific context of robotic systems, the modelling efforts described in this docu-
ment result, together, in a large set of single-focus models, structured in so-called “stacks”
for robotic systems. A stack is an architectural structure of functionalities, starting at the
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“bottom”3 with sensors, motors and mechanics, builds up towards instrumented and actuated
kinematic chains, and further to sensor-based tasks executed by loosely and opportunistically
coupled multi-robot systems-of-systems. However, there are also “horizontal” directions to
these stacks, because some (meta) meta models are relevant for entities and relations at more
than one level of the “vertical” stack direction. And geometry is one of the most promi-
nent such “horizontal” meta meta models, together with most other branches of mathematics
(analysis, logic, numerical linear algebra, etc.), and with software patterns.

The most mature stack (and also the most “pure robotics” one) is the “(motion) control
stack”, because it has the least amount of open world assumptions inside: the robot is the
world, for the largest part of the stack, and electro-mechanics make up the majority of the
meta models for computer-controlled motion of mechanical devices. The good news is that, by
now, it is indeed well known how to make kinematic chains move themselves (and the sensors
and tools connected to them) with prescribed behaviour, relying on the physically limited
variety in motion control modes (current, torque, impedance, velocity, force and position)
that can cover the task needs (Chap. 5) of all mainstream applications. The bad news is that,
even after 50 years, there is still no standardization in place that covers most of the motion
stack; this lack of standardization starts already with the representation of geometry.

The other “stacks” that are relevant for the domain of robotics are the ones it shares
with other domains: perception stack, world modelling stack, task specification stack. The
robotic motion stack already integrates parts of those stacks: even for its own motion, a
robot needs some non-trivial amounts of perception, world modelling and task specification.
This interdependency is a clear indication that the different stacks should not be developed
in isolation, and that their composability is a primary design and development concern.

The mereo-topological overview of the modelling of “stacks” (Fig. 9.1) is a set of loosely
coupled models, where the driving focus of the loose coupling is in the models’ reusability
(or composability, flexibility, or freedom of choice); its usability (or user friendliness, or
freedom from choice) can then be realised by adding tools and domain-specific languages that
target specific developers, users and/or application domains.

The kinematic chain is the central entity within the motion stack picture, and, at the
highest level of abstraction, the entities, relations and constraints connected to kinematic
chains are: (rigid body) links whose relative motions are constrained by joints, driven by
actuators and measured by (proprio) sensors ; behaviourally speaking, a kinematic chain is
an instantaneous mechanical energy transformer between joint space and Cartesian space,
and that relation can be redundant, underactuated and/or singular, all at the same time even.

Developers of robotic application software have to add concrete implementations to the
just-mentioned concepts, and the Figure structures the dependencies in the various models
that are involved: mathematics of geometry and dynamics; coordinate and digital represen-
tations; and physical units. These are indispensable data structures whose semantics must
be made 100% clear (and eventually standardized) for all developers and users of the
functions and solvers that implement the behavioural properties of kinematic chains.

9.2.6 “Sense-Plan-Act”, “Three-Level”, “Subsumption”

Three-level [3]: Planning and Executive (or Decisional), and Functional (or Control).

3The bottom is a relative concept: sensors, mechanics and actuarors are only the bottom in the rigid
body abstraction scope of this document, but not when opens the scope to electronics, electromagnetic and
thermal fields, etc.
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Figure 9.1: The mereo-topological overview of the “motion stack” in which a majority of the
depicted blocks makes use of geometrical entities and relations. An arrow represents composi-
tion of complementary aspects of the system, represented in separated models, and eventually
implemented in separated software components; the “black square” arrow represents an n-ary
composition dependency.

9.2.7 Role of middleware

Three-level: Planning and Executive (or Decisional), and Functional (or Control).

9.3 Autonomy and decision making

Like most other terms in this Chapter (“architecture”, “safety”, “system of systems”,. . . )
autonomy has been given several different definitions, although none of them is sufficiently
constructive to be used as a refutable design driver.

9.3.1 Sheridan’s ten levels of system autonomy

One of the most popular definitions is Sheridan’s 10 levels of autonomy [58], Table 9.1.

9.3.2 Explanation levels for autonomous decision making

Sheridan’s scope was limited to the interaction between one single machine and one single
human. Modern robotic and cyber-physical systems must extend this scope to systems-of-
systems contexts, with multiple agents, multiple tasks, multiple resources, multiple vendors,
multiple regulators, and multiple machines. This document introduces a definition of “auton-
omy levels”, Table 9.2, based on the dialogue with which a system explains its decisions
to other agents, human as well as artificial. The granularity of the levels is designed to allow
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Level Description

10 Computer does everything autonomously, ignores human.

9 Computer informs human only when it sees fit.

8 Computer informs human only if asked.

7 Computer executes automatically, and informs human when neccessary.

6 Computer allows human restricted time to veto before starting action.

5 Computer executes suggested action if human approves.

4 Computer suggests one single alternative.

3 Computer narrows alternatives down to a few.

2 Computer offers a complete set of decision and action alternatives.

1 Computer offers no assistance, human makes all decisions & actions.

Table 9.1: Sheridan’s ten levels of system autonomy [58].

incremental step change developments in autonomy, for very focused decision making chal-
lenges. Note the huge technical challenges to go from “level 4” to “level 5”, and, especially,
from“level 6” to “level 7”. These steps introduce two subsequent levels of empathy: (i) to
reflect on one’s own actions and put them in the context of the user for whom a Task is being
executed, and (ii) to create and maintain also the world models of other systems, and to
reason in their place.

9.3.3 Links with horizontal and vertical integration

A system’ decision making levels of Table 9.2 are agnostic to the scale of the system, so they
are also relevant for any type of horizontal and vertical composition of Tasks (Sec. 2.7.9).
If such a composition is constructed with knowledge-driven hybrid constrained optimization
(KHCOP), the on-line solvers of such KHCOP problems have already answers to some of the
questions in Table 9.2, because decisions are made in the Coordination state machines and
Task progress is monitored semantically via constraint violation checks.

(TODO: examples.)

9.4 Safety

(TODO: explain why safety is a system-level aspect, and composes parts of the HCOPs in all
the current Tasks. The role of the LCSM as the model for an independent “safety PLC”.)

9.4.1 Best practice: safety PLC

9.5 Security

Security is a system- and application level aspect, because (i) no middleware can be trusted,
and (ii) no task specification can be trusted. Hence, and in addition to the best practice
in encrypting all communications, the application has to engage in dialogues with all parties
that provide or consume data and task specifications. The dialogue consists of back-and-forth
questions and answers with a large enough variety in encrypted keys to exclude man in the
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Level Description

One system — One task

1 What am I doing?

2 Why am I doing it?

3 How am I doing it,. . .

4 . . . and how well am I doing it,. . .

4b . . . and how do I decide to stop doing it?

One system — Multiple tasks

5 What could I be doing instead,. . .

5b . . . and still be useful,. . .

5c . . . and how do I decide to switch what I am doing?

6 What is threatening my progress,. . .

6b . . . and how can I make myself resilient,. . .

6c . . . and how do I decide to add a particular resilience?

Multiple systems — Multiple tasks

7 What progress of others am I threatening,. . .

7b . . . and how can I make myself behave better,. . .

7c . . . and how do I decide to adapt a particular better behaviour?

8 What other machines and humans can I cooperate with,. . .

8b . . . and how do I find out how we can coordinate our cooperation,. . .

8c . . . and how do we decide, together, what coordination to adopt,. . .

8d . . . and how do we monitor our coordination,. . .

8e . . . and how do we decide that someone has cooperation problems?

Table 9.2: Systems’ decision making explanation levels. They represent the various degrees to
which systems can (i) perform self-diagnosis monitoring and Coordination, (ii) explain their
autonomus decision making, and (iii) adapt in order to increase resiliency [54].

middle problems. In this document’s broader context of knowledge-driven systems engineer-
ing, these dialogues do not impose a lot of extra overhead because a lot of messages are already
exchanged for other “non-functional” purposes, such as heartbeats, resource mediation, and
task coordination.
(TODO: lot more concreteness.)
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Chapter 10

Meta models for information
architectures

An information architecture is the design layer between (i) the application (which
provides (models of) the task requirements), and (ii) the software and hardware
architectures (which provide the digital and material platforms to realise the in-
formation architecture). The responsibility of the information architecture is to
provide semantic completeness and correctness of the whole application.

The information architects use this Chapter’s structured ways to compose a
system’s building blocks into an information architecture. In other words,
they design the models about how the behaviour and interaction of activities and
streams realise the system’s tasks with the available resources. This document
advocates the following order in the design process:

1. to decide which abstract data types (world model, plan, control, per-
ception and monitoring) to create and to share.

2. to decide which solvers to create (to let functions operate on the abstract
data types) and to assign to which event loops.

3. to decide which event loops to assign to which behavioural states in which
activities, and which events cause the behavioural state switches.

4. to decide which streams to create and to connect to which solvers and which
activities.

As a cross-cutting responsibility to all above-mentioned design decisions, extra
decisions are made about:

• ownership and mediation of the information: which task owns (which
instantiations of) which information in which model, and which activity owns
resources, and mediates them.

• loose coupling of data, solvers and activities.
• meaning of the information: what documentation, offline tooling and online
activities must be introduced to guarantee that information is interpreted in
the unambiguously correct way, by human developers as well as by activities
everywhere in the system.
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All of the above-mentioned design decisions introduce complex n-ary dependency
relations. So, information architecture models are property graphs in them-
selves.

The task is the causal trigger of any system design:1 the task provides the purpose, or
intention, of the system behaviour, and almost comes already with a (possibly only partial or
abstract) plan of how to realise that behaviour. The activity and the producer-consumer
stream are the core building blocks for the system architect to realise tasks. Stream-based
interactions between activities takes place via so-called CRUD operations (Create, Read,
Update, Delete) on the abstract data types and data structures that represent models, events
and data. Good system architects (at the levels of information, software and hardware) design
coordination protocols on these CRUD operations that are robust against an identified
set of disturbances to the system behaviour.

Despite the obvious observation that tasks, activities and CRUD operations are essential
design primitives, they often remain overlooked as first-class design drivers, and very few
software frameworks support task-level models. The reasons are manifold:

• it is difficult to express, explicitly, the knowledge relations that link platform resources
on the one hand, and task capabilities, and performance and robustness requirements,
on the other hand.

• system design span several levels of abstraction and require many scientific and engi-
neering disciplines to be integrated.

• most software projects start bottom-up, around some algorithms and middleware that
“works”, and hence result in the proverbial “law of the instrument”.

This Chapter tries to remedy this situation, and introduces best practices and compositional
patterns to help system developers to cope with the resulting intricate dependencies between
activities. Figures 10.1–10.2 sketch some vertical and horizontal task integration challenges
that must be tackled, for the typical application use case of a two-wheel driven mobile plat-
form, Fig. 10.3.

An information architecture is still independent of concrete choices of programming lan-
guages, communication middleware, operating systems, communication protocols, or devel-
opment tools. Chater. 11 adds extra software-centric models and design structures to the
information architectures described in this Chapter.

10.1 Running example: two-wheel driven mobile robot

Even the traditional and simple use case of a mobile robot with two actuated wheels, Fig. 10.3,
brings a large system design complexity, as soon as one needs to consider all control and
system-level performance aspects, from the battery and actuation energy management, to
the long-term resilient operability as a “Mobility as a Service” platform.

This Section describes the constraints that the hardware imposes on the control system
(Sec. 10.1.1), and some representative task requirement descriptions (Sec. 10.1.2).

1Often, hardware architecture decisions bring in hard causalities too.
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Figure 10.1: “Vertical” integration
of various levels of task control in a
mobile robot. The tasks in neigh-
bouring levels influence each other’s
behaviour via relations (constraints
to satisfy, and objective functions to
maximize) that connect task meta
model parameters from both levels.
(Hence,) the coupling takes place via
the world model.
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Figure 10.2: “Horizontal” integration
at one level of task control in a mobile
robot. Multiple tasks influence each
other’s execution via relations that
connect parameters from both task
models. One major coupling mech-
anism is via the world model.

10.1.1 Hardware architecture

As the other essential causal input to the information architecture design, the following rather
common hardware architecture is assumed to be present in the mobile platform:

• the motors are brushless DC (BLDC) electrical motors, using field-oriented control
(FOC).

• that control is embedded in a stand-alone servo drives.

• those drives are interfaced to an industrial PC.
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laser
scanner

cameras

encoderIMU

Figure 10.3: A two-wheel driven mobile robot,
with a 2D laser scanner and two cameras at its
front; internally, it has encoders on its wheel
motors, and an Inertial Measurement Unit on
its body. This is a popular hardware archi-
tecture, with the hardware constraint that the
robot can not move in all directions at each
moment in time.

• that interfacing uses a realtime communication platform, such as a CAN bus, or an
protocol, e.g., EtherCAT.

• the robot has rotary encoders on its motors, an inertial measurement unit (IMU) on its
body, and a 2D laser scanner and two colour cameras embedded in its front bumper.

• the industrial PC runs a real-time version of the Linux kernel.

• it has sufficient RAM and CPU cores to run all required software on-board.

• one of its processes is a Node.js server that is responsible for

– all networking with computers elsewhere in the local network; for example, to do
the task scheduling for all robots.

– a web browser-based graphical user interface (GUI).

10.1.2 Typical tasks

Section 5.1 introduced several task examples for robots like the 2WD mobile platform, in-
cluding (a sketch of) a formal task specification language for “guarded motions”, but without
explanations of the control architecture. This Chapter adds the “best practice” information
architectures for the 2WD use case.

10.2 Pattern: task control at three levels of abstraction

This Section gives a list of (types of) tasks to be performed by two-wheel robots, each
“owning” one of the three particularly relevant levels of abstraction. There is little
scientific motivation behind the statement that the three described levels of abstraction are
“the” relevant ones; the pragmatic arguments are:

• the level of certainty that the robot has about its own state is significantly higher than
what it has about the world around it.

• the variability in the world around it is significantly higher than the variability inside
the robot.

• what the robot can sense determines what it can decide for itself, also in the case that
connections with external activities are not available.

• information about the world that the robot can only get via external connections must
be used in different control loops than the one using the robot’s own sensing.
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• every external information control loops can be deployed outside of the robot’s hard-
ware. While control loops using the robot’s own sensors for the robot’s own motion
should be deployed on the robot’s hardware.

The list of the three levels is as follows:

• proprioceptive guarded motion. This is the simplest type of task specification,
because “the robot is the world”:

– it uses only perception information that is 100% caused by the motion of the robot
itself, and observed by its proprioceptive sensors (encoder, IMU and current).

– the world model consists 100% of models of the robot itself: its geometry, kine-
matics, and the attachment points of actutors and sensors.

– three levels of abstraction make sense: the actuators, the wheels, and the platform
to which the wheels are connected.

Hence, also the plan, control and monitoring specifications are limited to that modelling
context. For example, the robot starts moving straight ahead, using only itself as the
reference for, both, the direction and the progress along the motion, and with a current,
torque and/or velocity control activity for all wheels, until one the following monitoring
conditions are met:

– the torque on one or more of the wheels is higher than a configured threshold.
– the measurements of IMU and encoder are not consistent.
– a configured time period has passed.

• exteroceptive guarded motion task. The task model adds the following level of
abstraction to the previous task model: control specifications and monitoring “guards”
are now also defined on those geometric primitives in the world model that can be
observed by the robot’s exteroceptive sensors (camera and laser scanner).

In other words, “the world is as large as the robot’s sensor go”.

• map-based motion from area A to area B . This level of abstraction adds those
task specifications that can make use of all information that is on maps.

In other words, “the world is as large as the robot’s map”.

For example, the sensor information can localize the robot on the map, and hence task
specifications can now also use primitives that can not be observed physically or directly,
but only because the maps defines their position in the world with respect to observable
features. This allows tasks such as “driving in traffic corridors”, or “remote opening of
elevator doors”.

Such three-level architectures are structured according to the robot-centric and world
model-centric constraints of what the robot can observe, about itself and about the
world. This is a major observation that supports this document’s strategic decision to
place the world model as the unique and only centre of coupling into task metamodelling for
robotics. These three levels appear naturally in robotics systems, so their vertical composition
(of which Fig. 10.1 sketches a particular instantiation) provides a major use case for informa-
tion architectures. The complementary core use case is the horizontal composition, sketched
in Fig. 10.2: how to design an information architecture that allow robots to do multitasking.
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The following Sections provide more detailed descriptions of some core “control problems”
in a three-level architecture. The design features three holonic activities, that share a common
task execution ontology, and that do so via dedicated streams.

10.2.1 Proprioceptive guarded motion holon

Current and torque control of wheel motor, power drive units, saturation, encoders for Field-
oriented Control, winding heating model, adaptive motor efficiency. Force actuation of wheel
& guarded motion of platform; no jumps in torque setpoints, saturation, adaptive control,

• operational modes : in addition to the modes of the Life Cycle State Machine, the
Running state has the following modes:

• plan:

• control :

• perception:

• monitoring :

• world model :

• interactions of data, events, models:

• ownership, identifiers:

10.2.2 Exteroceptive guarded motion control holon

• operational modes : in addition to the modes of the Life Cycle State Machine, the
Running state has the following modes:

• plan:

• control :

• perception:

• monitoring :

• world model :

• interactions of data, events, models:

• ownership, identifiers:

221



10.2.3 Map-based guarded control holon

• operational modes : in addition to the modes of the Life Cycle State Machine, the
Running state has the following modes:

• plan:

• control :

• perception:

• monitoring :

• world model :

• interactions of data, events, models:

• ownership, identifiers:

10.2.4 Inter-holon stream architecture

10.3 Specialisations of Producer-Consumer stream model

The meta model of streams can be adapted to many application context, to optimize specific
trade-offs in interactivity: performance, robustness, resource awareness, predictability,. . . .
This Section introduces a set of specialisations that fit well to important robotics use cases.

10.3.1 Stream with heterogeneous data chunks

Streams interconnect producer and consumer activities with a permanent interaction channel.
It is not uncommon that the contents of the information exchanged between both activities
changes over time; often even from message to message. Therefore, the abstract data type
of the data chunk in the stream can be different for every message. The stream meta model
can still provide its ownership transfer and loose-coupling properties as follows: the data in
its data chunks are not the “real” message data, but just pointers to whatever data structure
corresponds to each message (Fig. 10.4).

Figure 10.4: Stream with heteroge-
neous data chunks. The stream buffer
is used only for efficient and effective
ownership transformation of pointers
to any type of data structure.
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10.3.2 Composition of stream with object pool

This use case is a variant on the previous one, that fits well to an application context where
the data structures for all messages must be allocated statically. This use case makes use of
the object pool pattern, where a fixed number of instances of a fixed number of data structures
are allocated in advance, and the producer of the stream just has to select a free one from
the pool; the consumer must free that entry afterwards.

Figure 10.5: Stream with object pool. The
data structures on the right are statically allo-
cated, and they are only “borrowed” temporar-
ily and “returned” at runtime, without being
deallocated. The stream buffer is used only
for efficient and effective ownership transfor-
mation of the pointers to the various available
object data structures.

10.3.3 Multiple producers, multiple consumers

In many applications, each activity must interact with multiple other activities, and often
share the same information between these multiple activities. The easiest way to make an
architecture for this situation is to introduce information streams that have more than one
producer and/or more than one consumer (Fig. 10.6).

producer_1

producer_2

consumer_1

consumer_2

consumer_3

Figure 10.6: Single stream with multiple pro-
ducers and consumers. Such an architec-
ture requires explicit coordination between
all producers, and another explicit coordina-
tion between all consumers, because owner-
ship of each data chunk in each shared stream
is not clear.

producer_1

producer_2

consumer_1

consumer_2

consumer_3

Consumer

Figure 10.7: An equivalent architecture to
Fig. 10.6 (only for the left-hand side of that
Figure, covering the sharing of the “grey”
stream): one intermediate Consumer activ-
ity is introduced in the architecture, and that
activity is the single reader on the multi-
ple producer streams, an also the single pro-
ducer on each of the consumer streams.

This approach introduces several data chunk ownership complications:

• how to decide which producer is allowed to update which data chunk in the stream.
• when is the ownership of each chunk transferred.
• how to decide which consumers get access to the same data chunk.

Figure 10.7 sketches a more explainable and composable design. The price to pay is:
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• to introduce an extra consumer activity, whose sole purpose is to be the only con-
sumer on each of the producer streams, and the only producer on each of the con-
sumer streams.

This solves, both, the ownership and access coordination problems.

• to introduce an extra copy operation for each data chunk.

Indeed, the “green” coloured consumer streams on the right-hand side of Fig. 10.6 are
not directly produced from the grey “shared” stream in the middle, but first the “local”
grey streams in Fig. 10.7 are filled for each consumer before that latter one can process
those data chunks to produce its own “green” stream.

The price to pay is smaller than it seems at first sight:

• the relative cost of adding extra memory gets closer to zero the more complicated the
application becomes, and the latter context is exactly the one the suggested approach
provides a solution for.

• on modern hardware, the introduction of the intermediate consumer can result in effi-
ciency gains: it reduces the problem of cache misses because the data storage is more
local to each activity.

10.3.4 Ownership, garbage collection, and blocking policies

(TODO: the producer of one stream should/can be the owner of multiple consumer sides of
other streams it depends on. Example: realtime activity is the one that decides when data is
being exchanged.)

10.4 Best practices

This Section introduces and motivates some best practices in assigning streams in information
architectures.

10.4.1 One LCSM per activity

Each activity has its own “life”, independent of any other activity, and that “life” must be a
singleton. Hence, there is one and only one Life Cycle State Machine in each activity.

Activities are not just essential as information architectural entities to represent “life”
of their own, but also to give “life” to the system: they interact with each other to realise
a system’s desired behaviour. Two necessary (but not sufficient) conditions to make sure
that such interactions produce predictable behaviour are that (i) each of the interacting
Activities is itself in its own internal state that is designed to support the interaction, and
(ii) it can then communicate explicitly about the interaction with the other Activities it is
interacting with.

(TODO: example: EtherCat communication can not be used in realtime before appropriate
handshake is performed, and the master as well as all slaves go to the same state in the
standardized EtherCat protocol state machine.)
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10.4.2 Every entity and relation has one owner

It is the owner who decides about the policies on which CRUD operations are allowed to act
on the data of the entity or the relation.

(TODO: examples: actuator or sensor; task; state of a solver; resource allocation; etc.)

10.4.3 Explicit causality in data access policy

Activities must interact with each other to realise tasks. And each task brings (models of)
causal dependencies between task functions operating on task data: a particular function
should only operate on a particular abstract data type when certain conditions are met.
Such causal relationships must be modelled explicitly, by relations representing so-called data
access policy constraints.

For example, the realtime thread in a dual-thread activity is the one who does the writ-
ing from the source of the data to any shared data structure, because it is the creator, and
hence the owner, of that data. When the non-realtime thread would do the copying, the data
transfer could be interrupted by preemption of that thread.

(TODO: more examples.)

10.4.4 Every task model is a shared resource

The model of a task is a property graph, that links information in the task’s control, per-
ception, plan and monitoring parts together with information of how the world looks like,
at any moment in the task’s lifetime. That means, the runtime version of the task model
represents state in the system. State information is only useful if it is shared, but updating
state information in a distributed execution context implies a risk of making the information
inconsistent. Hence, it is the information architects’ major responsibility to think thoroughly
about which activities are allowed to operate on which parts of the runtime task model, and
how various “competing” operations are coordinated inside and between activities. In other
words, the task model must be considered as a shared resource, and all relevant design pat-
terns must be applied. The start of this design is to identify (explicitly and formally) what
are the information access dependencies in the system. Such dependencies often go further
than coordinating each operation on each shared part of the task model, because there is
often also “state” in sequences of the CRUD operations themselves: some sequences must
be applied atomically, or not at all; some sequences can be interleaved (“pre-empted”) by
specific other sequences; etc..

The execution of a task consumes platform resources in often very indirect and hidden
ways, via control and perception activities, and it is almost impossible to deploy different tasks
in a system without causing interference at the resource usage level.

mediator

client

service

Figure 10.8: Mereo-topological model of the (peer) me-
diator pattern, to help system designers introduce loose
coupling between “service” and “client” activities. The
arrows represent data access constraints on the interact-
ing activities.
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10.5 Pattern: mediation in peer-to-peer activity interactions

The structural compositions shown in Figs 10.8 and 10.9 show up in many use cases in which
the client-server behavioural composition needs to be realised between a “service” activity and
a “client” activity (or multiple of them).2 System developers want to avoid direct behavioural
coupling between both activities, that is, to let them know about each other’s:
• existence,
• name,
• software component port address,
• data access policies,
• programming language implementation,
• software version,
• etc.

But, of course, both activities do have couplings, in the form of:
• the model of the information they exchange,
• and the events through which they coordinate and configure their behaviours.

The important insight is that these latter couplings depend only on the type of their ac-
tivities, and not on the concrete instances; the former couplings do all depend on instance
properties. More and more application contexts do not have clearly distinct server and client
roles anymore, so one often uses the more neutral term peer for both “service” and “client”.
Anyway, the terminology in itself is not relevant, but the specific dependencies between the
specific behaviours in all interacting peers is. The relevance of the separation between coor-
dination and configuration on the one hand (realised by the mediator mechanism, introduced
in Sec. 10.5.1) and the computation and communication on the other hand (realised by the
peer activities themselves), increases with:
• the number of interacting peers (Fig. 10.9),
• the complexity of the interaction protocols,
• and the statefulness of the peers.

One of the consequences is that the mediator must provide a Traffic Light instance, to coordi-
nate the multiple Life Cycle State Machines in all subsystem peers. The streams meta model
already has such a coordination mechanism built-in, via its control flow and peer activity

status flags. Hence, streams are very appropriate composition primitives for loosely coupled
peer-to-peer architectures. What this Section adds to the system architecture discussion is a
pattern about how the interacting peers can make best use of that mechanism.

10.5.1 Mechanism: the mediator activity

The design driver force in the pattern that has been created to realise the kind of interacting
activities depicted in Fig. 10.8, is to concentrate all knowledge and decision making
about the behavioural coupling in a so-called mediator activity. This mediator knows:

1. the information representation relations of all peers involved, irrespective of whether
the peer is a service provider or a consuming client. The mediator activity checks

2The exact meaning of the terminology “client” and “server” is not widely standardised, to say the least. For
example, in the domain of cloud computing, the terms “cloud”, “fog”/“edge” and “client” are more mainstream;
in databases one speaks of “backends” and “frontends” and about microservices. This document could also
have used the term peer mediator, because often the service and the client are interacting bi-directionally as
each other’s server and client.
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Figure 10.9: Variants of the mediator pattern, with multiple sources for the service, and
multiple clients or services for the mediator.

whether those relations are compatible, decides to continue or not with its “brokerage”
activity, and decides to include glue code where necessary.

All this model checking and adaptation takes place in the resource configuration step
of the Life Cycle State Machines of all peers involved. This requires a protocol between
mediator and peer to go through the same configuration steps at the same time.

2. which events the various peers emit and/or react to, in order to change their be-
havioural states. It can then decide whether all peers have events with the same seman-
tic meaning, and can include event forwarding glue code where necessary.

3. about the tasks that the various peers have to support, together. The mediator can add
extra components to realise Service Level Agreements, or, at least, monitor the quality
of service of the coupled behaviour and fire the appropriate events to all peers when
the task service falls below the configured threshold.

In summary, the mediator is the clear and unique owner of all decisions about how to
coordinate, protect and optimize access to the activities it is mediating. That decision making
role makes this pattern more specialised than the simpler message broker pattern that is used
for message-oriented middleware, object request brokerage, or entrerprise service buses.

10.5.2 The mediator pattern for task-resource trade-offs

In this document, the interaction between tasks and resources is an important use case. This
Section explains how to specialise the mediator pattern to this context (Fig. 10.10).

Tasks rely on resources (physical as well as cyber) being sufficiently available, to realise
a set of capabilities. In real-world contexts, the expected quality of service can seldom be
provided perfectly. Hence, trade-offs must be made between (i) the cost of resources, (ii)
their availability, and (iii) the quality they provide.

(TODO: define QoS metrics of resource and of capability, monitor QoS, dependency model
between component behaviour and QoS, trade-off solver. resource throttling; sharing same
communication channel with various Tasks; sharing overlapping workspaces between two
robots; how to choose specific trade-offs, and specific QoS; etc.)

10.5.3 The mediator pattern in human society

Human society has introduced the mediator pattern many centuries ago already, by building
systems-of-systems of high complexity with societal architectures that are now considered as
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Figure 10.10: The special case of the mediator pattern
applied to the interaction between task and resource ac-
tivities.

“obviously” resilient subsystems. For example:

• in the context of tasks to organise the many interactions between humans into a loosely
coupled societal hierarchy: person organise themselves in families, they form neighbour-
hood, making up villages, organised into a metropolitan area around a centre town, all
assembled in regions and countries.

• in the context of tasks to provide building infrastructures: rooms are structurallt con-
nected by corridors, that form wards with some form of functional cohesion, aligned
into floors, that form wings of buildings.

• in the context of tasks to organise industry: devices are interconnected with high-
performance local networks into work cells; those form more flexibly and loosely-communicating
lines; these lines, in turn, are laid out in plants; that are logistically interconnected and
coordinated as a company.

Modern societal instantiations of the mediators are: the foreman in a team of factory workers,
the coach in a team of athletes and staff, the CEO of a company, the mayor of a town, the
architect of a large public infrastructure construction, etc. Examples where the pattern has
been applied in engineering systems are:

• a motor control service for robot end-effector tasks: the mediator deals with the speci-
ficities of the kinematic chain that links the motors to the tasks, such as redundancy
resolution, singularity avoidance, energy optimization, etc.

• system of systems integration where the communication performance in each system is
high, while it is low between systems. For example, a production line in a manufacturing
plant where the different devices in each work cell can communicate via optimized
channels and components developed by the same team, while the coordination between
the work cells can only make use of the less mutually optimized communication and
behaviour coordination of independently developed machines from different vendors.

• single-page applications, such as a graphical user interface (GUI) for a very stateful
system of systems but an extremely stateless GUI.

10.5.4 Resilience via higher-order dependency relations

Because of the concentration of formalized knowledge about the inner workings of a system’s
information architecture, mediators are the place to realise resilience. A necessary (but not
sufficient) condition to achieve this ambition, is that the human system designers first succeed
in all of the following:

• to identify the system’s capabilities and resources, and formalize the hybrid constrained
optimization problems that model their interactions in a declarative way.
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• to formalize the knowledge about the system’s internal behaviour: abstract data types
and their operations; the activities and the event loops inside, to bring the system’s
behaviour live; its operational modes and the corresponding finite state machine; Life
Cycle State Machine to coordinate its resources; etc.

• to identify the spectrum of its own internal behaviour that can be explained by the
formalised knowledge, and formalize the boundaries as constraints on the internal be-
havioural relations.

• to identify the spectrum of the external behaviour that it can tolerate at its interac-
tion ports, and add the corresponding relations that constrain the internal behavioural
spectrum.

• to formalize the knowledge that it needs to explain how to react “best” to external
behaviour, based on reasoning with all of the above-mentioned knowledge relations.

• to identify how to monitor at runtime when the external interactions enter explainable
behavioural areas, and how to connect the monitoring events to the internal coordina-
tion relations. Formalize these new higher-order knowledge relations.

The full package can only be provided in mature domains, and by senior domain experts.
In addition, all knowledge relations involved are of the higher-order type, coupling all be-
havioural modes of all peers in the composition. Distributing decision making over multiple
activities compromises explainability, so it is a best practice to have only one mediator per
composition to realise that (higher-order) decision making. (This guideline is in itself an
instance of another architectural pattern, the singleton pattern.)

10.6 Information architecture examples

This Section applies the material of all previous Sections to model some concrete information
architectures, in the context of the 2WD mobile robot example.

10.6.1 Proprioceptive motor–wheel-platform control

From the running example of the mobile robot with two actuated wheels, Sec. 10.1, this Sec-
tion takes the vertical composition of four levels of control.

(TODO: details of control behaviours in activities and their interactions via streams.)

10.6.2 Exteroceptive platform control

10.6.3 Safe interactive control over a network

This Section explains the composability of the advocated information architecture design
by extending the controllers of Secs 10.6.1–10.6.2 with shared control funnctionalities: hu-
man operators can influence the motion control of the platform via a network connection,
and receive “kinestethic feedback” from the platform to the “master” arm they are physically
interacting with.

(TODO: more details of control behaviours in activities and their interactions via streams.)
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Chapter 11

Meta models for software
architectures

A software architecture is the design layer between (i) the application-centred in-
formation architecture and (ii) the resource-centred hardware architecture. The
responsibility of the software architecture is to provide performance, that is
a loose composition of efficiency, efficacy, effectiveness, and productivity. The
software architecture complies to the requirements and constraints of, both, in-
formation and hardware, and adds the decisions about

• which data structures and solvers to implement in which language.
• which activities to deploy in which operating system threads.1

• which threads to deploy in which processes.
• which producer-consumer streams to realise with which buffers and inter-
process communication.

• how to realise the ownership constraints of information architectures with
concrete primitives in programming languages and operating systems.

• the coordination of the access to shared data.
• providing activities with sufficient quality of data freshness and consis-
tency.

Because of the design driver trade-off towards performance, all of the above choices
introduce hard couplings. The hardness of the coupling is relaxed by every op-
tion to configure that the software implementations introduce. This is an indica-
tive list of configuration aproaches in order of decreasing hardness: compile time
of functions, deploy-time of binaries, start-up of processes, runtime of activities.

Inter-process communication has dependencies on the task information and intro-
duces itself dependencies on the execution of activities. This results in complex
n-ary relations, and hence software architecture models are property graphs in
themselves.

Obvious major challenges are to implement the conceptually perfect information process-
ing capabilities in the information architecture of the stream, with the imperfect resources
available on computers; more in particular:

1Or to run them on the bare metal of the CPU.
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• the infinite data extension of “time series” data streams, while a computer has only
finite and/or non-shared memory resources.

• the infinitely fast interaction between activities, while a computer has only finite re-
sources for computation and communication.

• the perfect abstraction of an activity, while computer-implemented architectures must
deal with the large “cost-performance” variations presented by the building blocks of-
fered by operating system and hardware.

• the perfect semantic consistency of information exchange, while programming languages,
libraries and frameworks often have different semantic interpretations of data structures
with the same names.

• resource contention, concurrency, and end-to-end latencies caused by multi-core/multi-
computer execution contexts.

In its examples, this Chapter uses the following established technologies: the C programming
language and standard library; the Linux/UNIX operating system; POSIX threads; and the
Bash shell.

11.1 Running example: mobile robot with two actuated wheels

Figure 10.3 depicts the platforms, its hardware architecture is described in Sec. 10.1.1. Multi-
ple information architectures for various task contexts are explained in Sec. 10.1. This Section
adds the concrete software architecture information.

(TODO: which activities to deploy in which threads; which processes to deploy these threads;
which ringbuffers to use for which streams; which flags and FSM; which networks to connect
computers. Special attention to distributing the world model activities.)

11.2 Mechanism: implementing streams by coupling two ring
buffers

The stream meta model represents how a producer and a consumer interact with each other,
asynchronously, via a stream. This Section extends the information architecture model with
software-centric implementation design aspects. The core parts of that design are depicted in
Fig. 11.1:

• the ring buffer2 data structure, to map the conceptually infinite stream onto a finite
part of the computer memory.

Two ring buffers are connected back to back, one for the producer activity in the stream,
and one for the consumer activity.

• the ownership transfer operator.

Transfer of ownership on individual entries in the buffer takes place there where both
ringbuffers are connected. Three such buffer connection points exist:

– from the producer-owned part to the consumer-owned part.

2“Circular buffer” is a commonly used alternative term.
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– from the un-owned (“free”) part to the producer-owned part.
– from the consumer-owned part to the un-owned part.

conceptually
infinite stream

conceptually
circular array

actual 
finite array

0 1 2 15

another
actual filing
of the array

startArray

37

oldConsumer newProducernewConsumer

36

producer
consumer

14

43

64 73 74

array index
stream sequence

ownership transfer

3837 44

consumer-
   owned

   producer-
owned

un-owned
(free)

Figure 11.1: The information-
architectural primitive of the producer-
consumer stream (top), is mapped onto
the conceptual software model of a ring
buffer (center), and implemented with a
finite array (bottom). The ring buffer
array has three pointers: one where
the producer gets data chunk ownership
from the free part of the buffer, one
where the ownership is transfered from
producer to consumer, and one where the
consumer transfers ownership back to the
buffer. The finite array adds a fourth
pointer, to “ground” the start of the
array in actual memory. Each data entry
that is added to the stream gets a new
stream sequence number, counted by a
perpetually incremented integer variable.

11.2.1 Software design

Various implementations of ring buffers exist (with this one introducing many of the design
innovations). This Section composes (“couples”) two ring buffer instances back-to-back, one
for the producer and one for the consumer, in such a way that producer and consumer
activities can be deployed in the same thread, on different threads, in different memory-
sharing processes, or on different cores, without changing any of the many software design
decisions described below. Here is the set of design decisions, for the particular but high-
impact case of a single producer activity and a single consumer activity:

• the stream’s buffer is a finite array3 of entries of the same type.

• the array is divided in three contiguous parts: one owned by the producer, one
owned by the consumer, and the remaining un-owned part.

• producer and consumer can access all the array entries that they own in random access
order.

• producer and consumer can transfer ownership of any number of the array entries
that they own in one operation.

3The software realisation of the stream as an array has two parts: an abstract data type, and a data
structure. This Section focuses on the former model; the result has enough details to serve as documentation
for a transformation into concrete data structures in concrete programming languages.
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• the buffer becomes conceptually circular by constraining the successor of the last entry
in the buffer array to be the first entry in the array.

• the array has an arraySize property, represented by an integer number n.

• refering to an entry in the array requires an integer number, called an arrayIndex.
Such arrayIndex numbers are not constants, but are constrained to the inclusive in-
terval [0, n].

• a data chunk model represents the unique type of each entry in the stream. It is an
abstract data type composed of parts from multiple levels of representation.

• one integer number in the data chunk model is the streamIndex k, that represents
a buffer entry’s sequence number in the stream.

The sequence number is incremented perpetually, every time a new entry is produced.
At a filling rate of one million entries per second, a 64-bit integer can guarantee that a
buffer overflow will not occur for more than half a million years.4

• by making the arraySize n a power of 2, the arrayIndex i of an entry in the stream
can be computed cheaply from the latter’s streamIndex k, via a modulo operation:
i = kmodn.

The example in Fig.11.1 has n = 16, so that streamIndex 36 has arrayIndex 4, and
streamIndex 64 has arrayIndex 0.

• the array is positioned somewhere in the RAM memory of a process, and that address
is pointed to by the startArray integer.

• the array needs three pointers, each being an arrayIndex:

– oldConsumer, pointing to the oldest entry in the consumer-owned part of the array.
The entry pointed to is the first one the consumer will release to the un-owned
part of the buffer.

– newConsumer, pointing to the end of the consumer-owned part of the array. This
is the newest entry for which ownership has been transferred from producer to
consumer.

– newProducer of the producer-owned part of the array. The is the newest entry
from which the producer has obtained ownership from the un-owned part of the
buffer.

The start of the producer-owned part of the array could be represented by a another
pointer (“oldProducer”), but this is always just pointing one entry further into the
array then the pointer of the end of the consumer-owned part. So, it carries no extra
semantic information, and has also no implementation advantages.

• the ownership of the just-mentioned pointers lies as follows:

– oldConsumer: owned by consumer activity.
– newConsumer: owned by producer activity.

4264/106/60/60/24/365 = 584 942.
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– newProducer: owned by producer activity.

• the producer activity can change the newConsumer and newProducer pointers, without
risking a race condition with the consumer activity:

– newConsumer: the ownership transfer operation does not overwrite any consumer-
owned variables.

– newProducer: before executing the ownership transfer operation, the producer
activity first checks how many un-owned buffer entries are still available, and that
check can never be invalidated by the consumer activity, because the producer
activity is the only one to decrease the number of un-owned buffer entries.

Similarly, the consumer activity can change the oldConsumer pointer independently of
the producer activity.

• transfering ownership of newConsumer by the producer activity just involves changing
pointers. Compare-and-Swap (CAS) operations on such 64-bit integers are supported
as atomic operators by all operating systems and many CPU hardware architectures.

• putting each of the three pointers in its own cache line (filling the rest of the cache
line with unused “padding” bytes) guarantees that they can be updated independently
without causing each other’s cache lines to be refreshed.

• transfering ownership of newProducer by the producer activity consists of two steps:
(i) filling in the buffer entry with an instance of the data chunk type, and (ii) changing
pointers. For the same reasons as mentioned above, both operations can be done in any
order, after a successful availability check for un-owned buffer entries.

• transfering ownership of oldConsumer by the consumer activity just involves changing
pointers. But even if the policy is to initialize the freed entry, there is no risk for race
conditions.

• the buffer has an integer number, the fillRate f , which counts the number of
entries in the buffer that are owned/occupied by consumer and producer:

f = newProducer.streamIndex− oldConsumer.streamIndex+ 1. (11.1)

• the buffer has two integers, highWater and lowWater, to generate the backpressure

status flags:

highWater = newConsumer.streamIndex− oldConsumer.streamIndex, (11.2)

lowWater = newProducer.streamIndex− newConsumer.streamIndex. (11.3)

If these numbers are higher (respectively, lower) than configured values, the relevant
status flags are set. informing the consumer (respectively, the producer) that it is time
to empty (respectively, to fill) the buffer.

• the following data consistency constraints must hold at all times:

– arraySize should never change.

– startArray should never change.
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– the buffer can not be filled to more than its capacity, that is, its fillRate f is
always smaller than or equal to the arraySize n:

f ≤ n. (11.4)

– the sequence number of the entry pointed to by newConsumer is always larger than
or equal to the sequence number of the entry pointed to by oldConsumer, and
smaller than or equal to the sequence number of the entry pointed to by new-

Producer:

newConsumer.streamIndex ≥ oldConsumer.streamIndex, (11.5)

newConsumer.streamIndex ≤ newProducer.streamIndex. (11.6)

The values of these entries’ indices in the array need not satisfy such constraints.

• the following data access constraints must hold at all times:

– the producer can only fill/own new entries in the buffer if the fillRate allows it.

– the producer is the only one to increase the fillRate.

– (hence,) it is the only one to set the highWater mark, and to clear the lowWater
mark.

– the consumer is the only one to decrease the fillRate.

– (hence,) it is the only one to clear the highWater mark, and to set the lowWater
mark.

• the paragraph above seems to suggest that (i) the buffer implementation must pro-
vide the producer and consumer activities with data structures to represent fillRate,
highWater, and lowWater, and (ii) the producer and consumer must both have read/write
access to these variables. However, neither of these conditions is necessary, because the
producer and consumer activities can do their jobs, independently of each other in their
own separate threads, and in a race-free way, by computing their own local versions
of these variables whenever they need them. Indeed:

– they only have to read the integer numbers newProducer.streamIndex, and old-

Consumer.streamIndex.

– even if the consumer (producer) happens to read an “old value” of the number
owned by the producer (consumer), the result is always conservative. That
is, the producer can decide not to fill an entry because its local highWater or
fillRate computation indicates that is the right thing to do, although the con-
sumer has freed one or more entries in the meantime. Similarly, the consumer can
decide not to consume an entry because its local fillRate computation indicates
that the buffer is empty, although the producer has filled one or more entries in
the meantime.

• the buffer has two peer activity status flags, consumerModus and producerModus,
to represent the activity modus of the producer and the consumer activities on the
stream. Their values come from the following enumerated type:
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– active: the activity is producing/consuming the stream.
– inactive: not active.
– pausing: the activity can become active any time soon.
– requesting: the consumer is waiting for the producer to become active, or the

other way around.

Enumerated types always fit in data structures that can be read and written atomi-
cally on all hardware platforms, so updating the status flags does not introduce race
conditions.

• the buffer has two control flow status flags representing the backpressure status
of the buffer:

– consumerPull: active or inactive.
– producerPush: active or inactive.

11.2.2 Policy: composition of data and meta data streams

The software-centric additions to the information architecture description in Sec. 2.5.8 are:

• the meta data data chunk data structure must be defined.

• the meta data stream does not need another backpressure support or status flags in
addition to the ones in the data stream.

• the ownership of the producer and consumer pointers in the meta data stream is with
the same producer and consumer activities.

The former addition is the major challenge, but most of it belongs already to the responsibility
of the information architect.

11.2.3 Policy: time series stream

Time series are a very important use case of streams with meta data. Two variant of the data
structure of the meta data exist:

• a very simple and singleton meta data structure that just represents the fact that each
entry in the data stream has its own time stamp.

• the more elaborate version (Fig. 2.4, in which each data chunk in the meta data stream
has fields to represent:

– the range of stream sequence numbers for which the following two meta data
information hold.

– the provenance: how was the data created, where does it come from, etc.
– the time representation for each range.

11.2.4 Policy: composition of stream and memory pool

This Section brings the information-level stream specialisation of the composition of the
stream model with an object pool to the more concrete software level. That is, “objects” are
assumed to be serialized into arrays, Fig. 11.2.
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Figure 11.2: Stream buffer with memory pool.
Each data chunk in the stream buffer contains
two integers: the address pointer into the mem-
ory pool of the array that contains the serial-
ized data chunk of the “real” data, and the size
of that array. The stream buffer is used for
the ownership transformation of these pointers
from producer to consumer.

11.2.5 Policy: pipe line

The pipe line pattern is a simple form of composition. It can be considered as a boundary
case for, both, dataflow programming and functional programming, since there is just a linear
dependency between data buffers and function invocations. In the context of stream seman-
tics, a pipeline is a stream in which a first consumer is the producer for a later consumer,
and so on. That means that the buffer is now composed of more than two streams buffers
connected back-to-back, and this preserves the very interesting ownership and efficiency prop-
erties.

Figure 11.3: Stream ring buffer with pipeline
composition. The stream buffer is partitioned
over multiple owners, and ownership is trans-
ferred serially.

11.2.6 Policy: heartBeat/watchDog mediation for “lazy” stream

In a context in which the producer and consumer activities are distributed over several
processes or computers, the status flags for flow control and peer activity of one peer
can not be read synchronously by the other peer. So, that information has to be sent via
communication messages. Then it makes sense to add heartbeat events: when there has
not been a communication for some time5 an event is sent, by the producer and/or by the
consumer, to indicate that they are still engaged in the stream communication but have had
no need to send over data chunks for some time.

The watchDog approach serves a complementary use case:

• a third mediator activity is introduced.
• it waits passively for heartBeats from producer and consumer.

5That timeout is a configuration parameter.
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• when they do not come in for a particular period of time, the mediator sends a watchDog
message to the “delayed” peer, to trigger it in reacting with a heartBeat.

• if that also does not activate all involved peers, the mediator fires reconfiguration events
for its subsystem of the whole system.

11.2.7 Pattern: event loop with ring buffer and scatter-gather I/O

The software architecture in this pattern has the following parts:

• the ring buffer data structure (Sec. 11.2)

• an event loop (Sec. 2.8) that executes the producer activity in one process.

• an event loop that executes the consumer activity in another process.

• both event loops also run the activities that realise the vectored I/O (also called scatter-
gather I/O) that is needed at both producer and consumer sides.

The scatter-gather activities are needed because each message in the stream between both
processes can contain chunks from different consumers and/or producers in each process, so
the messages have to be composed before sending and decomposed after receiving, and their
parts copied to the correct local destinations.

Some memory management and compute kernel hardware has this functionality built in.

11.2.8 Policy: contiguous data for producer and for consumer

Keeping the buffer memory of the producer and of the consumer contiguously together in
memory can improve memory access performance. The implications of such a stream buffer
version are:

• when adding entries to a sub-stream makes the array overflow, one has to copy all
entries to the beginning of the array.

• to guarantee that this can always be done, the size of the ring buffer array must be
triple the size that is guaranteed to the consumer or producer to own. Indeed, even
with an almost full ring buffer, the producer activity must still be able to copy its sub-
stream from the “end part” to the “start part” of the ring buffer array, so it is possible
that the consumer substream must be copied first towards the “middle part” because
it still occupies the “start part” of the array.

11.2.9 Best practices

Here is a list of best practice software design insights:

• the single-writer principle helps to make (i) atomic mutation semantics easier to realise,
and (ii) more efficient to execute, by reducing cache misses. Indeed, a data item is owned
by a single execution context for all mutations.

• lock-free and wait-free algorithms for data sharing [2] help to avoid the involvement
of the operating system, such that applications have a larger impact on their own
behaviour.
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• the CAP Theorem and the exactly-once semantics of communication are major con-
straints for realising consistency of the exchanged data. Or, rather, once system design-
ers are aware of the difficulty to realise all three aspects of “CAP”, they will look for
architectures that are robust against (combinations of) each of the three disturbances.

• garbage collection. Both producer and consumer can delegate to a “stream buffer activ-
ity” the decision making about what to do with a full or an empty stream buffer, to a
mediator activity that is owned by the ring buffer. For example, in audio processing
or control problems, a common policy is to overwrite the oldest data at the producer’s
side with newly arrived data, even when the consumer has not yet freed up the buffer
array part that it occupies. Other policies are:

– compaction: the data in the buffer that has been produced but not yet consumed
(or claimed by a consumer) is reduced, according to an application-specific policy
rule.

– negotiation: the amount of data per chunk is reduced, so more data can fit in the
same stream. For example, WebRTC.

– clear the whole buffer, because the completeness of the stream is not guaranteed
anymore.

All policies can be composed. This use case can also be dealt with without giving the
stream buffer its own first-class activity: the producer is still owning all its side of the
buffer, so it can execute the mediation actions itself.

11.2.10 Standards and software projects supporting streams

Many established internet protocols are special (simplified) cases of the Stream meta model.
For example, SCTP at the application layer, RTSP at the transport layer. Implementations
for these standards come with mainstream operating systems.

At the time of writing, the WHATWG stream standard is reaching maturity. It includes
an explicit meta model, as well as a reference implementation in Javascript. The ZeroMQ
ecosystem provides a (partially comforming) model and an implementation in the form of its
exclusive pair pattern. Both implementations have has chosen for the policy of blocking the
producer or Consumer when their stream buffer is full or empty. This document follows a
less constrained meta model, allowing other policies, such as: to overwrite the oldest or the
youngest entries, or to compact a stream.

11.3 Mechanism: stream with wait-free maximal freshness

The stream buffer mechanism of Sec. 11.2 has the advantages of:

• very clear and efficient ownership protocol.
• high reactivity of producer and consumer to the status of their interaction.

There are interaction use cases, however, that are not well served, such as tasks where multiple
activities are interacting only sporadically, but when they do, they need a lot of information
from each other and they want only the most fresh data. Major examples are where one
activity needs images or results of repetitive database queries, at irregular times. With
the stream buffer mechanism, these use cases result in situations where the producer has
transfered ownership of so many data chunks that:
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• it can itself not get rid of the latest information that it has available because the buffer
is full.

• the consumer needs to look at too many data when it decides to check the buffer again.

This Section introduces a more suitable mechanism for the presented use case, which uses the
same software engineering building blocks as the stream buffer, namely:

• atomic switching of pointers.
• perpetually incrementable sequence numbers.

19

16

21

0

Figure 11.4: Stream with optimal freshness. Both pro-
ducer and consumer can write, respectively read, the
latest available version of the shared data structure. In
the example, the consumer is still working on data chunk
“16”, while the producer has already made data chunk
“19” available for reading and is now starting to fill the
empty slot with data chunk “21”. The bold vertical
bars represent ownership: it’s at the left when the con-
sumer owns the data chunk, and at the right when the
producer owns it. This information is redundant to the
sequence number being even (consumer-owned) or un-
even (producer-owned); this sequence number is what is
used in the implementation, and the bars just serve as
human-centric visualisation.

Figure 11.4 illustrates the approach:

• instead of one aray buffer with multiple sequence-ordered spots for data chunks, the
mechanism uses three data chunk slots. This is semantically identical to saying that
it uses three stream buffers in parallel, each with an arraySize of “1”.

• instead of letting the producer increment the sequence counter by “1” for each new data
chunk, it now increments it by “2”, and it uses only uneven sequence numbers.

• when the consumer has consumed a data chunk, it puts the sequence number to “0”.

• the mechanism uses conditional transfer of ownership:

– the producer can fill the slot with sequence number “0”, because the consumer will
never use it, nor change its ownership.

– when the producer has filled that slot, it atomically switches its sequence number
to its next (uneven) version.

– when the consumer wants to read a new data chunk, it checks the three slots in
whatever order, increments the sequence number by one when it finds a filled one,
and starts reading that slot.

– by incrementing the sequence number, the consumer has accepted ownership
that the producer has offered. That offer was conditional, because the producer
can decide to clear a slot that it filled previously, as soon as it has a newer slot
available and as long as the consumer has not taken it.
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– when the consumer has finished reading the data chunk, it switches its sequence
number to “0”, making it unconditionally available to the producer again.

– it if does this before it starts searching for a new data chunk, it will never own
more than one slot.

– this means that the producer can always have (i) one slot available to the consumer,
and filled with the latest version it was able to write, and (ii) one slot available to
itself, to start filling with new data.

– after it has filled a new slot (and before it tries something else), it visits the other
two slots and if it finds the (maximally) one with an uneven sequence number, it
resets that number to “0”, in an atomic Compare-and-Swap (CAS) operation.

This mechanism guarantees that the producer must never wait to fill a slot with the latest
version of its data chunk, and that the consumer must never wait to read the latest available
data chunk. Hence, the semantics of the “wait free” and “maximal freshness’ in the name
of the mechanism. The worst that can happen is that the producer trails the consumer in
visiting the three slots in such a way that it just has made a new slot available but the
consumer does decide to take the older one.

11.4 Policy: event loop mediation for multiple stream buffers

The event loop is the computational work horse in software components, and the following
use case presents itself in many control systems:

• the event loop services multiple activities, each with one or more solvers, that each
process one or more time series

• multi-rate sampling: the iterations for several solvers run at an order of magnitude
difference in time scales. For example, a current control loop at 5kHz, a torque control
loop at 1kHz, a platform velocity control loop at 100Hz, and a Finite State Machine for
the task plan at 10Hz.

• the exact frequency is not so important; the order of magnitude is.

• many of the time series require timestamping.

• many use cases want to process the various data streams together, with time as the
major index.

If system designers have gone through the effort of making models for each activity and
stream, because tooling can use the models to exploit having the overview of everything that
has to happen in each iteration of the event loop, to configure the latter’s implementation
with the following optimizations:

• one time stamp can serve all streams.

• all provenance meta data need to be recorded only once.
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• the timing in the multi-rate sampling can be chosen to be powers of two. For example,
8Hz, 124Hz, 1024Hz and 4096Hz, instead of the above-mentioned 10Hz, 100Hz, 1000Hz
and 5000Hz. This allows efficiency gains in the selection of which solvers to trigger in
each iteration: the 64-bit integer that the event loop uses to count its “ticks” just needs
an efficient modulo operation for this selection.

• the overhead of vectored I/Oscatter-gather I/O (of individual data chunks in individual
streams) can be avoided by serializing all data chunks to or from one single I/O stream.

Tooling support to do this efficiently, network-order independently, while keeping direct
access, exists in mature projects like FlatBuffers.

• often, a solver in an individual activity needs two forms of iteration:

– incrementing its “tick”, to select the next entry in the stream buffer to read from
and/or to write to.

– iterating over its own algorithmic serialization. For example, to visit all links and
joints in a kinematic chain.

The event loop can take care of the former, efficiently, using the fetch-and-add operation
to set the starting position of the second iterator to the corresponding position in the
stream; the solver can then just increment that second iterator, as if it were starting
from zero.

11.5 Mechanism (operating system): thread, process, shell,
container, cloud

The activity implements computations, in the broad sense of the word, independent of how
those computations are executed. An activity is deployed by an operating system to get
access to the hardware resources that it must share with other activities, and for which
the operating system is the owning activity. This sharing is realised in the following ways:

• thread: the thread6 is the smallest operating system mechanism to make sure that the
accesses (by the composition of all activities that it is runnning) to the CPU(s) and
the RAM always satisfy the access constraints specified by each individual program.

In other words, the thread is the composition primitive that allows (or forces) functions
to share the same CPU.

It is also the primitive to realise runtime (re)configuration and introspection.

A fiber is a special type of thread, in that the operating system uses cooperative mul-
titasking to determine when to execute which fiber, while threads are scheduled via
preemptive multitasking.

A coroutine is another related concept, providing cooperative multitasking, but this
time organised via a programming language runtime (e.g., Lua or Go) and not the
operating system.

6More detailed introductions can be found here and here.
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• process: the composition of the execution of several threads, and coordinates the
stacks of all its threads, to make sure that each program executes correctly irrespective
of the number of times its execution has been preempted.

In other words, the process is the composition primitive that allows (or forces) functions
to share the same computer memory.

It is also the primitive to do compile time configuration.

• shell: operating systems provide the shell primitive as a shared context for several
processes to be active in. The same process can be started within different shells, and
get another set of environment variables that the process uses to configure its behaviour.

In other words, the shell is the composition primitive that allows (or forces) processes
to share the same context.

It is also the primitive to configure the deployment: in which order, and with which
context, to launch several processes in an application.

• container: has a similar composition role as processes for threads, but now between
operating systems and the computational hardware (which continues below in this hi-
erarchy list).

In other words, the container is the composition primitive that allows (or forces) shells
to share the same operating system instance.

• cloud: composes several computers, and coordinates their internet communication
interactions.

These entities will not be detailed further in this document, because there is no specific con-
nection between those entiities and the properties of robotic and cyber-physical systems, at
the level of knowledge relations. The entities and relations in this Section, together with those
of the following Section, have already received significant meta modelling attention, for exam-
ple in the AADL standard and supporting software and tools. (Unfortunately, AADL violates
almost all “best practices” advocated in this document, such as: separation of mechanism
and policy, inversion of control, or composability.)

(TODO: thread pool: set of threads waiting on ring buffers where each entry in the buffer is
a task to be executed, and that fill one or more result ring buffers.)

11.6 Pattern: composition of (a)synchronous threads

Figure 11.5 sketches the multi-threading architecture that is common to the deployment of
many information architectures’ activities and streams onto real-time control threads.

11.6.1 Software design

The design drivers behind this pattern are as follows:

1. one main thread.
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Figure 11.5: This process architecture is
a pattern to let synchronous and asyn-
chronous activities run in several threads:
one main, one synchronous thread, and
one or more asynchronous threads. All
threads exchange their information via
ring buffers.

This is not a choice but a constraint imposed by the technology: starting a program
from an operating system shell or script inevitably implies executing the main thread
of the process.

System designers don’t have to do anything special, it’s just there by default. Where
they do have a choice is in deciding which activities the main thread will execute. This
document advocates to use the main thread exclusively to configure resources owned by
the operating system:

• creating and scheduling of threads.

The POSIX threads standard and implementations are a software basis to realise
this role.

• memory management.

The Linux operating systems offers software support in the form of, for example,
mmap, cgroups, or systemd.

• operating-system owned communication such a disk access, networking and I/O
devices.

For example, via standard streams and pipelines, but also environment variables
or the main thread’s command-line arguments.

In other words, the main thread executes the activity in the deploying state of the
application’s Life Cycle State Machine.

2. one synchronous thread.

This one’s activity consist of the event loop of the real-time control. In other words,
the core activity in the running state of the application’s Life Cycle State Machine.

The synchronous thread should never block, which can only work if the system’s hard-
ware and software are designed with this performance objective in mind:

• its communication needs with the hardware happens with technology that allow
synchronous execution. For example, real-time networks like Ethercat or CAN, or
memory mapped I/O.
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• its interactions with other threads in the process runs always via stream buffers.
• it gets the highest priority from the operating system scheduler, and/or
• it is deployed on its own private CPU core.

3. one or more asynchronous threads.

The role of each of these threads in the process is to serve as (i) a stream interface
towards out-of-process activities (including device drivers for hardware, and local area
networking), (ii) a coordinator for a set of other activities, or (iii) a mediator for a set
of other activities. Each of the asynchronous threads communicates with a resource
or with another activity, and is allowed to block while doing so. In order not to let the
synchronous thread wait, the stream buffer between them has received ample resources
from the deployment activity.

Applying it to the context of a robotics motion control stack, instances of this pattern can
look as follows:

• torque control of 2WD platform.

11.6.2 Bad practices

• let threads set their priority and CPU affinity themselves.

• let them behave as if they are master of any interaction they are involved in, that is,
let a “request” be interpreted as a “command”.

• not to use an Life Cycle State Machine for every resource they own.

• not to be unambiguous about which resources every thread owns.

• let the “event loop” be realized by the operating system. That operating system does
not know anything about the application, so it should not be asked to schedule the
application’s threads. Instead, that responsibility is to be taken in the application’s
event loop(s): only there, the right decisions can be made about when activities can be
pre-empted, and by which other activities.

11.6.3 Good practices

• map RAM in memory to prevent swapping out, e.g, via mmap.

• by definition of the word, the “highest priority” can be given to one single thread only.
Here is the POSIX way of configuring this.

• allocate a dedicated core to the synchronous thread. Or even one whole computer.

• masking interrupts for that core, to only the ones needed in the synchronous thread.

• reserving CPU, memory and I/O from operating system. For example, via systemd.
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11.6.4 Policy: mediation on shared resources

The mediator can rightfully be called a “software pattern”, since there exist already various
realisations, with mature and large-scale application track records. Here are some of the
common realisations in the domain of ICT infrastructure:

• bandwidth throttling.

• CPU throttling.

• process throttling.

• garbage collection.

• memory pool.

• thread pool.

• isolation of runtime: all the runtime’s data are copied, such as the heap, calling stack
and garbage collection, with a different context for each application activity.

The application’s “shared” and “global” data are copied for each of a number of concur-
rent activities. For example, V8:Isolate and V8:Context in the Chrome V8 runtime
engine. The isolation and context pattern is in itself not sufficient for thread-safe exe-
cution!)

11.7 Mechanism: programming language operators

11.7.1 Async/await

(TODO: async/await programming language construct to make some forms of asynchronous
programming look very much like synchronous programming; discussion on when to use it
and when not; examples needed.)

11.7.2 Iterator

(TODO: iterator helps to separate the structure of the data from the operations, in a declar-
ative way.)

11.7.3 Maybe

(TODO: Maybe type, to represent not-yet-known data.)

11.7.4 Memory barrier

(TODO: memory barrier, to order access to fast memory.)
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11.7.5 Atomic and lockfree operators

Replace every synchronous “mutex” area with an asynchronous stream, or with seqlocks.
Memory barrier operations need to be inserted,
The problem can also be solved by introducing a small ring buffer with lock+value struc-

tures, because then the write/read of the value depends on the sequence number and compilers
will not reorder instructions.

A single-writer stream can be done without locks; multi-writer is seldom needed because
it can be replaced by the same consumer for all of the producers in a single writer-reader
form, and that consumer makes one or more new composed stream.

Read-Copy-Update is another approach that trades off locking for more copies of written
data.

11.7.6 Bad practices with locks

The sample code in Table 11.1 combines three bad practices of using locks:

• multiple locks around the same critical section: (TODO)

• nesting locks: (TODO)

• blocking operations inside lock : (TODO)

struct { int a; int b; } dataA;

struct { int a; int b; } dataB;

...

mutex_lock(mA);

mutex_lock(mB);

f1(&dataA);

f2(&dataB);

printf("A: \d, B: \d \n",dataA.a,dataB.b);

mutex_unlock(mA);

mutex_lunock(mB);

Table 11.1: Code example combining
three bad practices in using locks.

11.7.7 Bad practices in communication

• to assume that messages will be delivered exactly once.

• to use only the publish-subscribe communication pattern. Events often profit from a
broadcasting policy, and queries about models require one-on-one dialogues; neither is
done well best with pub-sub.

• to neglect the CAP and PACELC theorems, that state that:

– the assumptions of Consistency, Availability, and Partition tolerance can not be
satisfied at the same time.

– Consistency and Latency are contradicting requirements.

• to neglect the fallacies of distributed computing, even between processes on the same
computer.
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• to communicate state information back and forth between distributed components, even
when it is possible to deploy all the components’ functionalities into the same process
and (hence) to store the shared state in a shared data structure.

11.8 Mechanism: core, system-on-a-chip, computer, cloud

Somewhat further away from the properties of robotic and cyber-physical systems is the
computer hardware, with the following parts: CPU, memory, bus, I/O, and network. The CPU
part comes in some variants on most modern hardware, depending on the degree of sharing
memory (“caches” and “RAM”) and communication hardware:

• core: one CPU with some local “cache” memory that it completely under its own control.

• processor: a collection of cores that share some caches, and some buses to the RAM
memory.

• system on a chip (or “computer”): composes several cores and peripheral hardware on
one single integrated circuit, and coordinates their access to hardware shared commu-
nication buses.

11.9 Policy: framework plug-ins versus library composition

Frameworks are one of the most popular ways towards digital platforms, for three good
reasons: code reuse, best practice implementations, and tooling.

Composability in a framework is typically provided via so-called plug-in interfaces: the
framework provides several places in its code base where developers can register their own
functions, that will be called by the framework’s runtime engine at the “right” time. However,
the frameworks themselves are very poorly composable with other frameworks or systems,
into peer-to-peer architectures, because:
• their plug-in interface offers only one single level of composition hierarchy. So, it is for
example not possible to develop a function that couples “state” at two different plug-in
interfaces.

• their runtime engines typically expect that plug-ins adapt to their policies and protocols,
and not the other way around. So, it is for example not possible to configure the runtime
engine to share resources with non-framework activities.

In robotics, common cases of the mentioned composability gaps pertain to integration between
“control”, “perception” and “monitoring” functionalities.

The more composable approach is to replace the runtime engine part of the framework,
and generate an application-specific one, by (i) composition of functions and data from pure
libraries, and (ii) generating the code for the application’s runtime, starting from composable
implementations of software architecture patterns. Examples of the latter are the event loops
and the inter-process communication patterns, for which framework runtimes often have made
hard immutable choices.
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Chapter 12

Skill architectures for the
composition of Tasks

(TODO: configure information and software architectures, to let several robots with several
capabilities execute several tasks at the same time, in mutual coordination and interaction.)
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Chapter 13

Skill architectures for two-arm
manipulator robots

Dual-arm robotic tasks exploit the full potential of the hardware only with a
realtime integration of the Tasks in the application with the Tasks in each of the
arms.

This Chapter presents the application context of two-arm manipulators, with each arm being
a redundant serial kinematic chain. The sketch in Fig. 4.13 makes the arms branch from a
common “torso”, which is itself a serial kinematic chain connected rigidly to the ground; of
course, the latter connection could be to a mobile platform in itself, Chap. 14.

Cartesian
point

trajectory

joint
limits

Cartesian link
trajectory

rigid connection
to environment

contact with
environment

centre of
gravity
trajectory

soft Cartesian
point trajectory

sensor
space

joint stiffness
and damping

soft interlink
interaction

Figure 13.1: Sketch of a dual-arm ma-
nipulator, with all possible “motion
constraints and drivers”.

Controlling the platform takes place at three levels of abstraction at the same time: (i) the
local motion of both arms, (ii) the motion of all joints inside the arms, and (iii) the actuators.

Hence, controllers at these three levels interact in multiple ways:
(TODO: most of the chapter. . . )

250



Chapter 14

Skill architectures for mobile robots
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Chapter 15

Skill architectures for cable robots
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