
H2020-ICT-732410

RobMoSys

Composable Models and Software
for Robotics Systems

Deliverable D3.2:
First draft of software and tools for motion,

perception and world-model stacks

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement N732410.

RobMoSys - D3.2 H2020-ICT-732410

Project acronym: RobMoSys
Project full title: Composable Models and Software for Robotics Systems

Work Package: WP 3
Document number: D3.2
Document title: First draft of software and tools for motion, perception and

world-model stacks
Version: 1.0

Delivery date: 30 June, 2019
Nature: Report (R)
Dissemination level: Public (PU)

Editor: Enea Scioni (KUL)
Authors: Enea Scioni (KUL), Herman Bruyninckx (KUL), Marco

Frigerio (KUL), Nikolaous Tsiogkas (KUL), Filip Re-
niers (KUL), Matteo Morelli (CEA), Luz Maria Mar-
tinez Ramirez (TUM), Dennis Stampfer (HSU), Christian
Schlegel (HSU)

Reviewer: Alessandro di Fava (PAL)

This project has received funding from the European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No732410 RobMoSys.

2

Executive summary
The RobMoSys project has three complementary aims: (i) to use formal models as the basis for
software, (ii) to use the structure provided by the models to improve the composability of software
components, and (iii) to develop the tools to help developers write such software components
and compose them together in systems. The aim is not to provide a software-only framework for
robotics; but the solid foundations behind any such software framework.

This Deliverable reports on the status of the development of the core “platform” functionalities
of motion, perception and their interactions via world models. At this phase of the project, the
methodology of how to model these platform software functionalities in a way that achieves the
above-mentioned goals has matured, via Work Package 2, whose major influence on the work
represented here is:

• the identification of the importance of, and models for, the horizontal and vertical com-
position of software components;

• the identification of the importance of, and models for, (i) the cause-effect chain con-
straints in the execution of software components, (ii) the life cycle state machines of such
components, and (iii) the runtime (re)configuration of software functionalities.

The developments of Work Package 3 apply these insights in a systematic way, to the develop-
ments of the robotics domain-specific “inside” of software components. One of the consequences
is that this Deliverable introduces work on the tools that support to model and to compose the
fine-grained software functions and data structures that make up the platform functionalities
of robotic systems.

The following paragraphs summarize the WP3 developments around the above-mentioned WP2
concepts.

Vertical composition: robotics functionality comes at various levels of abstraction that must be
put together, such as the composition of perception and control of actuators, transmissions, joints,
kinematic chains, and tasks, but also the composition of the many choices on representations that
have to be made (mathematical, coordinates, digital) and on physical units.

Horizontal composition: at any of the above-mentioned levels of abstraction, functionalities
must be put together, and the focus of this Deliverable is on such integration between motion,
perception and world modelling, for different tasks that a robot system must execute (possible
concurrently), but also for the different mechatronic resources that the system is composed of.

Cause-effect chain: a robotic system comes with a lot of software functionalities deployed
in its software architecture, but not all functions run all the time, independently of each other.
Instead, the interactions of the robot system with its environment (including its peer robots) imply
a high level of reactiveness, where specific software functionalities must be activated, at the right
time and in the right order. Any somewhat realistic robot system must take into account several
constraints that make this “scheduling” a non-trivial job, which needs methodological modelling
and tooling in itself.

Life cycle state machine: the functionality of a software component is only made available to
other software components when in the Running state. Of course, most of the domain-dependent
functionalities have more than one behaviour, which results in a vertical composition of functional
states into the Running state. For example, the robot’s motion control can switch between velocity

3

RobMoSys - D3.2 H2020-ICT-732410

control and impedance control; or its perception functionality switches between localisation and
tracking.

Runtime configuration: not only the scheduling of the execution of the software functionalities
must be determined at runtime, but also the choice of the many “magic numbers” that influence
their specific behaviour; for example, gains in control loops, model hypotheses in perception, or
geometric resolutions in world models. Reconfiguration becomes, in itself, a system level challenge,
because the “magic numbers” in many software functionalities depend on each other, and these
dependencies must be modelled, and their configuration supported by tooling.

The impact of the reported work is, first and foremost, focused on supporting the project’s
Pilots: those are the primary dissemination channel, because they allow (i) the Project to
showcase system-level composability, vertically as well as horizontally, and supported by model-
based tooling, and (ii) to transfer methodology and technology from the “academic” side of the
project to the “industrial” side, but also to the “outside” world, represented by the partners in
the recently started Integrated Technical Projects. The expectations are that this can bring a first
round of “TRL boosting”, such that the next Call for Pilot Projects can be realised on a more
solid foundation.

The Pilots are also an excellent way to test the level of standardization-readiness of (a
selection of) models of RobMoSys data structures and functionalities, and their composition.
Because the Project has the ambition to solve, finally, the decades-old problem of robotics, namely
the lack of standards for the essential platform-level functionalities of motion, perception and world
modelling, formalized in models and supported by software reference implementations and tooling.
This Deliverable suggests a concrete standardization, but for now these are just well-motivated
and formalized suggestions, that must be confronted with the feedback and priorities of the wider
robotics community.

4

Contents
Executive summary 3

1 Introduction 6

2 Principles and basic tooling 8
2.1 About flexibility, usability, optimality and composability 8
2.2 Horizontal Composition: Software Components as Data Integration Systems . . . 9
2.3 Property Graph . 13

2.3.1 Introduction . 13
2.3.2 Property graph, Entity-Relation meta model (ER) and Block-Port-Connector

meta model (BPC) . 14
2.3.3 Embedding knowledge in a property graph: a use case 15
2.3.4 Tools and its implementation design . 20
2.3.5 Storing values in data blocks and its semantics 21

2.4 The Model-based Function Composition Framework (MFCF) 23
2.4.1 MFCF’s User Workflow . 24
2.4.2 MFCF DSL . 24
2.4.3 Links between computational model and component model 32

2.5 Horizontal Composition: data-conversion tool 34
2.6 Integrated Technical Projects (2nd wave call) 34

3 Motion, Perception and World Model Stacks 35
3.1 World Model Stack . 36

3.1.1 World Model knowledge as a property-graph 37
3.1.2 World Model Runtime . 39
3.1.3 World Model as a configuration of the information architecture 45
3.1.4 World Model Mediator Component Design (WMMC) 48
3.1.5 World Model Protocol . 50
3.1.6 WMMC implementation status . 55

3.2 Motion Stack . 57
3.2.1 Kinematic trees and motion solvers . 57
3.2.2 Other existing components and tools . 61
3.2.3 1st call of Integrated Technical Projects Results 61

3.3 Perception Stack . 62
3.3.1 Perception components and functionalities 62

4 Interaction with the pilots 68
4.1 Introduction . 68
4.2 Flexible Assembly Cell (Siemens) . 68
4.3 Human-robot collaboration for assembly (CEA) 70
4.4 Intralogistics Industry 4.0 Robot Fleet Pilot (HSU) 71

4.4.1 Requirements on RobMoSys Methodology 71
4.4.2 Current state . 72

5 Annex 75

5

1. Introduction
The RobMoSys project adopts model-driven development techniques to enable the development
of better robotic systems, considering composition a necessary first-class primitive for modelling,
tools realisation and software development. This means that not only models shall be composed
together, defining yet another model, but also tools and the final software product must be
composable, enabling interoperability and re-usability.

RobMoSys adopts the “Unix philosophy”, that a tool shall do one thing only, but do it well. The
same philosophy is adopted for the design of models, and, in the context of software functionalities,
the design of the functions and data structures with which to realise these functionalities.

This approach towards “minimality” does not prevent the creation of “monolithic” tools or
frameworks,1 that are often expected in specific application domains because they bring the “user
friendliness” of de facto “standardizations” to that domain. The drive for minimality is expected to
help interoperability between such tools, because the development efforts of the common, re-used
parts can be shared.

RobMoSys adds a fundamental extension to the Unix philosophy: the latter’s universal interface
boils down to typically not much more than text streams, while RobMoSys’ universal interface
(the so-called data sheet of a software component) can handle models that conform to a set
of meta-models. In other words, interaction is not just via text, but via text with a formally
modelled meaning (see D2.1, D2.2 and RobMoSys Ecosystem Organization2). The disadvantage
of such “semantically rich” interfaces is the non-trivial effort to design and realise them (hence,
one of the goals in RobMoSys), but the advantage is that tool interoperability is facilitated by
requiring conformance to those meta-models.

Figure 1.1: The three composition tiers of the RobMoSys Ecosystem [D2.3, D2.6]

Conformance to Tier-13 models is sufficient for tools that treat context-free (i.e., without the
inter-dependencies that are essential to take domain knowledge on board) aspects.

For example, the concept of a component with ports is generic and can be found in different
modeling languages. However, in order to achieve composition, domain-specific concepts need to
be introduced, such as e.g. the definition of services (see Deliverables D2.1, D2.2 and D2.6), and

1 The software of a robotic solution is already, de-facto, an integration of multiple technologies and software
libraries. However, most of today’s frameworks that claim to address composability enforces the developer to
make strong technological bindings, adopting a static workflow with limited interoperability with other tools and
approaches, or, worse, leaving the developer the responsibility to address those directly, by manual programming.

2https://robmosys.eu/wiki/general_principles:ecosystem:start
3see https://robmosys.eu/wiki/modeling:tier1

6

RobMoSys - D3.2 H2020-ICT-732410

also how the configurations of these services depend on each other and on the context provided
by the current task execution. This document goes a level deeper and addresses functional
composition within components in a similar manner as component composition is addressed at
system level. This Deliverable documents the design of the semantic information on the meaning
of the data, their mathematical and numerical representation, their units and dimensions, their
inter-dependencies, etc., via the so-called Tier-2 meta-models of RobMoSys. For now, these
domain-specific models describe the core geometric primitives and relationships, the physical
dynamics of mechanical chains of joints and links, and the information dynamics of Bayesian
information processing.

Robotic software tools and libraries are only truly composable if their functionalities are defined
on the basis of the Tier-2 meta-models that represent the knowledge of the robotics domain.
Examples of “true” composability are (i) to enable data exchange between software components
only if the the semantics of the data is well-defined and consistent, and, (ii) all representation
choices are made explicit (e.g., dimensions, units, mathematical representation, etc). Such a
tool (see Sec. 2.5) generates transformations between those choices automatically, whenever it
detects the need. For example, two components can exchange orientation values, even if one uses
quaternions and the other (one of the many sets of) Euler angles.

Domain-specific knowledge shall be exploited not only for the elements that define a software
component’s interface (e.g., Communication-object meta-model, Service-Definition meta-model,
Component-definition meta-model, etc), but also to build and to describe the internals of the
component. The latter is a core focus for Work Package 3, whose major outcome are concrete
models, tools and software to implement the component’s functionality via the composition of
functions, data structures, and control flow.

The (very) good news is that the vast majority of the “best practices” and “patterns” that
hold at component interfacing level, also hold for the interfacing of functions and threads inside
one single process. The only difference in design focus is that realtime performance must be
configured in, without any change in the implementations of the functionalities.

The explicit description of such interaction entry/exit point of an algorithm, its constraints
and configuration options, are necessary to ship a software component with a “datasheet” that
provides all usage information and meaning to developers as well as to automated tools, without
exposing the implementation internals of the component.

This Deliverable describes the first draft of the software for motion, perception and world
model stacks (Sec. 3). The implementation of the concrete functionalities is complemented with
the design and implementation of tooling that allows (i) to exploit Tier-2 models, (ii) to specify
the composition of computation functions, and (iii) to bridge the gap between the Component-
definition meta-model and the computational model of the functionality embedded in it, that is,
solving the so-called horizontal composition. This focus on “tools first” (Chapter. 2) is motivated
by the desire to have (i) an early release date of the first batch of tools, thus (ii) supporting the
2nd wave of ITPs and projects partners (in particular the industrial partners) in the Pilot cases;
(iii) having early feedback, hopefully followed by an acceptance of the developed tools in the wider
robotics community, and (iv) enabling co-development of more functionalities, models and tools.
Finally, also the Pilots give focus (Sec. 4) to the software design of the tools and the choice of
concrete implementations.

7

2. Principles and basic tooling
2.1 About flexibility, usability, optimality and composability
RobMoSys is about composable robotics systems by means of composable models and software.
However, when it comes to a concrete software implementation, those principles and choices must
be better shaped, since the concrete tools and implementations are limited, guaranteeing a certain
degree of composability, within a well-defined scope, by means of a balance between flexibility,
optimality and usability of the software solution and of the development workflow.

In this document, the term flexibility refers to the the capability of a robotics (software) system
to adapt to different circumstances or contexts, during a well-defined phase of the development,
also called static flexibility, or during a well-defined phase of the software component lifecycle,
i.e., dynamic flexibility.

Optimality of a software solution usually refers to the capability of the tool (or a concrete
implementation of an algorithm) to realise a valid solution with an optimal usage of both compu-
tational and memory resources. That is, the required resources shall be minimal, and well-balanced
between memory and computational requirements. For example, caching mechanisms (e.g., mem-
oization) should be employed in those cases where there is a better balance and concrete benefits
due to multiple requests of the same information, relieving the computational costs1 despite the
memory usage (in addition to those cases where caching is a mandatory feature for the realisa-
tion of the concrete algorithm). Modern compilers already perform different types of context-free
optimisation over the software implementation of certain algorithms: inline functions, data-flow
optimisation (e.g., constant-folding, subexpression elimination), dead code elimination, and loop
unrolling to mention a few. Within the scope of the RobMoSys project, the aim is to produce tools
to aid the realisation of software implementations that exploits context-dependent optimisations,
that is, taking into account how higher-order, domain-specific knowledge influences architectural
choices.

Usability is only well-defined after the final user is identified with one of the RobMoSys roles.
In this sense, a concrete software tool or implementation is usable if it allows and exposes, in a
familiar form, all the necessary functionalities and configuration options that the user may need.
Therefore, usability is not an absolute concept, i.e., a tool might be usable for a set of users, and
not being usable for another set of users. However, nothing prevents the tool developer to provide
different views over the same contents in the tool, such that the requirements of a different types
of users are met.

Software composability is enabled by software design techniques that, starting from the con-
formity to well-defined meta-models such as the Tier-1 RobMoSys composition structures and
the Tier-2 domain-specific models, allows tools synergies, (i.e., complementary tools) tool in-
teroperability (i.e., alternative tools with respect to the functionality offered) and the possibility
to use/integrate together multiple software products and implementations. However, software
composability is not easy to realise, and pragmatically speaking, it is often bounded to a specific
context or domain, in which the meta-models are defined.

During the development of a particular tool, the degree of composability is shaped already at
design time, and the relative choices influence (and are influenced by) the final (desired) workflow

1Communication costs as well, in case of a local cache on the information consumer with respect to the producer.

8

https://robmosys.eu/wiki/general_principles:ecosystem:roles

RobMoSys - D3.2 H2020-ICT-732410

about how to use the tool. For example, the composability of a code generator tool (that produces
some code starting from existing models) comes from those models, allowing static flexibility. In
fact, artifacts (i.e., generated code) are not composable by themselves. This implies a constraint in
the workflow of the user, e.g., a change in the model triggers a refresh of the artifact. Nevertheless,
artifacts composability is still possible if (i) the artifacts are models as well, (ii) the artifacts are
used by a third tool that provides a certain degree of composability, e.g., by means of a well-
established interface, or (iii) if there exists a model of the code-generator tool. For such a tool,
the artifact would be optimal with respect to the domain-specific information encoded in the
models.

Another tool could realise the same functionality, but aiming to dynamic flexibility, providing
a runtime interface valid within a specific state of the software component lifecycle, to exchange
models and to interpret them. The runtime overhead of such a solution would be higher, with
different (but not necessarily inferior) opportunities of optimisation, since lazy evaluation tecniques
can be adopted in some cases.

In the realisation of RobMoSys compliant software tools and relative implementations (within
WP3), specific choices are made as a compromise of the elements above, with a concrete devel-
opment workflow as a target. Those choices are unavoidable during the implementation phase,
and this opens up to alternative implementations/tools that adhere to the same models, but with
a different target.

The software reported in this deliverable, as well as further development and interactions are in-
dependent from the concrete tool realizations (e.g., SmartMDSD Toolchain and Papyrus4Robotics),
yet adhering to Tier-1 and Tier-2 meta-models. However, special attention to integration issues
with WP2 software baselines is given to guarantee the software composability that RobMoSys
strive for. Our software implementation tries to cover as much as possible of the current Tier-
2 meta-models discussed in D3.1, D3.3 (and further interactions), and explicit implementation
choices are discussed where it is possible.

2.2 Horizontal Composition: Software Components as Data Inte-
gration Systems
In a component-based software solution, the role of each component is to expose a certain func-
tionality with a dedicated, modelled interface to other components, processing the incoming data
provided by other components. In that sense, a software component can be seen as a Data Inte-
gration System (DIS), a well-known concept in database literature (see Fig. 2.1). A DIS is defined
as “an information system that integrates data of different independent data sources and provides
the users with a uniform acess to the data by means of a global model” [4]. This definition holds
for component-based software solutions as well, since every component acts as a DIS: (i) it col-
lects data from some source components, (ii) it consumes the received data, holding an internal
state and (iii) it serves the results to some user components, providing a well-defined view on the
consumer internal state.

In the specific robotics domain, a typical source component “S” is a sensor driver, or any other
component that provides perception functionalities. Examples of user components “U” can be
either an User Interface that visualises runtime information about the robotics system, as well as
“actuator” components, that realises the robotic motion starting from a computed control action.
The consumer component “C” refers to the DIS used as reference that elaborates, stores and
serves information provided by heterogeneous producer/source components to consumer/user

9

RobMoSys - D3.2 H2020-ICT-732410

Figure 2.1: Component as Data Integration System (Figure from [4]). A component collects
heterogeneous data from multiple sources, and it serves the data to the user components, with
different views on the data itself, both synchronously or asynchronously, e.g., caching a result.

components. Obviously, the definition of source and user component is relative (with respect to
the definition of the consumer component), and components are usually chained between each
others. This established information flow allows to define a cause-effect chain, constraining the
component execution order (scheduling of the component’s activity) and other non-functional
properties of the software architecture. The information flow also fits naturally to a streams-
based interaction between components; but it fits also very well to the inside of a component,
where “components” may be replaced by “threads” or “processes”.

Any component contains some aspects of a DIS, however some are more “data-oriented” than
others, that is, their main functionality resides on hosting heterogeneous data and serving to other
components for different purposes. It is the typical case of a component that hosts world model
information about the robotics application, or part of it. For those components where the data
is dominant, the definition of quality of service based on the quality of the data provided is of
fundamental relevance: how fresh is the data, and how (re)usable can it be served to the next
computation step? In database literature [4], different metrics have been proposed, all as specific
implementation of the concept of data freshness: currency, obsolescence, freshness rate and
timeliness. Independently from the metric choice, the concept that data freshness is a quality of
service is shown in the robotics domain as well. More concretely, with respect to the functionality
served by the component C, the questions to be answered are:

• caching on input: in case the input data is cached, is it possible to (re-)use a cached input
value for the execution of a query?2

• caching on output: if the (final or partial) result of a computation (i.e., answer to a query)
is cached, that result is fresh enough to be used again?

• computational time (delay): is the computation time short enough to make the result
usable by the user?

2 In this context, “solving a query” means computing a valid result.

10

https://robmosys.eu/wiki/composition:cause-effect-chain:start

RobMoSys - D3.2 H2020-ICT-732410

In general, data freshness is influenced by caching mechanisms around the functionality embedded
in the component. Typically, caching mechanisms are meant to reduce the computational time.
Caching the computational state of an algorithm, or part of it, may prevent the execution of a
new computation step (when inputs are invariant). Caching on input can prevent to pull (or push)
data from the sources again, avoiding indirect costs (of resources and time), e.g., by triggering
an activity on a source component, and relative costs to handle the communication.

S

push-push

C

S

S

Sources

U

U

User
pull-pull

S C

S

S

Sources

U

U

User

pull-push

S C

S

S

Sources

U

U

User

push-pull

S C

S

S

Sources

U

U

User

S C

S

S

Sources

U

U

User
push-push pull-pull

S C

S

S

Sources

U

U

User

Sync

Async

Figure 2.2: Communication patterns between heterogeneous source components (S), user com-
ponents (U) and the consumer component C. Asynchronicity is related to the caching mechanism
in the C component of inputs and/or outputs, in-memory or in persistent.

Considering a consumer component C as a reference, there are six possible compositions (see
Figure 2.2), two synchronous and the other asynchronous. Asynchronicity is due to the presence of
a caching mechanisms (input, output, or both) for which, for example, a result can be computed
as soon as the inputs are available, and served later, in a second phase, when a pull request from
the user component occur; it is the case of asynchronous push-pull pattern. Even if “cold”, the
data should be served “fresh enough” with respect the domain of the application, that involves
both consumer and user components.

In short, data freshness is a quality of service that must be evaluated case by case, and it
depends not only on the internals of the component under analysis (or synthesis), but also on the
communication pattern in which the component C is employed.

11

RobMoSys - D3.2 H2020-ICT-732410

There are multiple policies to handle data freshness at runtime; the two extremes are:

• informing about the quality of the result. The consumer component does not hold any
decision whether to use a result or not. The data is computed at its best, and shipped
with meta information on the quality of the data served. Example of useful data freshness
information are related on the freshness of the “ingredients” that allow the computation
of the result, thus related to the freshness on the input/output cache of the consumer
component: (i) if the data is a result of a fresh computation; (ii) if the data is a result of
a computation based on cached intermediate results; (iii) if the data is a result previously
cached (and how old it is). Upon these information, the user component is responsible to
decide whether to discard the incoming result, or to use it for the user’s component purpose.

• The consumer holds the decision on the data freshness, and it only provides fresh data to
the user, filtering out old data.

The choice on the policy may vary from case to case. For example, for real-time critical applica-
tions, it is preferred to always get a result, even if computed upon old cached values: waiting for
an update might take too long or, even worse, with a non-deterministic update time.

Between the two policies reported above, many types of compromise are possible, and a com-
posable design of the component internals is a key-enabler for this. Concrete entry/exit points
of the computational model embedded in the component must be modelled, without side-effects,
e.g., the functional behaviour is fully modelled, and the caching mechanisms are configurable.
The proposed Model-based Function Composition Framework (MFCF) is designed to be such a
technological key-enabler, but other solutions are possible as long as they adhere to the RobMoSys
principles discussed so far.

A concrete use case regarding the development of world model facilities is discussed in Sec-
tion 3.1.

12

RobMoSys - D3.2 H2020-ICT-732410

2.3 Property Graph

2.3.1 Introduction
The property graph is a generic model for the representation of heterogeneous and linked data
(and, hence, it is the core meta model for graph databases, which have known an exponential
growth in the last decade). The nodes of the graph host the entities that one wishes to represent,
while the edges model the relations between such entities. Both nodes and relations, in general,
have a set of key–value properties representing the information encoded in the nodes and relations,
and its meaning. The power of the property graph model lies in it being a very generic mechanism,
as any object can be inserted in the graph and there are no constraints on the relations that can
be established among them.

Such flexibility allows to model and interconnect heterogeneous objects, statically and dynam-
ically, in ways that need not be pre-determined. Existing models, data objects, etc., can be
composed together into a rich knowledge base. The information that can be modeled in the
graph is not limited to traditional data-record-like items, and it includes, among other things,
(symbolic references to) algorithms; it is then possible to relate, for example, geometric features
with the available image processing algorithms for their detection. Also, composability implies
de-composability, meaning that different subsets of data can be extracted from the graph to
serve algorithms with different inputs; relations (edges) in the graph can always be ignored if not
relevant, or exploited otherwise.

Given one ore more domains, it is up to the user to decide what is best represented by a node and
what by an edge. A common conceptual operation that is easily performed on a property graph is
the transformation of a relation between two entities into a new entity related with the other two,
whenever the relation itself must take part into other connections. For example, a “measurement”
relation between a quantity like a position vector and its numerical representation, can become a
node when further information like the provenance or the coordinate system need to be explicitly
represented in the graph.

A natural limitation of the flexibility of property graphs is that they require the user to be
aware about the existence of the relations; in fact, the graph can be explored and searched for
connections, but that comes at the price of higher complexity at the user side. Another issue
with property graphs pertains to the traversal engines – the implementations allowing to navigate
through the graph given some query – which are i) hard to realize and ii) generic like the graph
itself, i.e. they cannot support directly some domain specific computations. To mitigate the issue
and provide more specialized functionality, however, refined mechanisms based on the basic one
may be constructed. For example, a DSL (Domain Specific Language) for queries about a specific
domain (involving a subset of types of entities/relations) can be defined on top of the native query
language for the graph, which exposes only the generic concepts of node, edge, property.

There exist some graph based databases or property graph engines, like Apache TinkerPop3 and
Neo4J4. However, these implementations are typically designed for large databases or to interact
with existing data system providers. Therefore they do not match the requirements of multi-robot
systems about footprint size and performance (latency etc.). Furthermore, it is not trivial to
embed these existing databases within a software component with the current RobMoSys software
baseline, due to technological incompatibilities; for example, different programming languages,
deployment in a stand-alone (Java) virtual machine, and, especially, no focus on providing the

3See http://tinkerpop.apache.org/
4See https://neo4j.com/

13

http://tinkerpop.apache.org/
https://neo4j.com/

RobMoSys - D3.2 H2020-ICT-732410

property graph mechanism as a library that can be embedded inside the in-process RAM memory
of a realtime motion stack component. The designs and the examples illustrated in this document
thus refer to a custom, minimal implementation of the property graph concepts, for in-memory
storage of data, suitable for usage in robotics applications, e.g. in the motion and perception
stacks (see chapter 3).

Other related technologies in robotics, which also make use of an underlying graph data struc-
ture, include the URDF file format 5 and the tf component [6] from the ROS ecosystem. These
solutions, however, almost completely lack composability and are hardly extensible. The URDF,
for example, is a monolithic format supporting in a way a number of aspects of a robot model: if
these aspects (like connectivity, geometry, inertia, attachment of frames/points, sensors, meshes
for 3d visualization, etc.) are modeled separately, and corresponding tooling exists, it is much eas-
ier to support alternative representations for the same information (e.g. how to specify the relative
pose of the frames on the model). Models addressing a self contained concern are composable,
and composability is reflected in the tooling. Conversely, a monolithic format leads to monolithic
tools and larger, harder specifications.

2.3.2 Property graph, Entity-Relation meta model (ER) and Block-Port-Connector
meta model (BPC)

Any property graph conforms to a core meta model in RobMoSys, namely Block-Port-Connector :

• Block: every node in a property graph is a Block. Its “behaviour” is represented by its
properties.

• Port: every Port on a Block is a view on a subset of the Block’s properties.

• Connector : this is the relation that links two or more Ports, and whose own properties
represent the meaning of the relation.

Moreover, the property graph serves the purpose of representing entities and relations, where
their role is defined within the modelling domain. As a general modelling approach towards the
definition of entities and relations in a specific domain, entities are those that have a meaning
by themselves. Instead, relations need to have their “arguments” fullfilled to be well-formed.
As illustrated in details in Section 2.3.3, in the geometric domain a relative pose is a geometric
relation between two frames (i.e. entities). In a property graph, entities are always modelled as
nodes; relations can be modelled as edges, but also as nodes. The latter is a design choice, which
depends on the richness of details of the domain subject of the modelling effort. In case a relation
is represented by a node in the graph, then it must have a very well defined set of edges, which
must be connected to other nodes (entities): those nodes are the “arguments” of the relation.
For a relative pose represented as node in the graph, two edges must connect to other two nodes
representing the frames. However, those edges are not interchangeable, but they have a specific
role (for a relative pose, one frame is target and the other is reference of the relation). To be
able to define this, the concept of port must be introduced. This concludes that a property graph
must follow the BPC meta model. Further details can be found in the Deliverable D3.3.

5See https://wiki.ros.org/urdf

14

https://wiki.ros.org/urdf

RobMoSys - D3.2 H2020-ICT-732410

1 {
2 "Pose" : {
3 "of" : "frame -1-id",
4 " with_respect_to " : "frame -2-id"
5 }
6 }

Listing 2.1: Symbolic representation of Pose relation in JSON format, as described in D3.3 Annex,
Ch.3

2.3.3 Embedding knowledge in a property graph: a use case
There is no unique way to embed knowledge in a property graph, and this depends on both
the knowledge domain, the preferences and habits of the domain experts, and the context of
the application. For example, within the same domain, there are certain details that are non-
relevant for a specific application, and it is out-of-interest to represent (and store) those relations,
constraints and properties. Nevertheless, one major advantage of the property graph approach
is to be able to extend the domain and the concrete knowledge representation starting from an
existing property graph, just by composition of the extra knowledge as new relations on already
existing nodes; such an extend-by-composition approach is extremely RobMoSys compliant.

The aim of this section is to present the methodological approach to embed knowledge in a
property graph. To this end, this section presents a running example, considering the geometry
domain as a target of the knowledge representation. In particular, this example discusses how to
represent a Pose, a geometry relation that involves two frames (i.e., two geometric entities); a
major use case of the Pose is to represent the relative position and orientation of two rigid bodies.

Recalling from D3.3 (cf. D3.3 annex, Chapter 3), a Pose is a geometric relation expressed
between two frames. In details, this relation is ordered, that is, it expresses the concept of relative
Pose of a frame with respect to another frame. Listing. 2.1 shows a JSON serialization of the Pose
relation that expresses the relation only symbolically, without associating any concrete numerical
value (i.e., the measurement of the Pose relation). Moreover, this relation is a composite
relation between two other relations: Position and Orientation. Hence, the extra semantics
it adds is that of a compositional constraint between those two other relations.

Let us consider the graphical representation of a property graph in Fig. 2.3. In this represen-
tation, both geometric entities and relations are represented as nodes of a property graph. To
embed the concept of Pose, we assume that two nodes that represents the two frames (F1 and
F2) which are the arguments of the relation are already instantiated:

1. if the concept of Orientation and Position between those two frames is already embed-
ded by relatives nodes, (Fig. 2.3a), introducing the concept of Pose implies adding a new
node in the graph. This is done by indicating that the Pose is a relation composed by the
two existing relations (nodes), by means of an edge labeled composed-by.

2. if Orientation and Position nodes are not instantiated, creating a new node Pose will
instantiate not one but three nodes, and relative edges to fullfil the definition of the semantics
of Pose as a composite relation.

Independently of the initial state of the property graph, the result of adding a Pose in the property
graph is the same, as shown in Fig. 2.3b: edges with_respect_to and of must be coherent with

15

RobMoSys - D3.2 H2020-ICT-732410

previous knowledge, and the extra edges composed-by are instantiated.

frame

Orientation

frame

Position

with_respect_to

with_respect_to

of

of

(a) A property graph embedding the knowledge of
Orientation and Position

.

frame

Orientation

Pose

frame

Position

with_respect_to

with_respect_to

of

of

with_respect_to of

composed-by composed-by

(b) Pose relation is embedded by adding a new node
and edges to express the composition of that relation
and its arguments (the two frames F1 and F2.

Figure 2.3: Graphical representation of property graph to express Pose, Orientation and
Position relations.

Adding measurements to symbolic relations

The property graph in Fig. 2.3 only embeds the knowledge of a Pose relation symbolically : no
numerical values are attached to it, or rather, no measurement of the Pose is stored in the property
graph.

Pose

Pose
(dblx)

measurement

{
 "mmid" : "dproto",
 "mid" : "pose_inmem1",
 "id" : "a2c65fvuy4f"
}

Property: dblx

Pose
(dblx)

{
 "mmid" : "dproto",
 "mid" : "pose_inmem2",
 "id" : "dFX4tdDcok"
}

Property: dblx

measurement

consistency

Figure 2.4: Two dblx nodes in a property
graph to store a measurement of the same re-
lation. The numerical representation choices
differ between the two dblx (different mid,
and an extra constraint consistency is
added to indicate the data stored as prop-
erty must be consistent.

To this end, other nodes in the property graph
must be introduced. These nodes are of type
data block (dblx), and their role is to represent
and to store a concrete data block in-memory,
by means of the property data structure of each
of the nodes. From the implementation mech-
anism point of view, it means that a dblx
node in the property graph represents (“is a
model of”) the concrete data in-memory, and
managing such a node involves operations out-
side the boundaries of the property graph, such
as memory management (e.g., memory alloca-
tion, garbage collection, etc) and serialization
(e.g., to send the data block over a network
connection). The allocated memory serves the
purpose of containing the numerical values of
a measurement of the relation. The chosen
data structure can have many forms, all with
the same information meaning, depending on
what is most appropriate for the algorithm/ap-
plication that uses it. Moreover, more dblx
nodes storing the same measurement can co-
exist, in order to support different data struc-

16

RobMoSys - D3.2 H2020-ICT-732410

ture choices, see Fig. 2.4. To represent all the
information needed to convert from one representation to another one with the same meaning,
three symbolic identifiers are introduced: the id of a node; the model-id (mid) of the node, that
is a reference to the model that fully describe the choices over the measurement value in the
node with that id; and the metamodel-id (mmid), that determines which model (or DSL) the
mid conforms to, and, hence, that has the information to support model-to-model transforma-
tions. Regardless of the representation choices of the measurement, these dblx have the same
semantics. However, the measurement value must be kept consistent: a new (bidirectional) edge
consistency is employed for modelling such a constraint. The underlying implementation that
accesses the value must ensure that at every writing of a dblx (e.g., a new measurement) all
other dblx associated with a consistency constraint must be updated as well, in a consistent
way. In addition, this operation must be atomic with respect to any other property graph manip-
ulation that involves the nodes related to the measurement update. The model referenced by the
mid shall indicate the various choices to be taken into account for the digital representation of
the measurement, including (but not limited to) mathematical representation, abstract data type,
data structure, or physical units. These modelling elements are illustrated in details in the Annex
of D3.3, Chapter 3.

Finally, a DSL has been developed to describe and to associate the semantic value of the
measurement (or numerical value of a geometric relation) with its representation choices: the
data prototype (dproto) DSL. Together with the dproto DSL, a tool for automatic datatype
conversion has been developed. This is further discussed in Sec. 2.3.5.

Independently of the concrete tool realisation, the presented solution based on the property
graph concepts, allows to separate fully the description of symbolic “values” (relations) from their
measurements, and it separates different concerns (such as mechanisms for memory management,
datatype conversions, serialization, etc.). This increases composability with respect to alternative
tools, mechanisms and DSLs that tackle each concern separately.

Fig. 2.5 shows the same property graph already described in Fig. 2.3, but with measurements
for each relation (Position, Orientation and Pose). The consistency constraints are applied
to the dblx nodes explicitly, instead of being derived implicitly from the knowledge of the relation
Pose being composed-by Orientation and Position. The consequence is the same as the one
discussed previously: on a new measurement (i.e., an update on a dblx property), the properties
of the constrained nodes must be updated as well. The role of a DSL and an automatic datatype
conversion tool is important in this context: to guarantee this consistency, handling knowledge
representation in a property graph means including functionalities dependent on the specific do-
main. For example, the property of the dblx Pose can be a 4 × 4 homogeneous transformation
matrix, while the property of the dblx Orientation can be expressed in Quaternions (i.e., 4
numerical values): the consistency can only be maintained if a conversion function is provided.

Finally, it is important to notice that, by means of this modelling effort, it is possible to evaluate
possible overhead and computation load of operations over the values of the property graph. This
enables the development of update policies that take into account specific requirements with
respect to computational resources and real-time execution. For example, some dblx may be
accessible by software components subject to real-time constraints, thus requiring higher priority
on solving consistency with respect to other dblx that are less time-critical in the application.

17

RobMoSys - D3.2 H2020-ICT-732410

frame

Orientation

Pose

frame

Position

with_respect_to

with_respect_to

of

of

with_respect_to of

composed-by composed-by

Pose
(dblx)

{
 "mmid" : "dproto",
 "mid" : "pose_inmem1",
 "id" : "a2c65fvuy4f"
}

Property: dblx

measurement

Orientation
(dblx)

Position
(dblx)

measurement
measurement

{
 "mmid" : "dproto",
 "mid" : "position_inmem1",
 "id" : "b4c6pk5dy4f"
}

Property: dblx

consistency consistency

{
 "mmid" : "dproto",
 "mid" : "orientation_inmem1",
 "id" : "sf45gR6xPqfgT"
}

Property: dblx

Figure 2.5: Property graph representing a Pose relation with measurements. The consistency
edges model constraints when operating on the dblx nodes.

Extending measurement domain knowledge

The presented running example encodes some geometry entities and relations, where the “mea-
surement” relation has a fundamental role to link symbolic information with concrete measurement
values. So far, the measurement relation is modelled as a simple edge in the property graph. The
modelling choice of treating the measurement as a first class citizen is good in those application
contexts where no further information is required. However, there are more “properties” of a mea-
sure that an algorithm may exploit, to guarantee both functional and non-functional properties of
the system. For example, more advanced strategies to guarantee consistency constraints can be
developed, e.g., to serve differently new incoming measurements (request of a property update),
or requests to fetch a property value can be prioritised to realise different quality of service and
real-time requirements. This section discusses an alternative modelling choice of the measurement
relation that expands the previous domain. The same methodology of this running example can
be employed in all other cases, where an edge in the property graph is promoted to become a
node in itself, with its own property data structure.

In this extension, the addressed “properties” of the measurement are:

• the coordinate frame (coord-frame) from which the measurement takes place;

• provenance of the measurement, as a relation between the measurement and the nodes
that models the providers of the data (a software component, a device, a user, etc);

• used-by, a relation that links the measurement and the “users” that have read access to
the data, independently of the mechanism used to retreive the data (e.g., explicit query by
polling; push notification; etc.);

18

RobMoSys - D3.2 H2020-ICT-732410

• the relation with the dblx node that actually models the storage of the data (already
modelled previously).

Figure 2.6 shows a graphical representation of this measurement extension. The original edge is
converted into a node in the graph, still linked by a measured-by edge with a node Position,
which represents a geometric relation. Functional data dependencies (i.e., provenance and data
users) are now modelled, linking the symbolic concept of Position, the concrete value instances
(dblx) and inputs/outputs. At the time of writing, this measurement model is the one adopted
in the world model stack, as discussed in Chapter 3.

Position

Position
(dblx)

Measurement

input-device

coord-frame

value

measured-by

frame frame

with_respect_toof

frame

output-device

provenance
used-by

Figure 2.6: Extension of the geometric domain with measurement information (provenance, etc).

Properties and (time) series measurements

Another typical case of knowledge representation is to store properties as time-series, that is, as
time-ordered sequences of measurements. Once again, there is no unique or best solution to this
problem, as it depends on the concrete mechanisms of memory management that the property
graph implementation supports, as well as on the requirements in the application. At the time of
writing, we envision two different approaches (with their related implementations, that are under
development):

1. at each request to update the measurement, the property of the dblx node is not modified
but a new dblx node is created. This follows the best practice of data immutability : if all
past relations with the dblx node are kept alive and are read-only, sharing data between
activities becomes very composable. In practise, this strategy requires the implementation
of a garbage collector at the property graph mechanism, to detect those nodes and relations
that are not required by any “user” in the application.

2. the measurement sequence is still modelled with a single dblx node. The node property
refers to a data structure (and its mechanism) to store sequences of data, and the memory
management problem is delegated to such mechanism.

19

https://en.wikipedia.org/wiki/Immutable_object

RobMoSys - D3.2 H2020-ICT-732410

Summary

By means of a running example, this section explored the property graph approach applied to the
geometric domain, which is a core-domain for any robotics applications. The current methodol-
ogy to embed knowledge in a property graph was described, considering the following modelling
choices:

• all nodes and edges have a semantic-id, with id, mid and mmid fields.

• nodes represents entities, and edges represent relations. Both are the “flat” mecha-
nism of the property graph, which implies that “higher-order” meaning and domain-specific
interpretation must be added by the application builders, explicitly.

• both entities and relations of the geometric domain are represented as nodes in the property
graph, labelled edges assumes a semantic meaning only if the domain (spatial geometry) is
specified.

• the measurement relation is a first fundamental building block, to embed knowledge of
the property graph: it links symbolic representation, numerical values and non-functional
properties, such as data provenance and data dependencies, with functionalities that require
the data.

• the second fundamental relation is the consistency dependency between selected dblx
nodes.

This property graph embodiment and its implementation are the fundation for the world model,
motion and perception stacks, Chap. 3.

2.3.4 Tools and its implementation design
The previous sections describe the property graph and the methodology to embed knowledge on it.
By doing so, it also collects a set of specifications that a reference implementation must consider.

Entity-Relation Modeling

In-memory property graph
data structure library

cgraph

Property graph mechanisms API

1

2

3

4
DSL for describing and composing domains

Domains

geometry kinematic
chains

navigation actuatorsdynamics ...

on property-graph

Figure 2.7: Current implementation design of the property-graph mechanism.

At M30 of the RobMoSys project, the implementation of the property graph is in alpha phase.
This section quickly describes some design choices with reference to Figure 2.7, explained in the
following:

20

RobMoSys - D3.2 H2020-ICT-732410

1. Layer 4 refers to a Domain Specific Language for the definition of the primitive entities
of various domains of interest, e.g. Vector in the geometry domain. These definitions
would serve as the model/type for the entities in the graph, defining the bare minimum
properties that must be represented. For example, a 3D vector must have an origin and
an end Point; therefore, any node in the graph of type Vector will have at least two edges
connecting it with two Point nodes.

2. Although a relation can always be promoted to an entity (i.e. an edge becomes a node) in
order to further qualify it and to express higher order relations, any given domain defines
which are the entities and which are the relations, in that domain. For example, in kinemat-
ics, the relative velocity between two rigid bodies is a relation, it cannot be defined without
any of the two bodies. This layer allows to “view” the objects existing in the property graph
in terms of Entities and Relationships for a given domain.

3. Layer 2 is the property-graph-specific C API to be exposed to clients. Establishing the API
enables the use of different backend implementations in layer 1. The API shall reflect the
main concepts of the property graph, by means of operations to construct, remove, connect
nodes and edges, traverse edges, set and get key/value properties.

4. The bottom layer represents a wrapper of an existing, suitable, general-purpose graph li-
brary implementing the API described in point 2. Different implementations using different
libraries can possibly address different use-cases, like real-time and non-realtime execution
constraints. At the moment, our developments are based on the cgraph library.6

An additional module not shown in the figure is the query engine, which is in fact the primary
client of the property graph API. The query engine (or query solver) must be able to interpret a
user query (whose format also need to be defined) and perform the corresponding graph traversal
required to fetch a desired node, property, or set of those. In fact, a query and therefore a traversal
might also be used to trigger specific computations rather than only retrieving data. This is an
important requirement to be able to make use of the structure of the information in the graph,
for certain algorithms. For example, while traversing the robot model (encoded in the graph)
from the leaf bodies to the base, the inertia tensor of each body can be composed to compute
the composite inertia of the whole structure. Currently, an exploratory prototype query engine
has been developed, drawing inspiration from the Gremlin language of Apache TinkerPop, cited
before in this document (e.g. Section 2.3.1).

2.3.5 Storing values in data blocks and its semantics

Independently from the domain, any property graph must handle some properties that are nu-
merical values, often measurement of some symbolic relations. These values must be stored
in-memory, following the memory layout of a given data structure. Those “particular” nodes in a
property-graph are very relevant, because they are subject of queries. In fact, the stored values are
used by (numerical) algorithms of heterogeneous nature to perform computations for perception
and motion control. Therefore, different requirements on the memory layout may occur on the
same data, in order to serve better (and optimise) each single algorithm. As a consequence,
multiple data blocks (dblx) containing the same semantic value (same measurement) but with

6See for example https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf and https://www.mankier.com/
3/cgraph.

21

https://graphviz.gitlab.io/_pages/pdf/cgraph.pdf
https://www.mankier.com/3/cgraph
https://www.mankier.com/3/cgraph

RobMoSys - D3.2 H2020-ICT-732410

different choices in the data structure layout (but also different choices as units of measurement,
etc.) can co-exist. This implies a set of other technical problems, mostly regarding memory
management and keeping consistency among the dblx containing the same measurement.

To this end, a DSL to annotate each dblx with its semantic information and multiple choices
has been developed. In this DSL, each dblx conforms to a dproto, which is the model of that
specific dblx. This allows to perform automatic data conversion between different data structure
layouts. More details on the role of dproto and dblx can be found in Section 2.4.2 and in the
Annex (Chapter 5).

22

RobMoSys - D3.2 H2020-ICT-732410

2.4 The Model-based Function Composition Framework (MFCF)

RobMoSys promotes a Model-Driven Engineering (MDE) approach in robotics, starting from the
Tier-1 (meta-)models (i.e., the RobMoSys composition structures) and the realisation of software
baselines as development tools conformant to these meta-models. These software baselines aid the
full development cycle of the component-based software of a robotic application: the creation of a
component model (which conforms to the Component-definition meta-model), composing software
elements such as services (cf. service-definition meta-model and communication-pattern meta-
model), the definition of the component lifecycle and its activities, the component deployment,
safety properties and, most important, the concrete functionality implemented within a component.

However, embedding one or more functionalities in a component is still a challenging tasks.
For example, for simple domain-specific cases, the “user-code” embedded in a component can
be generated, but often only partially, leaving to the component supplier the burder of writing
some “glue-code” to connect the generated code to the middleware employed as a backend of
the software baseline. In general, code generation is not an option, due to the heterogeneity of
the domain and the lack of tools. Therefore, embedding functionalities is still an art, with few
generic guidelines (often ditacted by the concrete software baseline), without a methodology or
tool that support the component supplier. Functionalities implemented by a functional developer
are often shipped in libraries, hard to integrate due differences in the API design, the domain,
the programming language, the programming paradigm, etc. The component supplier must find
the most appropriate solution to integrate such diverse libraries, dealing with conversion between
datatypes, memory management and, sometimes, even bindings from one programming language
to another.

Once the component is crafted, the component supplier should provide a documentation for the
system builder. This “datasheet” of the component should contain everything about its interface,
and this is already provided by the concrete component model. However, there is a lack of
formalism to document the implementation of the functionality, especially when the finalization is
manually realised. Moreover, without a formal model of the internals, it is hard to predict certain
non-functional constraints, or to apply new ones. For example, the reaction of the component
upon reception of a new input value at one of its port, should be clear without looking into the
details of the implementation: will another output be available? or will the component wait for
further inputs on other ports before proceeding? By pulling a value on a component’s port, that
value will be a new one, or a cached value? All of these, and more, can be answered only knowing
what the component is actually running internally.

A formal description of the computation will allow the implementation of generic mechanisms
to embed the algorithm into activities in a systematic way, for example, enabling to store the
computational state of the internal algorithm. This is not trivial to be realised without a formal
model of the software implementation, but still it is a valuable in many occasions. For example,
it would be possible to restore the computational state later in the application, e.g. after recovery
from a failure; or to get exactly the same initial conditions to each run of a planning algorithm;
or for testing and debugging purposes of the library/functionality itself in a real scenario.

All the elements presented above are some of the motivations for a formal model and an
implementation mechanism to describe and execute heterogeneous functionalities embedded within
a software component. This section introduces theModel-based Function Composition Framework
(MFCF), a software tool that aids both the function developer and the component supplier on
these challenges; it aims to be the skeleton to which the implementation of functions can be

23

https://robmosys.eu/wiki/modeling:composition-structures:start
https://robmosys.eu/wiki/baseline:start
https://robmosys.eu/wiki/baseline:start
https://robmosys.eu/wiki/modeling:metamodels:component
https://robmosys.eu/wiki/modeling:metamodels:service
https://robmosys.eu/wiki/modeling:metamodels:commpattern
https://robmosys.eu/wiki/modeling:metamodels:commpattern
https://robmosys.eu/wiki/composition:component-activities:start
https://robmosys.eu/wiki/modeling:metamodels:deployment
https://robmosys.eu/wiki/general_principles:ecosystem:roles:system_builder

RobMoSys - D3.2 H2020-ICT-732410

attached, composed and finally shipped within a component.
MFCF proposes a domain-specific language, MFCF-DSL, to describe the composition of a

computational algorithm, and its underlying runtime mechanism for the execution. The main
features are:

• interoperability of heterogeneous implementations, considering a multi-language paradigm;

• a formal language to describe the computational model of an algorithm, with

• explicit computational state and scheduling policies;

• minimality and usability as design principles, without the need to sacrifice . . .

• . . . the completeness of formal modelling of each function and data used in the algorithm,
with particular attention to enrich the concrete implementations with semantics;

• any primitive of the language has its unique id and a reference to its model and meta-model,
enabling composability and high-order level of reasoning about the computational structure;

• ready for both offline workflow (e.g. injecting generated code in a component) and online
workflow, providing high flexibility at runtime;

• a step forward to a formal definition of a “component datasheet”.

Another result of this work is a few guidelines that allows composability between (function)
implementations, sometimes with the cost of do not exploit the full set of features that the
employed programming language provides.

2.4.1 MFCF’s User Workflow
As any other tool, MFCF is designed with a target user in mind: the function developer and the
component supplier . Figure 2.8 depicts the envisioned workflow from the point of view of the
component supplier , when building a new component around existing functionalities, developed
by the function developer . The workflow is presented in a linear form, that is, from the creation
of a stand-alone functionality to its embedded version within a software component, including the
integration of other existing functionalities modelled within the MFCF.

2.4.2 MFCF DSL
This section briefly introduces the MFCF domain specific language (DSL) for functional com-
position. The purpose is not to provide a complete overview of the language, but to illustrate
the main concepts and the features it provides. The language was implemented as an external
DSL, to be compact and not verbose, to increase usability, to be independent from the general
purpose programming language or toolchain employed to implement the runtime. However, it is
possible to serialise a MFCF script/model to another host language, such as JSON or XML. This
feature is foreseen in the development plan, since it allows to share computational models among
software components, enabling technological compatibility with the existing RobMoSys baselines
and dynamic reconfigurability of the deployed functionalities. Since the grammar and syntax of
the language may be subject to major changes, the formalisation of the grammar elements is
not reported. Major changes are possible not only about the syntax, but also to better support
composability, with respect to the current state. Therefore, this document is meant to be purely

24

http://robmosys.eu/wiki/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier
http://robmosys.eu/wiki/general_principles:ecosystem:roles:function_developer

RobMoSys - D3.2 H2020-ICT-732410

0. Start with one or more software libraries, compiled
in a shared form (or create your own).

1. Create a module of your library, creating model
definitions of fproto and dproto.

2. Create new fproto and dproto as a composition
of existing models

3. Add further constraints on previously created models,
thus completing your computational model

4. Instanciate your fblx and dblx, adding (horizontal)
composition constraints on your activity container

Figure 2.8: The envisioned MFCF workflow from the component builder perspective.

informative, and it shows snippets of the language illustrating the expressiveness with respect to
the modelling concepts.

The core primitives of this language, inspired by functional programming, are two:

• function blocks (fblx) and its model called “function block prototype” (fproto): a func-
tion block abstract the concept of a function, independently from its implementation;

• data blocks (dblx): a data block represent a portion of allocated memory, having a specific
data structure represented by its model, i.e. the “data prototype” (dproto).

Function Block (fblx) and Function Block Prototype (fproto)

Conceptually, a function block prototype (fproto) is a model of a pure function, an abstraction of
an implemented functionality with a input/output model, subject to the constraint of being state-
less. The property of having no observable side-effects promotes composability (and re-usability)
of the function, since it enforces the modelling of all function’s dependencies, explicitly. Repro-
ducibility of the result is guaranteed, regardless of the internal implementation of the function.
Additional data dependency constraints can be applied on the arguments of a fproto model, by
imposing causality constraints that can prevent direct read/write access to the data.

A function block (fblx) is a concrete instance of a fproto, to which is possible to impose
further constraints, both between the accessed data and other fblx(s). A fblx can be exe-
cuted/invoked by a runtime, in contrast with the fproto which is the model of the executable
function. The above elements are first class primitives to describe a computational model, where
the constraints assume a primary role in the scheduling execution of each fblx, that is, the order
in which the functions are executed must satisfy the imposed constraints.

In MFCF, a function block prototype is expressed as a model of a function prototype, and
its implementation is provided by an external library. The model reflects and enhances (in some
cases) the information contained in the function declaration, by imposing causality constraints
on the arguments, i.e. whether they are treated as inputs, outputs or both.

25

RobMoSys - D3.2 H2020-ICT-732410

1 fproto frame_compose :: c99 {
2 library = " kdlwrap ",
3 fname = " kdl_frame_compose ",
4 args = {
5 1 <= s_plain_pose ,
6 3 => s_plain_pose ,
7 2 <= s_plain_pose
8 }
9 }

Listing 2.2: An example of a fproto definition for a composition operation between two poses.
The model refers to a function "kdl_frame_compose" embedded in the library "kdlwrap". All
arguments are of type s_plain_pose (which is a reference to a dproto), where arguments 1
and 2 are inputs of the function, argument 3 is output.

Listing 2.2 shows an example of fproto declaration, which may change depending on the
language used to implement the function: to this end, a context is indicated. In this example
the context is c99, indicating the function has been implemented in ANSI C99. The remaining
annotations that define a fproto change depending on the context; for c99 the following are
specified:

• library: indicates the name of the (shared) library in which the implementation of the
function is provided;

• fname: the name, the function symbol used in the function declaration, as its unique
identifier in the indicated library7;

• args: an (unordered) list of argument definitions, each one with (i) an unique, numerical
identifier for the position of the argument in the function prototype; the identifiers are
sequential numbers starting from 1, since the function return value, if any, is identified
with 0, and it must be an output argument; (ii) a model of the datatype, i.e., a data
block prototype (dproto), as explained in the next section; (iii) the constraint on the data
dependency, per argument, that indicates the causality, i.e., the input/output relationship
of the argument. The following syntax determines the role and the type of access of the
argument: “=>” if it is an output of the function, “<=” if it is an input.

In other programming languages, such as C++, other annotations may be necessary, such as the
class name and the namespace of the function (member).

The structure of the fproto declaration describes a property-graph (see Figure 2.9) indicating
the causality constraints between inputs and outputs of the function.

A function prototype fblx is declared in Listing 2.4.2, where fnc1 is the fblx name, an
identifier that uniquely defines the fblx with the current scope. The visibility of the fnc1 symbol
is defined by the scope of the module, which is briefly discussed later in this document.

1 fblx fnc1 :: frame_compose

7 That is, only full function name declaration, or the full mangled symbol from the scope and overload resolution
of a function signature.

26

RobMoSys - D3.2 H2020-ICT-732410

1

2
3

language : "c99"
library : "kdlwrap"
fname : "kdl_frame_compose"

fproto frame_compose

Figure 2.9: Property graph representation of the fproto frame_compose reported in Listing 2.2.

Data Block (dblx) and Data Block Prototype (dproto)

A data block prototype (dproto) is a model that allows to annotate existing datatypes, with the
aim to describe its semantics and its representation choices (mathematical, unit of measurements,
etc). The following snipped is an example of a declaration of a dproto, in the context of geometry
domain:

1 dproto s_plain_position :: geometry {
2 semantic = Position
3 coord = cartesian
4 ddr = :: c99 { double [3] }
5 algebraic = position3
6 dr = {0=0 ,1=1 ,2=2}
7 units = position_units
8 }

As for the fproto, the dproto annotations depends on the specific domain. In the example
above:

• Semantics of the data (semantic): annotation that indicates the semantic value that the
dproto represent, in the context of the geometry domain;

• Digital Data Representation (ddr): the data structure, in-memory, to store the value that
the dproto represents. In the example, it is described considering c99 data structures
definitions;

• Coordinate representation (coord): this is specific of the geometry domain, and it denotes
the choice over the coordinate representation

• Algebraic (algebraic): this represents the reference to the abstract data type that the
dproto is using;

• Data representation (dr): a mapping between the abstract data type (algebraic) and the
digital data representation (ddr);

• Unit of measurements (units): annotation of the units of measurement employed to inter-
pret the numerical values.

27

RobMoSys - D3.2 H2020-ICT-732410

Regardless on the domain, it is important to notice that a dproto declaration is already a
composition of annotations, which are defined in the specific domain. To define a new set of
annotations, the domain keyword is used, establishing a new composition rule that the dproto
must comply to. For example, the following describes the annotations on the geometric domain:

1 domain geometric :: {
2 coord , units , algebraic , dr
3 }

In other terms, the domain expresses the meta-model of a dproto, by means of creating a
reference to the domain with the name of the domain (e.g., geometric), which represents its id.
To be noticed that the annotations semantics and ddr are not specified: this is because these
annotations must be always exist in a dproto declaration.

At M30, the domain has not been implemented yet. This means, a mechanism that fully
exploits the domain description has not been included in the current tools. Therefore, the snipped
above may change in the future, in order to proper define to user-defined domains.

Nevertheless, the dproto declaration as-is already suffice to build dconv, an automatic data
type conversion tool, in the context of the geometry domain. More details on the dproto and
on dconv can be found in the Annex (Chapter 5) of this document.

Finally, a dblx is a concrete instance of a dproto, and it represents the concrete block in
memory. The following snipped declares (and instanciate) a dblx named data (the id of the
dblx), that conforms to the dproto named s_plain_pose.

1 dblx data1 :: s_plain_pose

When interpreted, the MFCF runtime allocates a block of memory of the size of the ddr (digital
data representation) indicated by its dproto.

Composite fblx and closures: a computational model definition

The previous sections introduced fproto and dproto models, as annotations of existing func-
tionalities and data structures, encoded by using different programming languages. On top of
these definitions, it is possible to specify a new fproto as a composition of existing fproto (and
dproto) models.

Listing 2.3 shows a first example of composite fproto, namely fnc_composite:

• fnc_composite requires two dblx as inputs, namely d1 and d2, and one dblx as output,
namely d4;

• the composite function uses two fblx, which as been defined unbinded (lines 4-5). That
is, in their declaration no instance of dblx has been indicated as argument. The binding
with dblx is defined later (lines 6-7).

The internal structure of fnc_composite is illustrated in Figure 2.10 as a property graph. In
details, this graph is a Directed Acyclic Graph (DAG), where data dependencies constraints are
explicit by means of an input/output model, e.g., the dblx d2, output of fblx fnc1, is in turn
input of another fblx (i.e. fnc2). It turns that to compute an output of a composite fblx,
a sequence of computations must be performed. This chain of computations defines the data
dependencies that must be satisfied, a computational pipeline, and the outcome is the schedule
to obtain a new output value.

28

RobMoSys - D3.2 H2020-ICT-732410

Data dependencies are not the only ones that can are applied to this computational model.
For example, it is possible to associate a constraint on a dblx to determine whether the cached
value of an intermediate computation can be reused again. This mechanism is useful in those
cases where not all inputs must be “fresh”, or better, in those cases where data freshness policy
is heterogeneous among dblx. In short, the component supplier (or the configuration of the
component) can decide to perform a chain of computation to obtain an updated output value as
soon as a new input has arrived, regardless from the status of the other inputs.

Moreover, in case a composite fblx produces multiple outputs, it is possible to impose priority
constraints, such that the MFCF executive evaluates first the computational pipeline having higher
priority. This enables different quality of service to different outputs, in case the component
configuration and the cause-effect chain of the application requirements impose that. Actually,
in a large extend, priorites on the computational pipelines conforms to the cause-effect chain
meta-model.

A way to impose those constraints (which are higher-order constraints with respect to data
dependency constraints) is the following:

1 fblx fnc1 :: fproto1
2 fblx fnc2 :: fproto2
3

4 // constraints between fproto
5 fnc1 > fnc2

by indicating to the MFCF executive will take into account that fnc1 must be executed after the
execution of fnc2.

From a composite fproto, a fblx can be instantiated as usual, binding the arugments to dblx
instances (line 16). Instead, Line 19 indicates which functions must be evaluated by a MFCF
interpreter and executive, at runtime. The MFCF execution engine must be called within the
“even loop” of the activity of the software component, as described in Section 2.4.3.

The fproto definition in Listing 2.3 does not impose any constraints on the “type” of the dblx
used as arguments (i.e., the dproto model that the dblx must conform to) . MFCF language
also allows to specify “typed” argument constraints as follows:

1 fproto fnc_composite (d1:: dprotoA , d2:: dprotoB)
2 => {d3:: dprotoB ,d4:: dprotoC } [...]

Finally, fproto allows closures definitions, both on data (dblx) and on functions (fblx); the
symbol “?” allows late bindings:

1 dblx da , db , dc :: dproto1
2 fblx fnc3 :: fnc_composite (?,db) => dc
3 fblx fnc4 :: fnc3(da)
4

5 fnc4 ()

Note that in the example above fnc3 is not executable, since the the arguments of the fblx
model is partially binded to dblx instances, while fnc4 can be evaluated.

Closures on functions (fblx) can be useful to define high-level patterns (or structures), by
defining generic common constraints but without specifying the concrete fproto definition, as
shown in Listing 2.4.2.

29

http://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier

RobMoSys - D3.2 H2020-ICT-732410

1 // fproto definition
2 fproto fnc_composite (d1 ,d3) => d4 ::
3 [
4 fblx fnc1 :: fproto1
5 fblx fnc2 :: fproto2
6 dblx d2 :: dproto3
7 fnc1(d1) => d2
8 fnc2(d2 ,d3) => d4
9]

10

11 // usage
12 dblx da , db :: dproto1
13 dblx dc :: dproto2
14

15 // fnc3 is fblx
16 fblx fnc3 :: fnc_composite (da ,db) => dc
17

18 // evaluate fnc3
19 fnc3 ()

Listing (2.3) Example of a composed fproto and its
usage.

d3

d4

fnc1(d1) => d2

d1

d2
fnc2(d1,d3) => d4

fnc_composite(d1,d3) => d4

(a) Property graph (DAG) that illustrates the
data dependency constraints.

Figure 2.10: A example of composite fproto (on the left), and the graph-based representation
(on the right)

1 dblx da , db , dc :: dproto1
2 fproto fnc_composite <fncA ,fncB >(d1 ,d3) => d4 ::
3 [
4 dblx d2 :: dproto3
5 fncA(d1) => d2
6 fncB(d2 ,d3) => d4
7]
8

9 fblx fnc :: fnc_composite <fnc1 ,fnc2 >(da ,db) => dc
10

11 fnc ()

Listing 2.4: Example of closure on fblx

Modules and Scoping

The MFCF DSL provides two concepts to determine the visibility of block prototypes (fproto
and dproto) and block instances (fblx and dblx), bounding them to a specific scope:

• module: a module is a collection of fproto and dproto declarations, bundled together to
ease their re-use. Once a module is loaded, a namespace is created in the current namespace
(or global namespace otherwise). This creates a hierarchical namespace tree, in which the
prototype definitions are confined, but accessible from any higher namespace. The “global”
namespace refers to the highest level possible in a specific runtime, which is confined within
a software component (deployed as a thread or fully fledged OS/process). As a general

30

RobMoSys - D3.2 H2020-ICT-732410

practise, for any (shared) library used in MFCF a module should be provided, containing
relative fproto and dproto definitions.;

• scoping is a mechanisms to fetch a MFCF primitive. In MFCF syntax, scoping adopts a dot
“.” notation. The term “scoping resolution” refers to the operation of solving the (absolute)
identifier of a MFCF primitive, starting from its (relative) id. Modules are not the only
ones that define a scope, but also fproto definitions do. Referencing by scoping allows
to expose to the outside (with respect to the scope definition) a dblx (or a fblx), thus
creating a new closure. For example, it is possible to refer to the dblx “d2” in Listing 2.3
and associate it to another dblx defined in an higher scope (upvalue):

1 dblx da :: dproto1
2 fnc_composite .d2 = da

Conformity to Block-Port-Connector
The definition of a fproto reported above is expressed by means of a usable DSL, that is, a

language that capture the expressivity in a compact form, aimed to be convenient to the “user”,
i.e., the Function Developer. However, the definition of a fproto conforms to the Block-Port-
Connector (BPC) meta-model. From the structural point of view, instantiate a fblx means: (i) to
create a block (instance) (ii) having a number of ports equivalent to the number of arguments
expressed in its fproto; (iii) such a block conforms to both BPC meta-model and to the fproto
model (meta-model identifier, mid), (iv) while it has an unique id, allowing further references
to this block. In the concrete MFCF realisation, the id is string-based (the name of the fblx),
unique within the specified module (the scope), while the reference to the fproto is preserved
(thus implementing reflection as a property of the language). A graphical representation of a
fblx is shown in Figure 2.11.

id: fnc1
mid: compose

id:1

id:2

id:3

Figure 2.11: A graphical BPC representation of a fblx (structural-only), relative to
fnc1::frame_compose, with frame_compose being fproto defined in Listing 2.2.

Moreover, in the proposed DSL, a fproto declaration adds two constraints:

• restrictions on the port connection, the “datatype” (i.e, dproto) that the fblx accepts
through that port. In the BPC model, this is a property attached to the port element;

• Causality, i.e., data access constraints on the data (input/output). In the BPC model, this is
a property of the connector that models the relationship between the fblx and the dblx.
However, this is expressed in the fproto declaration, as a constraint that is expressed in
the proposed DSL.

Discussion on MFCF design

This section resumes few design decisions, their rationale and limitations of the current MFCF
solution. The status of the framework (DSL and runtime implementation) is in alpha version, so

31

https://robmosys.eu/wiki/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki/modeling:principles:block-port-connector
https://robmosys.eu/wiki/modeling:principles:block-port-connector

RobMoSys - D3.2 H2020-ICT-732410

improvements with respect to the current status are expected. Furthemore, there are few minor
discrepancies between the modelling and the reference implementation: some are unavoidable,
arbitrary design choices that must be considered as “implementation details”; others are merely
related to the level of maturity of the tool, and the implementation “shortcuts” needed to release
a first viable product. In both cases, any of these discrepancies influences in any way the general
approach.

• Usability first. The main drivers of the MFCF DSL are usabilty and minimality. For
example, unique ids for fblx and dblx are scoped user-defined names, instead of being
Universally Unique Identifiers (uuid) or a proper Uniform Resource Identifier (URI). However,
it is also possible to serialise MFCF models described with MFCF DSL to other hosting
formats that aim to completeness.

• No data hiding by design because it prevents composability. This is unvoidable, since
everything that is hidden cannot be referred to, nor it is possible to add constraints on
those elements. Instead, the more the functionality is exposed, providing its full set of
configuration options, the more is possible to compose imposing

• explicit causality is another design driver, in particular regarding the data dependencies
imposed with a clear input/output model. This is necessary for better functional compos-
ability, but also for a better interface with the component model. This is done by exposing
the “internals” of a software component by means of the input/output data that the algo-
rithm is using. Policies and configuration regarding the data freshness are also related to
the cause-effect chain metamodel;

• Inspired by functional-programming. The design of the MFCF is strongly inspired by
functional-programming, with a clear input/output data dependency model. The fproto
models allows to “elevate” to pure functional models implementations that are not purely
functional, such as implementation of functions that follow object-oriented paradigm. Data
protection can be implemented by adding explicit constrants on the model, for example,
defining data access constraints on top of data provenance setting. The advantage is that
those constraints can be modified during the runtime, instead of being statically defined at
design time/compilation time. This is further elaborated in Section 3.1.

• the current implementation supports the inclusion of functionalities implemented in Lua
and C programming languages. Support to C++ is limited for the moment, and embedding
header-based libraries, or libraries that makes strong use of meta-programming features
(templates, auto-traits, etc.) is not trivial. At the moment, it is possible to declare C++
based fproto, introducing the concepts of class, namespace and accessors (getter and
setters). Depending on each single case, it is possible that the C++ objects must be
wrapped in a ANSI-C99 compliant form. Support of other scripting languages, such as
Python and Julia, has been proven of being technically possible, but no efforts have been
allocated to this at the moment. Another interesting language to support is Rust.

2.4.3 Links between computational model and component model
One of the purposes of the MFCF DSL is to specify a computational model to represent the
internals of a software component, allowing to embed functionalities developed by the function
developer , but how exactly? How to combine a computational model with a component model?

32

https://robmosys.eu/wiki/modeling:metamodels:performance
http://robmosys.eu/wiki/general_principles:ecosystem:roles:function_developer
http://robmosys.eu/wiki/general_principles:ecosystem:roles:function_developer

RobMoSys - D3.2 H2020-ICT-732410

The RobMoSys component model is one of the RobMoSys composition structures that defines:
• an interface to interact with other software components, by means of service definitions
(horizontal composition);

• models to define activities, execution containers, and to handle hardware resources (vertical
composition);

• models (and relative mechanisms) to coordinate all the above, from the “outside” (e.g. a
coordinator or “master” a component), by means of operational models defined within a
component life-cycle.

A MFCF model is meant to be deployed in one or more activities: each time that the boundaries
of an activity is crossed, a third model that defines the interaction between the activity model
and the MFCM model must exist. Considering the case of a single activity in a single execution
container, a MFCF runtime8 should be embedded in that activity, being part of the activity main
“event loop” (see Deliverable D3.3). Therefore, the points of interactions between the activity
model and the computational model are:

• input and output data that is shared between the activity and the MFCF model. Each data
incoming (or outgoing) to (from) the activity from (to) the service (and later, shared with
other components) must be related to a dblx input/output of the computational model.
To implement this, the MFCF DSL introduces a keyword external, to define that a dblx
is not handled directly by the MFCF runtime, but from “the outside”:

1 external dblx datain :: dblx_model

This means that is the component owns the data: it is in the component model that defines
the data model (by means of a communication object model), and the memory management
of that block of data is delegated to the component’s implementation. Obviously, there is
a need of a third DSL that configures MFCF DSL and the target DSL that describes the
component model (e.g., the SmartMDSD component-model DSL, or the DSL adopted by
Papyrus4Robotics);

• configuration: services in a component are configured within a certain policy, e.g., if
a data is sent sporadically or periodically. Real-time constraints can be imposed to this
service policies, to reduce the latency in critical components. These constraints should
be reflected in the MFCF model, as a configuration of the scheduler policy, e.g., giving
priority of computing the most critical output. Other type of policies regards data freshness,
implementing what has been discussed in Section 2.2. This aims to the configuration and
validation of non-functional properties of component-based architectures, as the cause-
effect chain, to the component’s internals, without the need for the component supplier to
manual programming.

At M30, a proof-of-concept of the mechanism that allows to embed a MFCF engine within an
activity of a RobMoSys baseline (namely SmartMDSD) has been implemented. However, a third
model that links the specific component-model DSL adopted by SmartMDSD and a MFCF model
has not yet formalised. This activity is foreseen in M30-M40. In order to prove the benefits of
the proposed MFCF framework, the same will be realised using Papyrus4Robotics baseline. In this
way, it is expected that porting an algorithm from a RobMoSys baseline and another is trivial.

8MFCF runtime refers to the executive engine that interpret and perform the computing of a MFCF model

33

https://robmosys.eu/wiki/modeling:metamodels:component
https://robmosys.eu/wiki/modeling:composition-structures:start
https://robmosys.eu/wiki/modeling:metamodels:service
http://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier

RobMoSys - D3.2 H2020-ICT-732410

2.5 Horizontal Composition: data-conversion tool
To fully implement horizontal composition, there is the need to convert a dblx to a Commu-
nication Object (and viceversa). To this end, dproto annotations suffice to create automatic
data-conversion tools. This is further explained in the Annex, Chapter 5.

2.6 Integrated Technical Projects (2nd wave call)
The 2nd open call of RobMoSys ITP included contributions to functional composition topic in
instrument #2, for which at least 1 ITP project is expected to be approved. Therefore, further
contributions and results are expected to be obtained from the RobMoSys community, and not by
the sole RobMoSys core consortium. Depending on the approved ITP, the RobMoSys consortium
will work in strong collaboration with the ITP partners, by coaching them regarding the princi-
ples described in this section. Moreover, interoperability (o complementarity) with the proposed
MFCF and the tool developed by the ITP will be investigated. This will allows to strengthen the
RobMoSys ecosystem and its adoption.

34

3. Motion, Perception and World Model
Stacks
This Chapter shows how models and concepts described in deliverable D3.3 are applied to create
software and tools, as basic building blocks for the integration of motion control, perception
and world modeling, for any robotic application. In this context, the term “stack” represents the
(often huge) set of functionalities that are relevant in a particular domain; for the robotics domain,
the world model takes the central role, between “task”, “control” and “perception”. The stack
design can exploit the well-known duality between control and perception: the former links the
world model to the actuators, the latter links the world model with the sensors. Nevertheless,
those stacks are closely-coupled, in the same way as function, data and control flow are, that is the
realisation of an application is not possible considering only one “stack”. The logical separation in
“stacks” only helps as a gentle introduction, and decouple the large number of proposed challenges.

These tools are designed and realised on top of the principles and implementation mechanisms
already described in Chapter 2, which realisation was not possible without the continuous formal
modeling efforts that started with the deliverable D3.1 and now updated with deliverable D3.3.
In particular, the property graph concepts and its reference implementation plays a fundamental
role in all “stacks”. Special care and efforts have been given to the design of the world model
stack, with many discussions among the RobMoSys consortium, including industrial partners to
fully support the Pilot cases. Chapter 4 summarises some collected requirements. As a remark,
the tools described in this sections are developed internally by the RobMoSys consortium, and this
document presents their design and the status of their reference implementation at M30. However,
these tools are not the only ones representing the set of facilities of the RobMoSys ecosystem. In
fact, another set is provided by ITP results (1st call), and it will continue with the second wave
of ITP projects. The software here described is planned to be used within the context of the Pilot
scenarios and 2nd call ITP projects, depending on the resulting approved projects.

35

RobMoSys - D3.2 H2020-ICT-732410

3.1 World Model Stack
The world model modelling serves multiple purposes, the major three being:

• formal representation of meaning (Sec. 3.1.1): it represents the knowledge that one has
about how all data about representations of the world should be interpreted in a consistent
way, and, similarly, how to make sure that updates in concrete world model data structures
are always done consistently?

• explicit model of abstract data type (Sec. 3.1.2): to describe which concrete data structures
to use in a concrete programming language.

• loose coupling between perception, task and control (Sec. 3.1.3): all these parts in any
robotics system must share information about the world, at runtime, and that observation
gives world modelling a central place in every robot’s software system design.

Geometry is the most important common foundation of all task aspects in a robotic system.
Hence, geometry gets a priority treatment, in this document and in the model and software
development. A major outcome of the work realised until now is a meta model for geometry to
serve many complementary representation purposes:

• maps: where in the world are which “features”?

• kinematic chains: how are motors, links and joints connected together in the body of a
robot? Where are sensors and tools attached to that body?

• sensor information: camera images, laser scans, tactile and force sensors, all have the
same limited set of geometric primitives in the models that represent the relations between
the “state” of the robot in its environment, and the “data” that is produced by the sensors.

• control information: the same geometric primitives are a core part of the specification of
where the robot should move to, and what are the distance constraints it has to comply
with,

• plan transitions: many conditions that the robot’s plan requires to be monitored make use
of geometrically specified areas.

Geometrical information is not always numerical and/or directly observable. Many geometric
relations are qualitative (and hence purely symbolical), such as:

• the robot is in front of the table.
• move towards the door until it is within arm reach.
• hand over the bottle from right to left hand.
• there are two cars in front of this car.
• move to your left.

Each of these qualitative expressions requires “higher-order reasoning” to ground them in relations
that can be quantified, for perception, control of monitoring. A major objective of RobMoSys is
to encode a relevant and sufficiently rich set of such qualitative relations, and the relations that
allow to ground them.

A world model contains a lot more information than just the geometry for the maps. This
Section describes two of them, with very generic “platform centric” importance: provenance and
data freshness.

36

RobMoSys - D3.2 H2020-ICT-732410

3.1.1 World Model knowledge as a property-graph
A world model is the set of knowledge on top of which a robotic system reasons, reacts and
elaborates a control action to perform the desired tasks. The collection of a world model descrip-
tion includes perception inputs and their post-processed data, the state of world object instances,
that is, the objects in the environment in which the robotic system operates, and more. A world
model shows up in any robotics application, independently from the complexity of the task. For
this reason, the world model is considered a basic building block, a skeleton on which the robotic
solution is developed on.

Each element represented in a world model is an instance of an entity or relation which conforms
to a specific model. The set of these models define an ontology, which is defined within the context
of the application. Actually, such an ontology is a composition of taxonomies originated from
different domains. The most common domain is the geometric one, the spatial representation of
objects as a geometric abstraction and the geometric relations between those objects that conform
a geometric chain. A world model includes the robot model (see Section 3.2.1), i.e. the description
of the robotic system possibly involving multiple domains (kinematics, dynamics, actuators, robot
capabilities, etc.), and all of this extra knowledge is anchored to geometrical entities anytime.
The description of the environment and the robot, together, allows the instiantiation of a task
specification, where “actors” and the subject of the action are well-identified. Finally, there are
other domains of interest, but those are quite application dependent. For example, it is hard to
generalise the properties that describe an object in the environment:

• physical properties can be generalised, but there are several assumptions on the representa-
tion choices of those properties, and whether they are invariant or not during the duration
of an application. For example, shape or color can be considered invariant properties of
an object, if they are assumed to be features of the object itself. In other cases the same
properties are attributes: they can change during the application.

• non-physical properties are also application dependent. For example, it is possible to describe
objects depending on their function or utility. However, the same object can be employed
for different usages in different applications.

Besides, other properties of the world model can refer to non-functional parts of the application,
such as those models and meta-models that describe the software of the application itself (or its
configuration).

Therefore, composability is a mandatory requirement for a world model, such that properties
and descriptions that makes sense only in one domain can be merged, stored and linked with
other properties belonging on different domains. This composability can show up at design time,
but also at runtime of the application, for example, if a new object instance enters into the
environment, and the robotic system is capable of generating a model of it from observations. To
support composability, the modelling tool chosen to create a world model is the property graph,
as discussed in Section 2.3.

As a illustrative example, let us consider an simple scenario shown in Figure 3.1. In this
application, a manipulator has the task to grasp a hose adaptor which is located on the workbench.
To locate the hose adaptor, the robotic solution makes use of a camera that provides the pose of
the hose with respect to the camera’s reference frame. Figure 3.1 highlights the frames involved
in this world model description.

Figure 3.2 is a possible property-graph representation of the world model described in Figure 3.1.
Recalling the running example in Section 2.3, frames (F1, F2, . . .) are represented as nodes, as

37

RobMoSys - D3.2 H2020-ICT-732410

camera

hose
adaptor

workbench

Figure 3.1: A simple “scene” of a robotic application. The scene contains: a camera, a robotic
arm, an object subject of the task and a workbench. In the figure, frames attached to each world
model elements and their geometric relations (i.e. relative poses) are indicated.

well as the geometric relations of type Pose. For each Pose, a relative measurement node is
indicated, linking the “value” (“data block” (dblx) node) hosting the measurement. Moreover,
the “provenance” and the “life-cycle” of the measurement is explicly defined: the former indicates
the origin of the measurement (e.g., a configuration, input from a component, etc); the latter
indicates for “how long” the current value of the measurement is valid. Further details about the
concept of provenance and life-cycle are described in the following paragraphs.

To complete the scene of Figure 3.1, each world model object (such as the workbench, the
hose_adaptor and the camera device) is attached (i.e. attached_to relation) to one of the
frames previously indicated. Thus, the pose of the camera object with respect to the workbench
is determined by the pose measurement of F2 with respect to F1. In short, the world model
representation in the form of the property graph of Figure 3.2 already separates the geometric
domain, the measurements and a symbolic level of abstraction of object identifiers. In turn,
the nodes that represent the symbolic abstraction of object instances in the world model can be
used to express other kinds of relation, such as the qualitative spatial-topological relation that
the “hose_adaptor is_on the workbench”, or that the “robot_endeffector is_above the
workbench”.

To conclude, a graph-based representation of the world model is not limited to host instances
of world model objects, but also their models. Even if instances and models are two different
(sub-)graphs, they can be hosted together by means of the relation instance_of, which can
be represented by a simple edge in the graph. Figure 3.3 shows a concrete example regard-
ing the model that describes objects of type hose_adaptors. In the example, the node that
represents an instance of the hose_adaptor (see Fig. 3.1) has a model ID (mid) linking to
hose_adaptor_model; the latter is also represented in the property graph as a node. The role
of the hose_adaptor_model node is, obviously, to host the description of such a model, and all
instances of such model must conform to it. In fact, this model defines the properties of “hoses”:
color, shape and other physical properties; the role of an hose in an assembly task, etc. In short,

38

RobMoSys - D3.2 H2020-ICT-732410

camera
device

static
config

Pose(F1,F0)

of

with_respect_to

Measurement

frame frameframeframe

Pose(F2,F3)Pose(F3,F0)

camera
hose

adaptor
workbench

Measurement

Measurement

Pose(F1,F0)

(dblx)

Pose(F3,F0)

(dblx)

Pose(F2,F3)

(dblx)

with_respect_to
with_respect_to

of

of

measured-bymeasured-bymeasured-by

attached_toattached_toattached_to

on

value value value

provenance

provenance
life-cycle

time
dependent

static

life-cycle

provenance

life-cycle

Color
(dblx)

mid examples:
RGB, CMYK, etc

Measurement

Measurement

color

Shape
(dblx)

shape

eg, cylinder eg, cylinder
dimensions

scene
origin

attached_to

Figure 3.2: A possible property graph representation of the application illustrated in Figure 3.1. For
the sake of clarity, this representation is simplified and many properties and relations are omitted.
Nevertheless, it should be clear that there are many examples of “higher-order modelling”, that
is, the relations have certain dependencies that structure them in “hierarchies”. For example,
measurement data does not make sense if it is not related to models of what is being measured.

a graph-based world model can also host ontologies, each one for a different domain, to which
world model object instances conform to.

3.1.2 World Model Runtime

The term world model runtime refers to the software tools and implementation responsible to
instantiate, store, elaborate, share and distribute world model-related information among other
software components.

Any robotic application needs and implements a world model mechanism, implicitly or ex-
plicitly, to handle runtime information about the world model. An example of a popular world
model runtime is the ROS-TF library [7], which provides an infrastructure to distribute numerical
measurements of spatial relations in form of transform frames. The ROS-TF is based on ROS
publish/subscribe communication mechanism: any ROS node can publish on a specific topic (i.e.,
tf) and any ROS node can subscribe to it. The final responsibility of reconstructing the transform
frames graph is up to each consumer node: the hosted code in the consumer node can “query” the
local graph for computing relative poses. This allows to distribute transform frames, regardless of
the nature of the reference frames, which can be attached to objects, a link of a kinematic chain,
etc. In practice, this tool is handy for fast prototyping, and the design has been improved by
partial separation between the communication and the computation needed to answer to queries.

39

RobMoSys - D3.2 H2020-ICT-732410

hose
adaptor
instance

hose
adaptor
model

describes
hose adaptor mid
eg, has properties: color (type <color>)
 shape (type <shape>)
 ...

instance_of

"id" : ...
"mid": "hose_adaptor_model"
"mmid" : ...

Figure 3.3: An example of a property graph representation of both instance and model. This
particular relation refers to the example of Fig. 3.2

However, this tool has several limitations to truly support the role of a world model runtime; just
to mention a few:

• there are multiple assumptions in the numerical choice to represent the transform frame:
digital data representation, mathematical choice, etc. The consumer node may rely on
different choices, so manual (thus unvalidated) conversion must be developed (also called
“glue-code”).

• the library supports only the distribution of numerical transformations, without symbolic
reference to the relation between frames and their measurements, or to any other symbolic
information that is needed to explain the role of these frames in the application.

• frames are only a small subset of the geometric primitives that are relevant and necessary
in robotics applications; for example, vectors or polygons.

• the ROS-TF library supports only trees, with no loops.

• other world model information is not considered, and can not be refered to.

• each consumer of TF information needs to reconstruct the full tree; this lead to an unnec-
essary computational overhead.

• data consistency cannot be checked (let alone guaranteed), as well as other non-functional
properties (e.g., latencies, freshness, tolerances). This prevents the usage of the library
under deterministic requirements, e.g., to realise a control loop or to base safety-related
decisions on.

• every node can publish a transform frame, anytime. On one hand, this allows high flexibility
at runtime, ideal for fast-prototyping. On the other hand, this approach is error-prone: there

40

RobMoSys - D3.2 H2020-ICT-732410

is no control or access policy to the data, so it is easy to pollute the transform frame tree,
including naming clashing situations.

Another popular tool is MoveIt! [5]. MoveIt! makes use of ROS-TF library, but adds more
concepts, such as a scene graph, which includes a robot model and some primitives to handle the
gripper status (e.g., to establish constant relations between an object frame and an end-effector
frame, in case that the end-effector is grasping an object). However, the implementation of these
features are driven by the “needs” of the MoveIt! tool, and there is no generic modelling effort or
mechanism to support the composition and integration of other entities and their properties that
populate the environment.

A runtime to support world model data is already subject of scientific investigations (cf [3, 11]),
and a major scientific topic in many European funded projects, such as RoboEarth [17] and
Sherpa [16], just to mention a few.

The ambition of the RobMoSys project regarding the world model runtime is:
• to propose models and meta models to describe world model entities, but also to develop
an information architecture and a component-based architecture;

• to develop a design of a world model runtime that overcome to the limitations indicated in
this section, both on functional and non-functional level;

• and to provide a reference implementation of a world model runtime, suitable in a component-
based architecture.

The reference implementation, currently under development, will show the expected benefits in
the context of the Pilot cases. Moreover, a world model runtime should be able to perform
computation over world model data, that is, pre- and post-data processing. This capability enables
the execution of complex queries on the world model data, and non-functional operations such as
automatic data conversion from one numerical value representation to another.

As discussed in the previous section, a world model runtime can be implemented on top of
a property graph framework, whether it is an existing NoSQL, graph-based database (such as
graphQL1, Neo4j2 and TinkerPop3), or based on the the property graph in-memory reference
implementation described in Section 2.3. In principle, a “world model component” can embed a
graph-based database, and its component model will add RobMoSys compliance to the databases
software, enabling (horizontal) composition with other software components. However, there is no
modern NoSQL graph-based database that suits the requirements of multi-robot system solutions
[12, 2], at least when it comes to realtime and low-latency requirements.In fact, those databases
are designed for large, permanent datasets in the context of enterprises and web technologies, while
a world model runtime requires a minimal footprint in terms of memory and computational power,
to be used closely with motion and perception algorithms, and not only as knowledge-systems.
Besides, it is not trivial to embed these existing databases within a software component with
the current RobMoSys software baseline, due to technological incompatibilities (e.g., different
programming language target of the component implementation, etc). Therefore, the role of
commonly available databases is relegated to store large knowledge-systems, log information,
and so on, but not they are not available to be embedded into motion and perception stacks.
Some databases do have a “realtime” in-memory core, such as RethinkDB, but that core can
not be re-used as a stand-alone library in other software systems. The RobMoSys development
does reuse many of the “best practices” that these databases rely on too. For example, single

1graphQL, <https://graphql.org>
2Neo4j, <https://neo4j.com>
3Apache TinkerPop, <http://tinkerpop.apache.org>

41

https://graphql.org/
https://neo4j.com/
http://tinkerpop.apache.org/

RobMoSys - D3.2 H2020-ICT-732410

producer-consumer streams to provide immutable data; possibility to store “callback” functions
in the database with user-configurable triggers for their execution; “cursors” to improve iterative
requests for the same type of data.

Conversely, the amount of data that a robotic world model runtime must handle is relatively
limited, and strong realtime and low-latency requirements apply. There are some robotics use
cases, though, such as teaching by demonstration or learning, that do not have the same realtime
performance expectations, so the “learning” could take place via the mentioned existing databases.

Also the number and the meaning of queries that the world model runtime must support are
limited and well-defined, that is, the query answering can be hardcoded by domain experts (e.g.,
geometric domain, robot kinematics, scene description, task specification, etc.).

Finally, there are other non-functional properties that are relevant for a runtime of a world
model implemented as software component, and those non-functional properties introduce further
benefits in the RobMoSys approach. It follows a brief discussion on two of them: data provenance
and relations life-cycle.

Data Provenance

The main purpose of the data provenance concept is to indicate which software components
are responsible to provide which data, being the components producers of (a part of) the world
model information4. The knowledge about provenance is an enabler of important benefits in a
component-based system architecture:

• logs and debug: preserving data provenance information in logs allows to better track the
source of faulty measurements;

• reflexion: the application itself can reason about the source of the data, and implement
specific policies possibly related to the Quality of Service; for example, in a given context,
data coming from component A can be “preferred” or “trusted” more over data from B.

• data access rights: a configuration based on data provenance allows to model the role of
each software component regarding world model information.

Since world model data is shared among multiple software components, the latter benefit is very
relevant in the design of a component-based software architecture. This enables to define data
access constraints, for example, by indicating at configuration time which components are allowed
to provide: i) a measurement update, (e.g., updating a Pose measurement), ii) a change over a
symbolic relation (e.g. setting an edge in the property graph to model the physical constraint of
an object grasped by the end-effector), iii) or the modification to the object model itself (e.g.,
adding a new property, a new node in the property graph, etc). Since world model data can be
cached locally in a software component, data access constraints related to provenance can apply
globally, to the whole component-based architecture or locally to a single software component.

To conclude, the data provenance is yet another important and necessary meta-model proposed
in the RobMoSys approach. Data provenance can be used to configure data access constraints,
as a configuration of the system architecture. A brief example, together with the life-cycle of
relations, is illustrated in Sec. 3.1.3.

4The concept of data provenance is not limited to world model information, but to all data shared between
software components. However, data provenance impacts the world model capabilities significantly.

42

RobMoSys - D3.2 H2020-ICT-732410

Relations life-cycle

Object instances in the world model, represented in a property graph by means of entities and
relations, may have an additional life-cycle property. In general, the definition of life-cycle depends
on the domain of the stored knowledge. In the context of the world model, this concept can be
concretely defined. As an example, let us consider geometric entities and relations, such as a
(relative) Pose between two frames, which are possibly associated to object instances in the
world model. The initial measurement of the Pose can be known a priori, and updated by
perception components at runtime. In other cases, the relation measurement is invariant, for
example the measurement of the Pose between two non-moving objects in a flexible assembly
cell, like the workbench and the manipulator base.

This invariant measurement assumption may also be temporary with respect to the runtime
of the application, e.g., the Pose measurement between an object and an end-effector can be
assumed of being constant while the end-effector is grasping the object. Moreover, there is no
need to receive the update of a measurement from a perception component, if that measurement
can be predicted by a motion model known a priori, e.g., an object placed on a conveyor belt. The
above can be generalised to other type of measurements (e.g., the color property of an object)
and it is not limited to measurements, but can be applied to symbolic relations as well.

The knowledge about the life-cycle of a relation can be exploited in many ways in a robotic
application, with a specific impact on the configuration of its component-based architecture,
especially if combined with data provenance. For example, if a software component receives a
measurement which is known to be invariant during the overall application, the component can
store this measurement internally, without querying for it again in a later phase. To a large
extent, caching a measurement or any other relation from the world model really means that the
component is building another local, partial, world model.

Therefore, the role of relation life-cycle is even more relevant: it allows to establish when an
information cached locally needs to be updated.

As a consequence, if the life-cycle of a relation is provided, it must be attached to the inquired
world model data (symbolic relation, property or measurement). The following is an enumerative
list of the life-cycle types modelled so far:

• static (or constant): the shared data (world model relation, measurement, etc) is consid-
ered invariant within certain defined conditions, e.g., until a certain event occurs, or for the
overall duration of the application.

• time-dependent: the shared data (world model relation, measurement, etc) is valid only
for a well-defined time-interval. For example, a measurement can be considered valid only
within a duration starting from the instant when the measurement was performed (e.g.,
time-out, see data freshness).

• prediction: when the evolution of an object property (physical or non-physical) is known,
and its measurement can be predicted. Some examples are: if the motion model of an
object is known, future measurements (i.e. measurements of its Pose, Twist, etc) can be
computed, without the need of perception; the measurement of a color as property of a
fruit can be predicted over the time if a deteriorating model exists, etc. Less intuitively, the
same applies to symbolic relations, such as the relation of an object with respect to others
as expected outcome of a specific robot action. Some examples are: the topological relation
between objects after an assembly task; the mereological relation between an object and its
container after a pick&place task, etc.

43

RobMoSys - D3.2 H2020-ICT-732410

The knowledge about the life-cycle can be exploited in multiple ways, depending on the life-cycle
type and the degree of adaptability of each single software component implementation:

• static (or constant): when a component requester inquiries about world model data5, the
component that provides that data (i.e., the provider) can ship the life-cycle information
together with the requested data. If so, the requester can cache this data without inquire
for the same information again, thus avoiding any processing overhead6. Moreover, static
relations (and their measurements) known at deployment time can be used to initialise the
requester component, by means of its configuration (component parameters).

• time-dependent: relations and measurements with a time-dependent life-cycle allows the
requester to evaluate the freshness of the obtained data. For example, a timestamp
can be attached to the data, and the requester evaluates whether to inquire for a new
measurement (or to wait for a new update if the cached data is too old – depending on the
communication pattern employed). As an alternative policy, the data provider component
can provide, together with a timestamp, an expiration-date of the data, suggesting
when the data is no longer valid for computation.

• prediction: this enables the requester component to inquiry prediction on object’s prop-
erties in different conditions than the current one, e.g. further in time. Moreover, instead
of inquiring for the measurement directly, the requester can request the prediction model
itself (formally, or in its executable form). This enables a form of functional delegation: the
requester can embed and execute the prediction by itself, executing a foreign function
locally (i.e., in the computational resources handled by the requester component). The
latter mechanism can be used for real-time control: the prediction functionalities are em-
bedded and executed directly in the requester component, avoiding any communication
overhead.

Finally, life-cycle knowledge can be specified in the initial configuration of the world model
runtime: the configuration describes the initial state of the scene, defining all the entities, relations
and their initial measurements. An advanced deployment tool can also make use this configuration,
e.g., by initialising the components with initial measurements provided with the configuration, if
that is supported by the implementation of the target components. Life-cycle knowledge can
be exploited to validate data provenance settings, e.g., defining which measurements can be
updated at runtime. For example, if a measurement is invariant during the overall duration of an
application, and a component declares to update that measurement, then there is a conflict in
the configuration model.

To conclude, relations life-cycle knowledge, combined with data provenance information, enable
non-functional benefits when it comes to compose and distribute world model data among software
components.

44

https://robmosys.eu/wiki/modeling:metamodels:commpattern

RobMoSys - D3.2 H2020-ICT-732410

camera

hose
adaptor

workbench

robot_base

ee_base

Figure 3.4: A “scene” from a robotic pick & place application. Revised from Figure 3.1.

3.1.3 World Model as a configuration of the information architecture

In this Section, the example of Figure 3.1 is extended (see Figure 3.4) to illustrate an example
about how the world model can be used, together with the concepts of data provenance and
life-cycle of relations, to define the information architecture of the robotic application.

For the sake of clarity, it is important to denote the difference between an information archi-
tecture and the component-based software architecture of an application. The former regards the
design of the information flow, considering the semantics of the data, at a more abstract level. The
latter is a refined version of a information architecture, where concrete choices have been made
regarding the component models and related aspects, such as the communication object models
and the service definitions. To a large extent, a component-based software architecture is a more
concrete implementation of an information architecture, and of course multiple component-based
architectures can implement the same information architecture.

The example of Figure 3.4 considers the manipulator and two new frames, F4 and F5, attached
to the robot_base and to the end_effector. The robotic solution allows to perform pick&place
operations, and in this example the picking phase is considered. Figure 3.5 illustrates the updated
version of the world model representation as a property graph. The current task is also repre-
sented in the property graph7, by a node picking that establishes a relation between the nodes
hose_adaptor and the end_effector: a controller must compute the control action such that
the relative pose between the two is minimised to perform the grasping action.

The relative pose between the end-effector and the robot base is modelled as well, and its
measure is provided by the robot controller. This holds only under the assumption that the robot
controller provides that measurement, by implementing internally a forward kinematic algorithm.

5 this is valid also for any components sharing data, not only for world model data.
6 In many applications based on ROS-TF, static transformations are distributed continuously (at a fixed rate)

by means of “static_transform” nodes. This solution requires (i) extra processes (nodes), (ii) pollution on tf topic
and (iii) computation overhead at the consumer side (subscribers to tf topic). Applying life-cycle knowledge on
distributed transformations allows to avoid this runtime overhead.

7 For the sake of brevity, in this example the task representation is rather simplistic.

45

RobMoSys - D3.2 H2020-ICT-732410

camera
device

static
config

Pose(F1,F0)

of

with_respect_to

Measurement

frame frameframeframe

Pose(F2,F3)Pose(F3,F0)

camera
hose

adaptor
workbench

Measurement

Measurement

Pose(F1,F0)

(dblx)

Pose(F3,F0)

(dblx)

Pose(F2,F3)

(dblx)

with_respect_to
with_respect_to

of

of

measured-bymeasured-bymeasured-by

attached_toattached_toattached_to

on

value value value

provenance

provenance life-cycle
time

dependent

static

life-cycle

provenance

life-cycle

scene
origin

attached_to

frameframe

Pose(F5,F4)

robot
base

end
efffector

attached_to
attached_to

Measurement

Pose(F2,F5)

of
with_respect_to

Pose(F4,F0)

Measurement

task
controller

time
dependentlife-cycle

used-by

robot
controller

time
dependent

life-cycle

provenance

of

with_respect_to

measured-by

query result

task:
pick

using

what

Figure 3.5: World model representation as a property graph. This is an extension of Figure 3.2,
with the notion of task and other elements to perform the picking action.

This is a first point of variation of the information architecture. Figure 3.6 illustrates an alternative
representation, where the world model runtime is responsible to perform the forward kinematics.
In this alternative, a node forward kinematic represents the computational function that must
be executed, its configuration (i.e., reference to a robot model, also in the property graph) and
its input (i.e., the joint positions measurements coming from the robot controller).

In order to perform the approaching phase of the picking action, the relative pose Pose(F2, F5)
must be computed, stored and served to the task controller. In this example, the assumption
that the world model runtime is capable of computing queries on geometric chains is taken. This
means the world model runtime is providing that functionality, embedding an algorithm on top
of the property graph mechanisms. Moreover, it is possible to extract only the list of symbolic
operations to perform the computation of the transformation, thus delegating the numerical com-
putation only (but not the resolution of the geometric path). If this assumption does not hold, the
computation must be delegated to external components, and the measurements of Pose(F2, F5)
is provided as input of the algorithm.

From the world model information related to the information architecture, and the Table 3.1
that resumes the provenance and life-cycle of measurements relations, it is possible to determine
the requirements and the configuration that the component-based solution must comply:

46

RobMoSys - D3.2 H2020-ICT-732410

frame

Pose(F5,F4)

forward
kinematic

robot model input

of

computed-by

with_respect_to

frame

joint
pos

robot
controller

provenance

Measurement
measured-by

Figure 3.6: An alternative property graph representation for computing the measurement of
Pose(F5, F4). In this alternative, a node explicitly represents the computation (forward
kinematic), using measurements of joint positions as inputs. For the sake of clarity, details
regarding the robot model and other information are omitted.

Table 3.1: Life-cycle and provenance attributes for the measurement nodes in Figure 3.5.

measurement of life-cycle provenance
Pose(F1, F0) static configuration
Pose(F3, F0) static configuration
Pose(F4, F0) static configuration
Pose(F2, F3) time-dependent camera-device
Pose(F5, F4) time-dependent robot controller

• a camera component, that provides the measurement of Pose(F2, F3)

• a robot controller component, that provides the measurements of Pose(F5, F4)

• a world model runtime and its configuration (the static poses indicated in Table 3.1);

• the world model runtime must provide a service to inform a task controller component about
the Pose(F2, F5);

• if data access constraints are not respected, the update of the measurement must be rejected.
For example, if the runtime of the world model receives the measurement of Pose(F5, F4)
from the camera and not the robot controller.

As a final remark, note that these requirements do not make any choice about the representation
of the numerical values, how the component interacts, etc. These choices will define the concrete
component-based solution (and they can be represented in the property graph as well, if necessary).

47

RobMoSys - D3.2 H2020-ICT-732410

3.1.4 World Model Mediator Component Design (WMMC)

WM Mediator

Consumer A

Consumer B

Mixed
Consumer/Producer

Producer A

Producer B

S

M

S

Dy
na
mi
c
Wi
ri
ng

In-memory
property-graph

knowledge

Configuration models
(domain models, dproto models, etc)

Figure 3.7: World Model Mediator Component Design.

Fig. 3.7 shows the envisioned World Model Mediator Component (WMMC). This component
serves the role of central data mediator, a single point of exchange and distribution of world model
information. The WMMC is responsible to keep in-memory a world model instance for the overall
runtime of the application, which contains both object instances of the scene and their models.
From the component architecture point of view, it fully implements a DIS (Data Integration
System – see Section 2.2) software component, and it manages the interaction between those
components that are users of the world model. Moreover, the design of this component fully
conforms to the patterns described in the Deliverable D3.38.

In Fig. 3.7,consumer component and producer component indicate, respectively: i) a com-
ponent that performs queries and fetch information from the world model mediator, and ii) a
component that updates the world model (measurements, adding/removing world model relations
or object instances, etc). Obviously, many software components are both consumer and producer
of world model information. For the sake of clarity, in this section consumer or producer re-
fer to a pure-consumer or pure producer component, or the part of a mixed producer/consumer
component that covers a specific role only.

Each component interacting with the WMMC makes use of a specificWorld Model Communication
Pattern and World Model Protocol, which includes a collection of dedicated Communication
Objects Models.

8 Cf. annex document of D3.3, chapters “meta models for information architecture” and “meta models for
software architecture”. In particular, see the pattern “mediator in peer-to-peer” activity interactions.

48

RobMoSys - D3.2 H2020-ICT-732410

World Model Communication Patterns

The current design of the WMMC includes three specific communication patterns, which are built
upon the RobMoSys core communication patterns and they are described as follows:

• world model producer communication pattern (bundled in red in Fig. 3.7): this com-
posite communication pattern applies to producer components and it contains:

– a Query Pattern that is used by the producer (Query Client/Service Requestor) to
perform requests to the WMMC (Query Server/Service Provider): update of a certain
measurement, property, creation or modification of instances of the world model, but
also to initialise (and terminate) a new stream of data to be processed (by the WMMC),
by means of the following communication channel. In addition, the producer can
request the WMMC to perform a post-processing computation, after receiving a new
measurement, if the requested operation is supported by the WMMC.

– a Send Pattern, where the role of Send Client is reserved to the producer. This
pattern is used to deliver new measurements values or updates to world model instances
(entities, relations or properties) directly, for fast processing or specific requirements.
However, enabling this feature requires a prior handshaking by means of the Query
Pattern described above. During the handshaking phase, the producer informs the
WMMC about the expected priority, quality of service, the model of the incoming data
and which elements in the world model are subject of the update.

• world model consumer communication pattern(bundled in blue in Fig. 3.7): this com-
posite communication pattern applies to consumer components and it comprises of:

– a Query Pattern that is used by the consumer (Query Client/Service Requestor)
to perform requests to the WMMC (Query Server/Service Provider), such as: fetching
a specific entity, relation or property stored in the world model; establish a stable
communication channel over some specific elements in the world model. In addition,
the consumer can request the result of some processing of the world model information,
if the WMMC supports it.

– a Send Pattern, where the role of Send Client is reserved to the WMMC. This pattern is
used to deliver notifications on updates of world model instances (or their properties),
avoiding the need to query the WMMC each time. For example, a consumer component
can subscribe to receive notifications each time the measurement of a relative pose is
changed. To this end, the consumer subscribes itself, by means of a request performed
on the query interface (cf. Query Pattern). In this handshaking phase, the consumer
has the opportunity to request: the model on which the received data will conform to,
sending policies (e.g., sporadic or cyclic), and other non-functional properties of the
interaction between the two components.

In short, the distinction between this communication pattern and the previous regards the
direction of the Send Pattern, that reflects the role of the producer and consumer of world
model information, and the services that the WMMC offers through the query channel.

• Direct data stream for real-time communication. By means of the previous world model
communication patterns, the WMMC is always proxy of world model information, from the
producer to the consumer. This mediation can introduce overheads and delays that are

49

https://robmosys.eu/wiki/modeling:metamodels:commpattern

RobMoSys - D3.2 H2020-ICT-732410

non-desired in real-time applications, e.g., when world model information is used for closing
a real-time control loop. To this end, the WMMC can establish a direct communication channel
between the producer and the consumer (in addition to the update request of world model
data coming from the producer). The consumer is responsible to request the WMMC for
the initialisation of a dedicated communication channel, informing the WMMC about the
non-functional requirements that the channel must comply to. Of course, this is possible
only under the constraint that the service definition of both consumer and producer is
compatible. To this end, it is important to notice that the WMMC can reject the request of
the consumer component: it is the WMMC that manages that direct communication channel,
by initialising or terminating it. This communication pattern makes use of:

– a Coordination pattern, namely the Dynamic Wiring pattern: the WMMC acts as mas-
ter of the dynamic wiring pattern, while each software component user of the WMMC
must register itself as a slave. The latter is a requirement on producer/consumer
components to enable such a feature. In short, the WMMC is responsible to establish
and to manage the communication between producer and consumer components by
“wiring”.

– a Query pattern, with consumer component being a Client Requester. A query can
be performed on an already existing query interface, or on a dedicated one.

– (optional) the WMMC can still be updated with new measurements coming from the
producer component, to keep track of the status of the world model. In this case,
it is possible to re-use the Send communication channel between the producer and
the WMMC. Otherwise, the world model elements (entities, relations and properties) that
are not updated are marked as such in the internal (in-memory) representation of the
WMMC.

To fully implement the World Model Communication Patterns described above, the definition
of a World Model Protocol is necessary.

3.1.5 World Model Protocol

Software variability is one of the biggest technological barriers when it comes to sharing data among
software components, and it is not an exception for the WMMC implementation. In fact, the shared
world model data changes among different applications, and in particular the communication
object models employed in the various software components (users of the WMMC) may vary to
represent the same semantic value.

To overcome this limitation, the communication object models used to define the services
employed in the world model communication patterns are of type string, delegating the concrete
definition to a specific protocol called world model protocol. This approach is analogous to the
one used to implement the skill definition metamodel, and it is briefly described as follows.

Currently, communication objects can be defined as in Listing 3.1 and Figure 3.8, where two
equivalent representations are given based on the DSLs of the two alternative RobMoSys baselines,
SmartMDSD and Papyrus4Robotics, respectively. Each communication object model is meant to
be used in the service definition for the Send Pattern (i.e., WM_Notification) and for the
Query Pattern (i.e., WM_Request, WM_Reply), in conformance with what defined in Sec. 3.1.4.
Each model allows to ship data of type string, which is a valid JSON document in the world model
protocol, respecting the following specification.

50

https://robmosys.eu/wiki/modeling:metamodels:service
https://robmosys.eu/wiki/modeling:metamodels:commpattern
https://robmosys.eu/wiki/modeling:metamodels:skill-definition

RobMoSys - D3.2 H2020-ICT-732410

{
CommObjectsRepository WMCommObjects version 0.1.0 {

CommObject WM_Notification {
data : String

}

CommObject WM_Request {
data : String

}

CommObject WM_Reply {
data : String

}
}
}

Listing 3.1: Communication Object models employed in the SmartMDSD implementation.

WMCommObjects

WM_Notification

 data: String

WM_Request

 data: String

WM_Reply

 data: String

Figure 3.8: Communication object models employed in Papyrus4Robotics implementation, analo-
gous of Listing 3.1.

World Model Protocol Query Service

As briefly mentioned before the interaction between the WMMC and any other component is
defined by a “world model protocol”, hosted in the JSON format. The aim of this section is not
to provide a complete formalisation of that protocol (which is still in alpha phase, thus subject to
major changes), but to illustrate it with a running example: the request of a producer component

51

RobMoSys - D3.2 H2020-ICT-732410

to continuosly update a measurement related to a (geometric) relation in the world model. In this
example, the producer component provides an estimation of the pose between a mobile base and
a reference frame. This pose expresses the relation of a frame defined in the centre of the mobile
base, named base_link for this example, and a global frame, named map, that is defined at the
origin of the map the robot is used to localise into. An example of the interaction between the
two components, including the handshaking phase can be seen in Fig. 3.9.

PoseProducer WMMC

Query Pose

Fail

Create Pose

Success

Initialise Update Stream

Success

Update

Update

Terminate Update Stream

Success

Figure 3.9: Procedure used to establish the continuous update of the pose of a mobile base in the
WMMC by a pose estimation component.

Initially, the producer component queries the WMMC to fetch the id of the node in the property
graph that represents the measurement of the pose between the two indicated frames. Currently,
such a query is implemented as a JSON-RPC call (see Listing 3.2), where the remote procedure
to call is a query in the property-graph hosted in the WMMC. It can be seen from the RPC call
that the producer requests for the id of a node conforming to the Pose model (mid) of the
Geometry meta-model (mmid). The node is required to be connected with two nodes conforming
to the Frame model (mid), having the names base_link and map respectively. Once received,
the WMMC translate the call into a graph traversal that perform the query itself.

As shown in Fig. 3.9 the query fails, and the WMMC replies with a failure indication, as showned
in Listing 3.3. This can happen for various reasons. In the scope of this example, the query fails
because there is no node that represents a pose between the two indicated frames.

Therefore, the producer must create such a node, to host the new geometric relation and its
measurement. This request is performed by another call, illustrated in Listing 3.4.

The respective reply for the creation request can be see in Listing 3.5. The result of the response

52

RobMoSys - D3.2 H2020-ICT-732410

1 {
2 " jsonrpc ": "2.0",
3 "id": "1",
4 " method ": "query",
5 " params ": {
6 "Id" : "?",
7 " nodeMId " : "Pose",
8 " nodeMMId ": " Geometry ",
9 " nodeProperties ": [

10 { " edgeName ": "of", " direction ": "out", " nodeMId ": "Frame"
, " nodeName ": " base_link "},

11 { " edgeName ": " with_respect_to , " direction ": "out", "
nodeMId ": "Frame", " nodeName ": "map"}

12]
13 }
14 }

Listing 3.2: Example of query about the existence of a pose between two frames.

1 {
2 " jsonrpc ": "2.0",
3 "id": "1",
4 " result ": ["Fail", "node not found"]
5 }

Listing 3.3: Example of query response about the existence of a pose between two frames.

includes the status of creating the new node, along with and object containing its id in a Base64
encoding and a property defining what the string represents.

Finally, to establish a continuous update using the send pattern, another RPC must be per-
formed. Listing 3.6 shows an example of such a request. In this way, the producer is allowed to
register updates of the measurement.

If the initialisation is completed successfully, a response as the one in Listing 3.7 is sent to
the producer. The producer can then start updating the pose measurement using the send
service described in the next section. In an equivalent manner, the producer component can
inform the WMMC about the termination of that stream update by means of another RPC request.
In addition, similar requests can be used to initialise direct connections between components for
real-time cases, avoding the overhead caused by the mediation of the WMMC.

World Model Protocol Send Service

As it can be seen in Figure 3.9 after establishing a stream update the producer component can
send updates to the WMMC in a direct fashion. This is also achieved by using JSON enconding
on top of the WM_Notification communication object. An example of the notification message
used to update the pose measurement can be seen in Listing 3.8.

53

RobMoSys - D3.2 H2020-ICT-732410

1 {
2 " jsonrpc ": "2.0",
3 "id": "2",
4 " method ": " create ",
5 " params ": {
6 " nodeType ": "node",
7 " nodeMId ": "Pose",
8 " nodeMMId ": " Geometry ",
9 " nodeProperties ": [

10 { " propType ": "edge", "name": " with_respect_to ", "
propProperties ": {" propType ": "node", " propMId ": "Frame
", " propMMId ": " Geometry ", " propName ": "map"}},

11 { " propType ": "edge", "name": "of", " propProperties ": {"
propType " : "node", " propMId ": "Frame", " propMMId ": "
Geometry ", " propName ": " base_link "}}

12]
13 }
14 }

Listing 3.4: Example of creation request for a pose between two frames

1 {
2 " jsonrpc ": "2.0",
3 "id": "2",
4 " result ": [" Success ", {"bin": "YAX ==", "repr": " nodeUId "}]
5 }

Listing 3.5: Example of creation request for a pose between two frames

WMMC is not a coordinator component

To the eyes of a careful reader, the role of the WMMC can appear similar to the role of the coordi-
nation component of the application. In fact, there are some technological commonalities, such
as their role as a master in a dynamic wiring communication pattern. However, the WMMC has a
very different role than the coordination component:

• a coordination component embeds a “task specification”, or better, a behavioural model of
the application; the WMMC has no relations with the behavioural model, but it embeds the
runtime state of the overall application;

• a coordination component coordinates other components by changing their operational
mode (i.e., the State pattern), and it can perform monitoring and (re-)configuration
(Parameter pattern); instead the WMMC has no access to the (internal) state (i.e. mode)
of a third component;

• a coordination component is responsible to take the initiative to perform a dynamic wiring
connection, depending on the skill realisation; this does not hold for the WMMC, since the
initialisation of a direct data stream is up to the components that are users of the WMMC.

54

https://robmosys.eu/wiki/modeling:metamodels:skill-realization

RobMoSys - D3.2 H2020-ICT-732410

1 {
2 " jsonrpc ": "2.0",
3 "id": "3",
4 " method ": "init",
5 " params ": {
6 " serviceType ": " StreamUpdate ",
7 " source ": " PoseProducer ",
8 " target ": {
9 " targetMId ": "Pose",

10 " targetMMId ": " Geometry ",
11 " targetId ": {
12 "bin": "YAX ==",
13 "repr": " vertexUId "
14 }
15 }
16 }
17 }

Listing 3.6: Example of initialisation request for a stream update of an object in the WMMC.

1 {
2 " jsonrpc ": "2.0",
3 "id": "3",
4 " result ": [" Success "]
5 }

Listing 3.7: Example of initialisation response for a stream update of an object in the WMMC

Therefore, the WMMC only performs the dynamic wiring operation, but it does not decide when
that is necessary. Nevertheless, the request can be rejected, e.g. due to an incompatibility
between the pairing services;

• on one hand, a coordinator component manages other software components, including the
WMMC; on the other hand, the coordinator component is user (specifically, it is consumer)
of the WMMC to perform its coordination role;

• a coordination component can reconfigure the settings over data provenance during the
runtime of the application; the WMMC applies these data access constraints.

3.1.6 WMMC implementation status

At the time of writing, the WMMC described in this section is under heavy development. Cur-
rently, the World Model Communication Patterns are implemented on top of the SmartMDSD
software baseline RobMoSys toolchain. In the future, a similar solution can be developed us-
ing Papyrus4Robotics toolchain. While supported middlewares (such as SmartACE, OPC/UA
and ROS) allows to establish the creation of new service instances dynamically at runtime, the
SmartMDSD toolchain requires the component model being defined “statically” defined at design

55

RobMoSys - D3.2 H2020-ICT-732410

1 {
2 " message ": {
3 " source ": " PoseProducer ",
4 " target ": {
5 " targetMId ": "Pose",
6 " targetMMId ": " Geometry ",
7 " targetId ": {
8 "bin": "YAX ==",
9 "repr": " nodeUId "

10 }
11 },
12 "data": {
13 "bin": " YWJjZA ==",
14 " representation ": "dproto -model"
15 },
16 " command ": " update "
17 }
18 }

Listing 3.8: Example of pose update measurement notification.

phase. Therefore, the reference implementation of a WMMC must know, at design time, the number
of software components (producer or consumer) that will interact with the WMMC. This can be
set at system building time by means of an appropriate configuration of the WMMC. Alternative
solutions are possible and they may be investigated during the last phase of the project.

The “internals” of the WMMC are based on the property graph concepts and relative reference
implementation, as described in Section 2.3.

56

RobMoSys - D3.2 H2020-ICT-732410

3.2 Motion Stack

3.2.1 Kinematic trees and motion solvers
The property graph (Section 2.3) is a suitable format also to represent robot models, and queries on
the graph can be used to perform some kinematics and dynamics computations. The mechanical
structure of an articulated robot has itself the topology of a graph, which makes the representation
more intuitive; however, the potential of the property graph lies in the complete flexibility of adding,
removing and exploring connections that go beyond the pure representation of the static structure
of the robot. For example, by relating some sensors mounted somewhere on the structure to a
particular perception algorithm relevant in a given runtime context.

Of course, the extent of the computations doable by traversing the robot model graph depends
on the graph itself and on the capabilities of the query engine. On the other hand, for specific
execution constraints such as hard real time control loops at high frequencies (e.g. in the order of
102/103 Hz), the runtime traversal of the property graph is simply not a viable option. In this case
other policies must be employed. It is plausible to imagine, for example, a flexible combination
with a code generation approach: the same mechanism of query resolution and traversal of the
graph could be used to generate code rather than perform the actual computation; then, the
non–composable and very specifically tailored code could be deployed and executed in a control
loop.

With reference to the previous figures in Section 2.3, Figure 3.11 illustrates a possible layout
of a property graph modeling a kinematic pair, that is, a pair of rigid bodies connected by a
joint. The variations of the basic layout (on the left) are discussed in the following paragraphs.
This pattern can be applied recursively to model kinematic trees and even loops. The entities

Body
B1

Joint

Body
B2

body1

body2

Body
B1

Joint

Body
B2

predecessor

successor

Body
B1

Joint

Body
B2

predecessor

successor

parent

Figure 3.10: A simple property graph modeling a kinematic pair. Depending on the context,
different relations can be represented, in addition to the defining ones prescribed by the model of
an entity (leftmost figure, for the case of the Joint kind). The parent (and therefore child,
not shown here) relation only makes sense in the case of kinematic trees.

involved in this model are rigid bodies (or links) and a joint. Joints are actually immaterial motion
constraints between bodies, and a such they would be well represented as relations between the
bodies9; however they do possess properties and must also be involved in other relations, therefore

9Also, any joint ceases to exist as soon as either of the two bodies does so; this is the distinctive feature of
relations over primitive entities.

57

RobMoSys - D3.2 H2020-ICT-732410

we represent them as entities (graph nodes). Viewing a given element of a domain as a relation
or as an entity is very much dependent on the context and the scope of the modeling, and it is
always possible in a property graph (see Section 2.3.1).

Typically, the MID property of any joint (see Deliverable D3.3) would reveal its concrete type
(e.g. revolute, prismatic, ball-socket, etc.), otherwise a semantic tag in the form of a property
would serve the same purpose. In this figure we assumed a model for joints that prescribes only
two properties of type rigid body, with no ordering nor specific semantic for neither of the two;
probably the bare minimum required to define the type. As mentioned before, however, the user
is free to apply specific polices and therefore further refine and/or constrain the basic relations.
For example, given a numbering scheme on the kinematic tree (an ordering among the links)
and a joint polarity, the relations with the bodies might become the richer “predecessor” and
“successor”, which are meaningful also in the case of kinematic loops. When the robot is known
to be a tree (no loops), then some even more restrictive relations can be introduced, like the
parent-child relation between links.

Figure 3.11 extends the previous example with a few more entities. We attached a Cartesian

Body
B1

Joint

Body
B2

predecessor

successor

Frame

Frame

Frame

RelPose

RelPose

reference

target

myFrame

Figure 3.11: Property graph for a kinematic pair with attached Cartesian frames. Any
RelativePose models the pose of target with respect to reference. Measurements of such
relations are required to compute the forward kinematics of the mechanism. The second pose
depends on the kind of joint and also on its position status.

frame to each body and to the joint, and we can assume other policies have been implicitly
adopted by the user of the property graph; for example, assuming the z axis of the joint frame
coincides with the joint axis itself (for one dof joints). Different layouts are of course possible, for
example, the user might be interested only in a particular point on the second body, rather than
a full frame.

A relative pose relation exists between frames (see also Figure 2.5), and once again it is repre-
sented as an entity (a graph node). Observe how the relative pose between the successor frame
and the joint frame has a further relation with the joint itself, as it depends on the nature of the
joint and on the numerical value of the joint position status (which is conventional). If the actual
numerical value of the joint status is not available, the actual computation of B2 relative to B1
cannot be performed. However, the same traversal could be used to construct a function that

58

RobMoSys - D3.2 H2020-ICT-732410

potentially does the same, when given the joint status.

Queries

Doing some computations on the robot model, e.g. finding the relative pose between two bodies,
requires in general multiple graph traversals. In a kinematic tree, for example, the kinematic
subchain connecting the two bodies of interest (like the two hands of a humanoid) must first be
determined, and then traversed again to perform the actual calculus. In this example, a sequence
of compositions of relative poses would yield the desired result.

Therefore, the query language (and obviously the corresponding interpreter, or “solver”) must
support the backtracking of a previously determined path. On the other hand, it is also possible
to augment the property graph with further, custom relations for the sole purpose of easing the
formulation of subsequent queries. Most importantly, we must be able to associate some specific
computation (like a pre–determined function) to a specific step of the traversal.

Assuming to have established the desired path between a pair of bodies, the traversal must be
configured so as to compose the current relative pose with the intermediate result. The “current”
relative pose is the one between the frame of the currently visited entity (either a joint or a body),
and the frame of the previous entity. Even this simple processing is not trivially specified as a
query. In the Gremlin language of TinkerPop10 it may look similar to this:

joint.as("joint").out("myFrame").in("target").as("theRightPose")
.out("reference").in("myFrame")
.in("predecessor").where(eq("joint"))
.select("theRightPose")

Assuming joint is the joint node, this query simply fetches the relative pose that exists between
the joint frame, and the frame of the body which is the predecessor of the joint. In particular:

• The first line reaches all the relative poses whose target is the frame of the joint, and
labels them as theRightPose; it is irrelevant that in our example we only have one; that is
not the case in general.

• The second line reaches the entities whose frame is the reference of the poses reached
before. The traversal agents are now in nodes that do have an outgoing myFrame edge (i.e.
bodies and joints, in our context).

• The third line follows an incoming edge predecessor (if available) and selects only the node
which is equal to the starting joint. At this point, the only traversal agent that “survived”
is the one that touched the pose we are actually interested in.

• The last line simply returns the pose node.

Although the queries easily get very complicated, because the underlying traversal mechanism is
very generic, it is always possible to construct any number of DSL (Domain Specific Languages)
on top of it, directly exposing concepts of the domain (such as “the reference frame of the
predecessor”) with a simpler syntax. For example, it would be easy to introduce an higher level
command like

joint.poseWRTPredecessor()

doing the same thing as the example above.
10Apache TinkerPop is a property–graph computing framework. See http://tinkerpop.apache.org/.

59

http://tinkerpop.apache.org/

RobMoSys - D3.2 H2020-ICT-732410

Available software

Currently, at M30, a tool for code generation for kinematics solvers, developed in the context of
RobMoSys and another H2020 project, ESROCOS11, is available. At the current stage, the tool
is tailored for code generation (rather than online computations) and hard real–time execution in
control loops.

It perfectly conforms to the concepts of property graph and graph traversal – especially because
a kinematic tree is topologically a graph, as said before – but at the moment it is not based on a
generic property graph mechanism as illustrated in the previous sections. The queries, the traversal
and the associated computations (which in this case are ultimately about generating code) are
performed by a tailored implementation, i.e. in a traditional way. The tool (“KinGen”, from now
on) is described in detail in an academic publication [8] and on a RobMoSys wiki page12, therefore
here we only provide an overview of its main features.

The original ambition of KinGen is to explicitly expose all the choices that uniquely identify the
semantics of an implementation of a solver, by requiring the user to provide them. The declarative
specification of the solver (e.g. end-effector forward kinematics), the programming language, the
mathematical representation of rotations, etc., should all be composed symbolically to let the tool
generate code exactly matching the configuration.

Robot model

User query

ILK
generator

Solver (ILK)

ILK
compiler

code
(c++, Python, ...)

Figure 3.12: Overview of the Kin-
Gen tool. ILK is the name of the
format to host imperative models
of robotics solvers.

To achieve this goal, it is effective to introduce interme-
diate models of the solver, lying between an abstract, purely
functional declarative specification on one hand, and the very
concrete, “grounded” computer code on the other. Interme-
diate models allow to fix some choices leaving others open
for subsequent configuration. KinGen is relying on a format
for one of such intermediate representations, an imperative
model where the sequence of primitive operations is explicitly
represented, with no other details. Figure 3.12 illustrates that
the tool is in fact composed of two programs, a generator and
a compiler. The generator takes a robot model and an im-
perative request, and generates the imperative model of the
requested solver. The compiler can then take this model, ap-
plies some grounding choices and emit actual computer code.

The ILK-Generator is the component that embeds robotics
specific knowledge and transforms an imperative request (e.g.
find the end–effector position relative to the base) to a se-
quence of semantic operations that model the right computa-
tions. To do so, the generator maintains a local representation
of the robot model, in the form of a graph, and traverses it a few times to accumulate the in-
formation needed to generate the solver model. For example, to determine the right sequence of
Cartesian frames whose relative poses have to be composed.

It is possible to reimplement a similar functionality based on a generic property graph traversal
engine, where the computations associated with the traversal would be about constructing the
imperative solver model (this model could then be compiled and deployed, but also interpreted
online – but this aspect is outside the scope of this document). Such an implementation is
certainly more complex than a dedicated solution like the ILK-Compiler, but on the other hand

11https://www.h2020-esrocos.eu/
12https://robmosys.eu/wiki/baseline:environment_tools:kin-gen

60

https://www.h2020-esrocos.eu/
https://robmosys.eu/wiki/baseline:environment_tools:kin-gen

RobMoSys - D3.2 H2020-ICT-732410

it can exploit the flexibility of a property–graph–based robot model; that is, the capability of
attaching dynamically further information to the model, establish new relations, and be able to
refer to them in subsequent queries.

For example, we might have a manipulator controller using an inverse dynamics solver for the
feedforward control commands; once the manipulator grasps an object, the user might want to
reconfigure the solver so as to return also the position of its end–effector (in addition to the joint
forces), as that data can be used to estimate the position of the object. In a more complex
scenario, with two manipulators grasping a heavy tool, for some kind of task, the property graph
representing the two robots could be manipulated to represent a new, virtual individual robot with
a kinematic loop; then, specific solvers for this particular case could be constructed, and then used
for the control of the motion of the tool.

3.2.2 Other existing components and tools
A wikipage keep track of “ready to be used” component models, existing at M30, which some
of them were already available in Y1. This list is expected to grow in the incoming months, to
support both ITP and Pilot cases.

3.2.3 1st call of Integrated Technical Projects Results
Contributions and additions to motion stack functionalities and tools are not solely developed by
the RobMoSys consortium. Among the 1st wave of ITPs, the project “Extension of Intrinsically
Passive Control model and integration in the RobMoSys ecosystem” (EG-IPC) also contributed
to the motion stack development. In particular, the project developed and demonstrated the
RobMoSys approach in the context of teleoperation with haptic feedback. As a result, the ITP
has proposed a relation between the RobMoSys meta-models and energy-based control, which is
a model-driven loop control strategy, including bond-graphs and passity layer concepts. This ITP
project was executed in strong collaboration with the coach from KUL, leader of WP3 on basic
building blocks for motion, perception and world model stacks. Further details can be found in
the EG-IPC deliverables, and in the wikipage of the project. In the call for 2nd wave of ITPs,

instrument #2 proposed two topics to futher contribute to the motion stack, namely mobile
navigation and manipulation topics. Therefore, the RobMoSys consortium expects to keep the
development of basic building blocks in strong collaboration with the RobMoSys community.

61

https://robmosys.eu/wiki/model-directory:start
https://robmosys.eu/wiki/community:intrinsically-passive-control:start

RobMoSys - D3.2 H2020-ICT-732410

CommObject PositionMeasurementXYZ {
x : Double
y : Double
z : Double

}

CommObject PositionMeasurement3 {
data : Double [3]

}

Listing 3.9: Examples of communication objects models for Position measurement with Smart-
MDSD DSL.

3.3 Perception Stack

3.3.1 Perception components and functionalities

In this section, developed software components for perception (or under development) are briefly
listed, with few extra details on the conceptual design and motivations. Where possible, the
description of the components is independent from the component-based tool used. The cur-
rent development targets to the SmartMDSD toolchain, which is a RobMoSys software baseline.
However, analogous components are expected to be developed with Papyrus4Robotics, which is
also a RobMoSys software baseline. For those components originally developed using MFCF (see
Section 2.4), the porting from one baseline to another is expected to be trivial for the component
supplier.

Sensor fusion component

Sensor fusion consists in combining data from multiple sensors to reduce uncertainties on a spe-
cific measurement with respect to an individual measurement. Therefore, sensor fusion is to
be considered another fundamental perception building block of any robotic application. On a
component-based architecture, the source of a sensor data is always modelled as a software com-
ponent, and the data is provided by means of a service. The service model is the first point of
software variability, since a different combination of i) a communication pattern choice and ii) a
communication object model choice can be employed to share the semantically equivalent data.
As an example, a measurement of a Position can be encoded in many ways. Listing 3.9 illus-
trates an example of enconding expressed with the Communication Object DSL of SmartMDSD
toolchain, while Figure 3.13 shows an alternative representation by means of the Papyrus4Robotics
tool. The latter also allows to attach units of measurement to the values.

In the same way, another point of software variability regards the service models employed in
the software components that receive the result of the sensor fusion algorithm.

Software variability is a major technological barrier to achieve multiple software components to
interact between each other (i.e. horizontal composition). This is typically solved by means of:

• definition of standards and their wide adoption; RobMoSys is elaborating those standards
(service models, communication object models and their semantics) to that aim;

• reconfigurability of the software component to handle different service model choices.

62

https://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki/modeling:metamodels:service

RobMoSys - D3.2 H2020-ICT-732410

PositionMeasurementXYZ

«TupleType»

tupleAttrib=[x, y, z]

 x: NFP_Length
 y: NFP_Length
 z: NFP_Length

PositionMeasurement3

«CollectionType»

collectionAttrib=data

 data: NFP_Length [3]

(MARTE_Library::BasicNFP_...

NFP_Length

 unit: LengthUnitKind
 precision: Real

(MARTE_Library::BasicNFP_...

NFP_Real

 value: Real

(MARTE_Library::Measure...

LengthUnitKind

m
cm
mm

Figure 3.13: Example of communication object models for Position measurement with Pa-
pyrus4Robotics. On the left, the communication object definitions; on the right, unit of measure-
ments of the value expressed with MARTE library (OMG standard).

Nevertheless it is not trivial to develop a generic sensor fusion component, due to the software
variability problem. In fact, the sensor fusion component model cannot be designed at priori, since
it depends on the components that will interact with it.

Therefore, the role of the sensor fusion component is two-fold:

• functional: to perform a sensor fusion algorithm, thus embedding an algorithm, and repre-
senting the managed resources needed for the computation;

• non-functional: semantically speaking, all incoming data and outcoming data of a sensor
fusion component must have the same semantic meaning. However, the software variability
related to the adoption of different standards limits the software composability. Therefore,
a sensor fusion component acts as an adaptor, to mitigate the difference between service
model choices.

Figure 3.14 shows and describes the conceptual design of the envisioned sensor fusion compo-
nent (toolchain-agnostic), which peforms the sensor fusion algorithm, dispatching the result on
different services while the data semantics is conserved. In this way, the system builder will be
able to easily re-use this sensor fusion component in different applications. This influences also
the re-usability of “sensor” components, which can now be used as long as the data they provide
has the expected semantic meaning.

Figure 3.16 and Figure 3.16 illustrate the SmartMDSD version and the Papyrus4Robotics version
of such a component, respectively. Currently, the number of inputs, outputs and their services
is configured at design time of the component. This is due to a current technical limitation of
the tool, since it is not possible to reconfigure the component model at runtime or at deployment
time. This may be improved in the final phase of the project, aiming to the original conceptual

63

RobMoSys - D3.2 H2020-ICT-732410

Sensor N

Sensor 1

Sensor 2

Query Pattern<..., ...>

Send Pattern<PositionMeasurementXYZ>

Send Pattern<PositionMeasurement3>

Sensor. Fusion
Requester 1

Send Pattern<PositionMeasurement3>

Push Pattern<PositionMeasurementXYZ>

Sensor Fusion
(adaptor)

Sensor. Fusion
Requester 2

Figure 3.14: Concept of the sensor fusion component as “adaptor”, in a “toolchain-agnostic”
form. Multiple components are source of data having same semantics (i.e. measurement of a
Position), but with different service choices (variability point). The sensor fusion component
computes a refined measurement, which is then served to component “requester” of the data,
maintaining the same semantics but with the desired service choice.

design of Figure 3.14. Nevertheless, it is not to be intended as a limitation with respect to the
RobMoSys approach, as long as a component data sheet is provided with the component model
and its implementation.

Figure 3.15: SmartMDSD graphical illustration of the proposed sensor fusion component model
conforming to the concept of Figure 3.14. The red boxes highlight list of services being available
post-configuration.

As a case of study for sensor fusion, estimation of Pose and Twist geometric relations among
rigid bodies (e.g., an object and a reference object, both in the scene).

The sensor fusion component embedding a classical Kalman filter algorithm [14] is considered.
Since this algorithm is well-known, this sensor fusion component serves as a practical “hands-on”
example, as a basis for dissemination and development of more complex sensor fusion algorithms.

The datasheet of this component must include sensor confidence and the sensor threshold time
parameters. The sensor confidence parameter defined for each sensor, to indicate which sensor
data is more reliable. The sensor threshold time denotes the time the pose/twist is still confident.

Relation between sensor fusion component and the World Model Mediator Component

64

RobMoSys - D3.2 H2020-ICT-732410

SensorFusion

FilterA... Fusion... FusedSensor

 Sensor1

 Sensor2

 SensorN

Figure 3.16: Papyrus4Robotics graphical model of the proposed sensor fusion component model,
conforming to the concept of Figure 3.14.

The adaptability to multiple services definition, requested by the sensor fusion component
previously described, is analogous to the adaptability requested by the WMMC (see Section 3.1.4).
Generalising, this service adaptability is a desired feature in RobMoSys and it can be applied to
other software components as well. However, this adaptability recommended for those software
components designed for being context-independent; the others can profit from it indirectly, that
is, by means of the adaptability offered by the “core” ones.

Moreover, it is important to notice that sensor fusion algorithm does not have to be hosted
necessarily in a separated component. In fact, the algorithm can be loaded as post-process service
into the WMMC, where are component that feed the sensor fusion component are now producer
components of the WMMC. How to separate the algorithmic part and being able to decide in which
component to host a specific computation, at design time of the system architecture (or at
deployment time), is still under investigation.

Model object features for enabling “fast” object recognition

Object recognition is one of those functionalities that are very common in robotics applications.
The robotic system must be able to detect an object in the environment and select those that are
subject to the interaction in the described task specification.

To this end, the robot must have a valid model of the object, and such knowledge must be
stored and shared among multiple perception components. This is the role of the world model
and its runtime component (i.e., WMMC) as described in Section 3.1.4. However, how is the object
model defined? which is the “minimal” set of properties that an object model should contain?
and how object features can be exploited for object detection and recognition? During Y1/Y2
of the RobMoSys project, the RobMoSys consortium struggled to find a generic answer to these
questions, which is not a trivial task, since the answers are very dependent on the context and the
domain of the robotic application. With reference to Section 2.3, the property graph approach and
tool helps to extend and to compose existing domains, relieving the need of finding “the” object
model to be conformant to. As a consequence, in this section we limit the focus on modelling
those features that enables the implementation of “fast” object recognition algorithms.

In this scope, the envisioned object model must be composed by at least the following elements:

• state: refers to the geometrical spatial relation of the object with respect to other objects in
the scene, such as Pose, Twist, but also discrete spatial representations and their topological
relations (i.e., object located in a room, a box, etc; object on top of a box, etc);

65

RobMoSys - D3.2 H2020-ICT-732410

• (invariant) properties: properties refer to physical characteristics that describe the object,
e.g. shape of an object, and they can be variant or invariant during the runtime of the
application. For example, in some applications a color can be considered an invariant
property of a physical object; in other applications a color may vary, e.g. during a painting
task;

• features: features of an object are those specific elements that have been observed from
the object being in a specific state.

In literature [9][10], object recognition algorithms based on properties are typically faster than
those that exploit features, but less accurate. Therefore, properties such as color and shape are
considered to accelerate or improve the object detection and recognition process.

However, there is no generic algorithm that suits the detection of any properties, and the
properties definition is strongly application-dependent. To this end, the design of object recognition
component must ensure a certain degree of re-configurability: the application builder shall be able
to configure the algorithm being in use, by selecting specialised functionalities and combine them
in a proper computing pipeline. To this end, this component would be a test case for the MFCF
framework (see Section 2.4.3).

Together with properties detection, also features detection algorithms are considered. Object
features are typically divided into 4 types: 2D/3D, and local/global features.

The envisioned object recognition component will support at least the following algorithms:

• LBP (2D global feature);

• SURF [1](2D local feature);

• FPFH [13](3D global feature).

The reference implementation of those algorithms is under development, and it makes use of
several well-known third party libraries, such as OpenCV, PCL and MRTP libraries.

To validate the object detection and recognition component prior to its usage within the Pilot
cases, the system depicted in Figure 3.17 was developed, with the support of the SmartMDSD
toolchain.

Figure 3.17: System architecture of the object detection and recognition benchmark.

This system can be used as a basic template for enabling “fast” object recognition features,
and it consists of:

• Driver component: a component “RealSenseBasic” that implements the drivers to interact
with the sensor “Intel RealSense SR300”;

66

RobMoSys - D3.2 H2020-ICT-732410

• Perception components:

– Object Detection
– Color segmentation
– Shape Detector

• A test component that acts as coordinator to activate the object detection and recognition
system.

Among the Pilot cases in development, the first target of the object recognition component is
the Flexible Assembly Pilot (Siemens). In this pilot, the manipulation activity strongly requires
fast object and recognition functionalities. In this scenario, color segmentation will be applied,
together with a classificator exploiting user-defined features.

Object tracking

Another relevant perception building block is object tracking. Object tracking consists to locate
the state of the object (e.g., its relative Pose, Twist, etc) while moving. Tracking objects is very
relevant for visual servoing applications, to quickly react to moving obstacles, or to fetch objects
in motion.

A component embedding object tracking functionalities is planend to be developed. As a
prerequisite, this component will need to store previous object detection information: this can be
done by interacting with another component, e.g., with the WMMC. In fact, there are numerous
information that can be used to perform an accurate and fast tracking: kinematic information,
images, point clouds and previous relative poses. Internally, the object tracking will make use of a
Kalman filter algorithm. Moreover, this component will not be only dedicated to object tracking,
but it will compute as well:

• prediction of object’s future location;

• correction of the prediction based on new measurements;

• reduction of noise introduced by inaccurate detections;

• data association problem of multiple objects.

Object prediction

Along with the object tracking component, an object prediction component will be developed.
Object prediction consists to predict the state of a moving object. The prediction of an object is
useful for many applications and can provide information to the motion stack with to work with
Model Predictive Control(MPC) applications. Also, it can be useful for some pilots in applications
of the avoidance of mobile objects.

67

4. Interaction with the pilots
4.1 Introduction

The goal of this last chapter is to highlight the role of the ongoing efforts (modelling, tool design
and implementations) to support concrete, industrial-relevant cases, starting from the defined pilot
cases. In this perspective, design and priorities have been driven by Pilot cases needs, considering
the previous Deliverable D4.1 and its extension (Deliverable D4.2).

During Y1 and Y2, the RobMoSys consortium had many interactions and technical discussions
regarding the requirement and the design of each stack. For example, the role of the world model
(see Section 3.1) has been defined as one of the most important in every Pilot case.

Finally, this chapter aims to show the requirements for the motion, perception and world model
stacks, and the expected benefits from the current approach related to the exploitation of the
modeling efforts (knowledge) by means of the concrete tools under development and illustrated
in this Deliverable. These requirements can be considered as well for the definition of the KPI,
and as concrete suggestions for standardisation for the Robotics Community,

For the sake of brevity, only the requirements and the impact on the current development on
two pilot cases are discussed in the following pages. More details can be found in the deliverables
regarding the pilot-cases (D4.2).

4.2 Flexible Assembly Cell (Siemens)

During assembly within an assembly cell, workpieces are manipulated and fitted together to ulti-
mately produce a desired configuration of the workpieces. In a classical assembly cell, the pose of
each workpiece is accurately specified a priory during cell commissioning and task programming,
jigs and fixtures specially constructed for the workpieces and the task are utilized to guarantee that
the wokpieces are precisely located at the specified poses, and the motions of the mechanical parts
of the cell needed to fit workpieces together are specified a priory based on the specified poses
of the relevant workpieces. One of the challenges in flexible assembly is to relax the requirement
that workpieces have to be precisely positioned and that these poses have to be accurately known
in advanced before task execution.

Our flexible assembly cell uses 2D and 3D cameras to determine the pose of the workpieces
within the cell during task execution. And the motions of the robot arms and grippers are
computed online based on the actual pose of the workpieces. To be able to compute collision
free motions, the system needs to have an accurate and consistent geometrical model of itself
and of the workpieces including their actual poses. The following list describes some of the most
important features needed from the world model required for manipulating workpieces:

• The world model needs to represent the state of the robot and collision objects. The state
consists of the pose of the objects plus some appropriate probability distribution describing
the uncertainty associated to the pose. Furthermore, different uncertainty models should
be represented, such as uni- or multimodal Gaussian or particle representations. The state
should also include some meta-data such as the time stamp of the last state update, and the
information source. For example, for calibration and sensor fusion, relevant properties of the
information source such as the calibration parameters of a camera, should be an (optional)
part of the state.

68

RobMoSys - D3.2 H2020-ICT-732410

• The world model should be updatable by multiple instances of different modules at different
rates. The robot controller should be able to update the state of the robot with very high
frequency while at the same time the perception system should be able to update the state
of the collision objects at a rather lower frequency.

• The world model should be accessible by multiple instances of different modules at different
rates.

• Modules should be able to retrieve the state of objects based specific state or combination
of state properties. For example, modules should be able to retrieve all collision objects
within a specified region in space.

• The world model should be able to interpolate the state of the objects in time. For example,
when querying the pose of an object for a specific time where no data existed, the world
model should be able to estimate the pose of the object for that specific time from the
existing data. Ideally, the world model should consider information about the velocity,
acceleration, etc. of the object for interpolation and maybe even extrapolation.

• It should be possible to clone the world model at a given state and update and query the
cloned instance without interfering with the original world model. For example, for planning,
the system should be able to take the current state of the world model and simulate changes
in it to determine the best next action.

• The number and type of modules that will be updating and querying the world model, is
not known in advanced and can change during task execution. For example, for detecting
a certain type of objects, a different perception pipeline might be needed. The required
modules are started and stopped on demand.

• It should be possible to update and query the world model using different reference frames.
The perception system should be able to update the pose of a detected object in its relative
reference frame, without having to know about kinematic of the rest of the system. It
should also be possible to switch between different coordinate systems, such as polar and
Cartesian.

• It should be possible to dynamically add and remove spacial constraints between spatial
objects. For example, once an object is attached to the robotic manipulator (e.g. the object
is grasped), moving the manipulator will also move the attached object. Once the object is
released, the spacial constraint is eliminated.

• The world model should implement a signaling mechanism to notify registered modules
about specific changes in the state of the world model. A module may hook a trigger to a
certain variable and the world model will send and update / interrupt to the module upon
change. Ideally this data channel is real time capable and deterministic, such that safety
critical information (e.g. human enters workspace) can be communicated via the world
model (component).

In addition to the above listed requirements for general object manipulation, the following
features are required for task specification and execution:

69

RobMoSys - D3.2 H2020-ICT-732410

• It should be possible to represent different abstraction levels for the data in the world models.
For example, it should be possible to query the world model for all objects on a previously
specified area such as "storage magazine" or "working surface".

• Process image:

Finally, regaring the deployment of the system components:

• The world model should be accessible from multiple disfferent components distributed over
different devices. For example, the world model should be accesible from the preception sub-
system running on a PC other than the one where the motion planner and robot controller
components are running. Both PCs are connected over standard ethernet network.

• Communication: not every communication pattern possible (PLC)

4.3 Human-robot collaboration for assembly (CEA)
CEA pilot aims at realising a collaborative pick and place task with an human operator. The
human operator teaches the task to perform and how to approach the objects, such that the
robot is able to perform the task in fully autonomy, or in the presence of a human operator.

The goal of CEA pilot is to ensure system robustness, both at design time and at run-time.
To do so, the knowledge from the environment, the agents capabilities and their affordances are
modelled in RobMoSys:

• at design time, the knowledge is exploited to add constraints over world model properties.
For example: to allow or to forbid the actions execution on the world object instances; to
check task consistency; and most importantly, to validate safety properties. In practise, the
world model at design-time is comparable to an ontology, where all the relevant features of
all the environment elements are modelled;

• at run-time, to monitor the system execution and to ensure that the rules defined at design-
time are not violated. At run-time, a world model component acts as a mediator, responsible
for collecting data from all the environment objects (perception), then used for executing
the task.

In the following, most of the important features needed from the world model are enumerated,
as requirements to ensure system robustness:

• It should be possible to represent the objects properties and the agents skills in the world
model;

• It should be possible to represent the effect of an action on the executing agent (e.g. gripper
not empty and on the manipulated object (e.g. object in gripper);

• The world model should be able to indicate the logical state of all the objects and the agents
at a given time;

• The world model should allow to enable or disable affordances’ interfaces attached to the
objects, based on the context;

70

RobMoSys - D3.2 H2020-ICT-732410

• The world model should be able to take into account the safety constraints that has to be
checked when the robot manipulates an object.

• The world model should implement rules that are conformant to the robot capabilites. For
example, a robot cannot manipulate an object with a higher weight than its payload;

• The world model should be aware of all the interactions in the system.

4.4 Intralogistics Industry 4.0 Robot Fleet Pilot (HSU)
This pilot is about goods transport in a company, such as factory intra-logistics. It showcases
the ease of system integration via composition of software components to a complete robotics
application. A particular focus is put not only on the functional scenario of this pilot, but on
easing its development and maintenance through its lifecycle. More information on this pilot can
be found in D4.1 [15] and in the RobMoSys Wiki1.

Figure 4.1: The Intralogistics Industry 4.0 Robot Fleet Pilot

4.4.1 Requirements on RobMoSys Methodology

The pilot is intended to demonstrate several benefits of the RobMoSys methodology. This section
highlights those that are specific to this deliverable. It elaborates on the requirements and impact
that can be demonstrated with this pilot. Among other goals, the pilot aims to:

• Demonstrate the ease of system integration via composition of previously developed building
blocks.

• Demonstrate the exchange of software components to address new needs and e.g., add
capabilites to robots.

• Demonstrating the adaptation of the production flow at run-time by changing the software
configuration only.

1https://robmosys.eu/wiki/pilots:intralogistics

71

RobMoSys - D3.2 H2020-ICT-732410

• Demonstrate the use of the RobMoSys flexible navigation stack, as an example of elements
in composition Tier 2.

Already now, the pilot successfully demonstrates the easy composition of previously developed
software components (see service-based composition2). While this significantly reduces the time
on system-level development, it assumes the existence of software components. Going down to
this level, the pilot stresses the need for providing software components and also composing their
internals by the means of functional composition as described in this deliverable. A lot of best-
practices from service-based composition of software components can be applied to functional
composition as well. Improving the functional composition to come up with software components
will thus directly improve the composition of software-components on the system-level.

The initial composition and especially the run-time adaptation of components in systems (and
even more: robots in fleets) triggers a huge need for managing world model knowledge. Several
components and robots act within the same world and share efforts. For example, recognition and
manipulation as well as handling of items between two robots requires a common understanding
of the world model. Especially in run-time adaptation to change the production flow, it is im-
possible to manually change the configurations or even re-program, for example, the world-model
expectations of a component or whole robot to align one world-model to another.

4.4.2 Current state
The basic pilot scenario is already available3. The pilot is built using the SmartMDSD Toolchain4

by composing previously developed software components from the RobMoSys Software Baseline.
It already now uses the RobMoSys composition structures which formalize a lot of Architectural
Patterns5. More architectural patterns and best practices are already applied within the pilots,
but are manually encoded and thus not formally structured. They are therefore not accessible in
a systematic way to improve composability. For example, the management of distributed world
models and the synchronization over global IDs in the flexible navigation stack6. RobMoSys is
about to generalize and formalize these concepts to make them accessible through the RobMoSys
methodlogy. The insights on the manually applied methodology has already contributed to this
deliverable and will contribute to future work around the RobMoSys motion, perception and
world-model stacks.

2https://robmosys.eu/wiki/composition:service-based-composition:start
3Videos at https://robmosys.eu/wiki/pilots:intralogistics
4https://robmosys.eu/wiki/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
5https://robmosys.eu/wiki/general_principles:architectural_patterns:start
6http://www.servicerobotik-ulm.de/drupal/sites/default/files/2012-WillowGarage-public.pdf, slide 29

72

Bibliography
[1] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. Speeded-up robust features

(surf). Comput. Vis. Image Underst. 110, 3 (June 2008), 346–359.

[2] Blumenthal, S., Bruyninckx, H., Nowak, W., and Prassler, E. A scene graph
based shared 3d world model for robotic applications. In 2013 IEEE International Conference
on Robotics and Automation (May 2013), pp. 453–460.

[3] Blumenthal, S., Hochgeschwender, N., Prassler, E., Voos, H., and Bruyn-
inckx, H. An approach for a distributed world model with qos-based perception algorithm
adaptation. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS) (Sep. 2015), pp. 1806–1811.

[4] Bouzeghoub, M. A framework for analysis of data freshness. In Proceedings of the 2004
International Workshop on Information Quality in Information Systems (New York, NY, USA,
2004), IQIS ’04, ACM, pp. 59–67.

[5] Chitta, S., Sucan, I., and Cousins, S. Moveit![ros topics]. IEEE Robotics & Automa-
tion Magazine - IEEE ROBOT AUTOMAT 19 (03 2012), 18–19.

[6] Foote, T. tf: The transform library. In IEEE International Conference on Technologies for
Practical Robot Applications (TePRA) (April 2013), pp. 1–6.

[7] Foote, T. tf: The transform library. In Technologies for Practical Robot Applications
(TePRA), 2013 IEEE International Conference on (April 2013), Open-Source Software work-
shop, pp. 1–6.

[8] Frigerio, M., Scioni, E., Pazderski, P. P., and Bruyninckx, H. Code generation
from declarative models of robotics solvers. In Third IEEE International Conference on
Robotic Computing (IRC) (Feb 2019), pp. 369–372.

[9] Koschan, A., Bericht, T., and Algorithmen Fur, U. Colour image segmentation:
A survey.

[10] Martínez, L., Loncomilla, P., and Ruiz-del Solar, J. Object recognition for ma-
nipulation tasks in real domestic settings: A comparative study. In RoboCup 2014: Robot
World Cup XVIII (Cham, 2015), R. A. C. Bianchi, H. L. Akin, S. Ramamoorthy, and K. Sug-
iura, Eds., Springer International Publishing, pp. 207–219.

[11] Niemueller, T., Lakemeyer, G., and Srinivasa, S. S. A generic robot database and
its application in fault analysis and performance evaluation. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems (2012), IEEE, pp. 364–369.

[12] Ravichandran, R., Prassler, E., Huebel, N., and Blumenthal, S. A workbench
for quantitative comparison of databases in multi-robot applications. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS) (Oct 2018), pp. 3744–
3750.

[13] Rusu, R. B., Blodow, N., and Beetz, M. Fast point feature histograms (fpfh) for
3d registration. In Proceedings of the 2009 IEEE International Conference on Robotics and
Automation (Piscataway, NJ, USA, 2009), ICRA’09, IEEE Press, pp. 1848–1853.

73

RobMoSys - D3.2 H2020-ICT-732410

[14] Sasiadek, J., and Hartana, P. Sensor data fusion using kalman filter. vol. 2,
pp. WED5/19 – WED5/25 vol.2.

[15] Scioni, E., and Meyer-Delius Di Vasto, D. Deliverable 4.1: First report on pilot
cases, 2017.

[16] SHERPA. Smart collaboration between humans and ground-aerial robots for improving
rescuing activities in alpine environments. http://www.sherpa-project.eu, 2014. Last
visited May 2014.

[17] van de Molengraft, M. The RoboEarth project. http://www.roboearth.org/, 2011.

74

http://www.sherpa-project.eu
http://www.roboearth.org/

5. Annex
The annex section of this Deliverable presents a pre-print version of a submitted academic pub-
lication to illustrate further details on the dproto DSL and the automatic datatype conversion
tool “dconv”. The paper describes the status of the tool at M24.

75

Semantic Annotations for Geometric Relations
Supported by a Model-based Datatype Conversion Tool

Enea Scioni∗,†, Marco Frigerio†, Herman Bruyninckx†,‡

Abstract— This paper advocates the research hypothesis that
robotics software should be developed by introducing formal
semantic representations of all data and operations already
in the design phase. Hence, Interface Description Languages
(IDL) alone do not suffice, but models and tools are needed
to let developers semantically annotate software interfaces,
starting from the data types. The first contribution of this work
is a semantic annotation language for data types and their
relations, including references to existing domain ontologies. A
second contribution applies the language to the core geometrical
entities and relations for robotics, as a first step towards
standardisation. The last contribution introduces tooling soft-
ware, dconv, to help software developers to introduce semantic
annotation in their coding workflow. dconv can generate static
conversion code between data types with the same semantics
but different digital encodings, and it can also perform these
data type conversions dynamically, at runtime.

I. INTRODUCTION

Software design and development of robotics applications
consists of integrating functionalities of heterogeneous na-
ture, often shipped as a set of libraries or software com-
ponents. Each implementation uses its own internal data
types, often optimised for a specific purpose (e.g., computing,
storing, communicating). During the integration process,
data type conversion is one of the unavoidable pieces of
“glue-code” that must be provided. For example, embedding
a functionality in a component-based middleware requires
the conversion from a communication object employed by
the middleware to an internal data type used in the embedded
library (and vice versa). This applies also within the same
software component, when integrating libraries with different
Application Programming Interface (API). To ensure that
the semantics associated with the values remains unaltered
is a tedious and error-prone process, whenever developers
have only access to informal documentation of the code
that provides incomplete descriptions of all choices that
have been made: physical units, ordering of variables in a
composite data structure, selection of any of the 24 different
Euler angle representations, etc.

A common solution is to establish a “standard” choice for
the data types, expressed by an Interface Description Lan-
guage (IDL) provided by a middleware framework. The most
prominent example in robotics is the ROS [1] middleware,
with ROS-IDL definitions contained in geometry msgs,
sensor msgs, etc. [2]. However, this approach has several
shortcomings:

∗ Corresponding author, enea.scioni@kuleuven.be
†Dept. of Mechanical Engineering, KU Leuven, Belgium.
‡Dept. of Mechanical Engineering, TU/e Eindhoven, the Netherlands.

• an IDL describes only the digital data representation
of the value, that is, how the values are represented
digitally, with the purpose of describing the knowledge
required for the serialisation process or storage of
the values in-memory. An IDL does not express the
meaning of the values, their constraints1 and how those
are interpreted (e.g., physical units and other choices
of representation). This additional domain-dependent
knowledge lies outside the modelling capabilities of an
IDL, and it is mostly relegated to the (often incomplete)
documentation;

• it is a common practise to associate a mnemonic iden-
tifier to the IDL model (e.g., the data type name). In
this case, the only means of checking the compatibility
of a pair of values is by matching the identifiers of the
corresponding IDL models: the semantics are assumed
compatible if the values of the two identifiers are the
same. There is no opportunity to establish true semantic
equivalence, which might hold even if the identifiers
do not match. This is the case for an orientation:
if a different coordinate representation choice is used
(e.g., quaternion and RPY-angles), the identifiers do not
match but the values are compatible. In addition, the
chosen identifier is not always formally correct, or it
does not fully express the semantics of the represented
value, leading to ambiguities in the semantic interpre-
tation;2

• almost every middleware in robotics uses its own IDL.
A standard based on an IDL works only in a ho-
mogeneous system. Composition with other software
components is limited to the middleware being used.

In short, an IDL is not suited for capturing the semantic
meaning of values, and it should not be used to define stan-
dards outside its domain, i.e., the digital data representation.

This paper advocates the research hypothesis that the
semantics of the data handled in a robotics application must
be a first class element of the software design. This is the
first step towards formal models of the semantic of software

1Most IDLs can constrain a single value, e.g., by bounding it between
two values. However, they don’t describe the constraints among multiple
values. For example, the values of a tuple (x, y, z) representing a versor
are subject to the unitary norm constraint.

2 For example, the popular standard geometry msgs in ROS represents
a point with a tuple of values (x, y, z) (geometry msgs/Point).
However, a point is a geometric entity and it cannot have a tuple of this kind
as attribute. Instead, the same tuple represents a geometric relation, namely
a position, which is a relative concept that requires a reference point (or
frame) to be defined [3]. Finally, the tuple is valid only under a particular
coordinate representation choice (i.e., Cartesian).

interfaces, and all protocols and dialogues between robot
systems that make use of such data.

The semantic of the data must be identified within a refer-
ence domain (e.g., relative position in the geometry domain),
independently from any existing, concrete, digital data rep-
resentation. Conversely, existing digital data representations
(possibly IDL-based) shall be annotated with a reference
to the semantic specification. Such explicit specifications,
in a computer-processable format, not only provide better
documentation but also enable the development of automatic
validations and conversions, directly in the user software or
by means of dedicated tools; they ultimately lead to higher
software quality.

The concrete outcome of the approach described in this
work is “dconv” [4], an automatic data type conversion
tool that exploits the semantic annotations and their relations.
This tool is designed to support both i) the generation of
static code that performs the conversion, to be included in
the user-code at development time, and ii) an engine to
perform the automatic conversion dynamically, at runtime.
Summarising, this work proposes:

• a minimalistic, user-friendly domain-specific language
(DSL) to manually specify semantic annotations on top
of existing digital data representations (see Sec. IV);

• an annotation schema in the context of the geometry
domain (see Sec. III), which is at the core of any
robotics application;

• a reference implementation of a data type conversion
tool that exploits the annotations encoded in the pro-
posed language (see Sec. V).

II. RELATED WORK

Any middleware framework in robotics allows custom data
type definitions to share data among software components,
which are often described by an IDL. Having this is not
only a technical requirement, but also a primary language
to design an application within the middleware ecosystem.
Noticeable examples are: ROS [1] (which uses its own ROS-
IDL); SmartSoft [5], [6], and its Communication Object
DSL [7]. The Architecture Analysis and Design Language
(AADL) [8] also allows to define data types as part of a
component interface, while toolchains like TASTE [9] relies
on Abstract Syntax Notation One (ASN.1) [10] as IDL. There
are also several IDLs available outside of the robotics do-
main, with focus on different technical aspects and purposes.
The Google’s Protocol Buffer [11] and Flat Buffers [12]
introduce a DSL to describe a digital data representation,
while the implementation is focused on data serialisation and
in-memory storage, respectively. Another related project is
HDF5 [13], a filesystem for scientific computing dedicated
to store large, distributed datasets. HDF5 allows to include
meta-data and attach semantic information on each entry of
the dataset. However, all of the above focus on modelling a
digital data representation, independently from an application
domain, while the semantic value attached to the data is not
considered as a primary scope.

The role of ontologies [14], [15] is to provide those
semantics descriptions, and the relations between them. In
literature, ontologies to define quantities, dimensions and
physical units have been investigated already, e.g., the QUDT
ontology from NASA [16] and the Ontology of units of
Measure and related concepts (OM) [17]. This work does not
propose a novel ontology in this direction, but it aims to link
existing ontologies with existing digital data representations.
The DSL proposed in Sec. IV is an effort in this direction, but
alternatives to encode the same concepts exist. For example,
JSON-LD [18] is a general-purpose W3C recommendation
widely used in web technologies, that aims to link (JSON)
data and its meta-data together. However, interoperability
with JSON-LD is not subject of investigation in this work.

This paper focuses on the geometric domain, and its
modelling of geometric entities and relations as in [3].

Finally, this work also concerns the data representation
synthesis problem, a well-known problem in computation
and data structures theory [19], [20], [21]. In particular, this
regards the realisation of a reference implementation. As
shown in Sec. V, in this work concrete data structures and
relative conversion operations are generated from the analysis
of a graph-based knowledge space, which is defined from a
set of semantic annotations (see Sec. IV).

III. THE GEOMETRIC DOMAIN

To annotate the semantics of a set of values, the first step
is to define a domain of reference that provides contextual
information. In general, a domain model consists of a list of
valid entities that belong to the domain, and their relations.
Without loss of generality, this work considers a simple
model of the geometric domain, at the core of any robotics
application, as a case of study.

The entities and relations of the geometric domain corre-
spond to the mathematical properties of the Euclidean spaces
E3, SO(3) and SE(3): entities like (spatial) point, vector,
orientation frame, displacement frame, etc.; and relations
like position, orientation, pose, velocities, etc. Composition
rules and further constraints must be modelled as well.
For example, a displacement frame can be expressed as a
composition of a point and an orientation frame. In the
same way, a pose can be expressed as a composition of a
position and an orientation relations. Since the purpose is
to annotate semantically the (numerical) attributes of those
geometric relations, a choice of coordinate representation
must be made. This choice implies another set of constraints
and a specific interpretation of the numerical attribute. For
example, a quaternion as a representation choice of an orien-
tation implies specific algebraic properties on the numerical
tuple of four elements.

Modelling the geometric domain in a exhaustive way is
out of scope of this work, which instead relies on the results
described in [3].

IV. A DSL FOR DATA PROTOTYPES

This section proposes a DSL to add semantic annotations
to existing data types. For the sake of clarity and brevity, the

dproto semantic_ros_position :: geometry {
semantic = Position
coord = cartesian
ddr = ros_position
algebraic = position_named
dr = {x=X, y=Y, z=Z}
units = position_units

}

Listing 1. Example of a dproto that represents a Position in the
geometry domain. This definition provides semantic annotations to the
ddr expressed in Listing 2.

section is driven by a set of small running examples, also
used in later sections. The formal grammar definition is not
reported in this paper, but it can be found in the software
documentation. The design choices (grammar and syntax)
of the proposed DSL strive for clarity and user friendliness,
but alternative encondings of the same concepts are possible.
Moreover, grammar and syntax might be subject to changes
in future versions, allowing other modelling features not yet
considered. Nevertheless, this does not change the concepts
introduced in this work.

A. Data Prototype, dproto

A data prototype,3 dproto, is a formal collection of
semantic annotations that describe the interpretation of the
values represented in a data type. An example is shown
in Listing 1. The definition of a dproto must have an
identifier (e.g., semantic ros position) and a domain
of reference of the dproto definition (e.g., geometry).
Other annotations are described as follows.

domain

Semantic (semantic): a symbolic annotation to represent
the meaning of the modelled data in the domain of
reference. For example, in the domain geometry, a tag
representing a geometric relation is expected, such as
Position, Orientation, Pose, LinearVelocity,
AngularVelocity, Twist, Torque, Force, and
Wrench.

Coordinate Representation (coord): the choice of
a coordinate representation, valid with respect to the
semantic value of the dproto, previously defined in
the domain geometry. For example, valid coordinate
representations for Position are cartesian, polar,
cylindrical, etc. More choices are available for an
Orientation, such as quaternion, rotation matrix
(rot matrix), Euler angles, RPY-angles, etc. A survey on
the coordinate representation choices and their properties
can be found in [3].

Digital Data Representation (ddr): a reference to a model
that describes how the data is managed in-memory, for
storing or serializaton purposes. This can be expressed by
a concrete data type used in a specific general purpose

3 The name prototype is inspired by the prototype pattern, which favours
composition over inheritance, and that composability is a major design
driver behind the presented work.

ddr ros_position :: ROS { geometry_msgs/Point }

Listing 2. Example of a ddr definition.

algebraic position_named :: Scalar{X,Y,Z}
algebraic position3 :: Vector{3}
algebraic ht_matrix :: Matrix{4,4}

Listing 3. Examples of algebraic definitions used in the running
example.

programming language, or expressed by an IDL. Seen from
a bottom-up modelling approach, the ddr is the data type
subject of the annotation. An example of ddr definition is
shown in Listing 2, and it is composed of:

• a meta-model identifier (e.g., ROS in the example) that
expresses which IDL (or any other model) has been
used to describe the digital data representation;

• a model (or an identifier to a model) that describes
the digital data representation, conforming to the meta-
model identifier.

Algebraic (algebraic): a choice of the abstract data type
suitable for the given semantics; each choice corresponds to
a syntax for the symbolic reference to the values of the data
type. Algebraic choices are:

• Scalar{...}, an unordered sequence of scalar val-
ues. A different symbol (identifier) is used to refer to
each concrete value;

• Vector{N}, an ordered sequence of N elements. An
integer value (index) is used as an accessor to the
concrete values;

• Matrix{M,N}, a matrix (M × N); a pair of integer
values (i.e., row and colums, (r, c)) is used to refer to
the concrete values.

This abstraction is important as primary mean to establish
semantic relations between the digital data representation
(ddr) and other annotations. In short, algebraic defines
a data type abstraction of the digital data representation.
Listing 3 illustrates some algebraic definitions.

Data Representation (dr): a relation between the ddr
and the algebraic choices, within the same dproto.
It relates any symbol or accessor used in the actual digital
data representation with the corresponding symbol/accessor
defined in the algebraic representation. In the example
of Listing 1, the values x, y and z of the ROS-IDL
geometry msgs/Point are linked to the algebraic
accessor symbols X , Y and Z, respectively. In this
way, it is possible to refer to the concrete values by
means of the algebraic data type abstraction. This
also means that multiple dproto definitions with same
semantic annotations but different ddr, e.g., the concrete
implementation of the data type, are possible.

Physical Units (units): a relation between an
algebraic definition and the physical units used to
interpret the numerical values associated with the abstract

dproto s_plain_position :: geometry {
semantic = Position
coord = cartesian
ddr = :: c99 { double[3] }
algebraic = position3
dr = {0=0, 1=1, 2=2}
units = position_units

}

Listing 4. An alternative representation of a Position, already modelled
in Listing 1, based on different ddr and algebraic. The ddr is defined
in compact (anonymous) form.

units position_units ::
qudt, position_named {m = X, m = Y, m = Z}

Listing 5. Example of units definition, which relates the symbol of
meters m, unit in the QUDT ontology, and the symbols expressed in the
position named algebraic definition.

data type. An example of unit definition is shown in
Listing 5. Each symbol defined in the algebraic
definition is associated with a physical unit (if applicable).
This relation must also indicate which ontology is used (e.g.,
QUDT). In a dproto definition, the physical units, together
with the semantic value and the context provided by
the domain (e.g., geometry), already suffice to uniquely
define both dimension and quantity kind represented by the
numerical value.

B. Composite Data Prototypes

There are two form of data prototype composition:
1) Composition of dprotos (type I): a dproto defini-

tion can be expressed as a composition of other dprotos,
as shown in Listing 6. The semantic assigned to it must
be in turn a composite concept in the modelled domain;
e.g., a Pose or a Twist in the geometry domain. The
dproto is annotated with a composes relation, which
associates a member of the composed semantic concept
(left-hand side) with an identifier of the dproto used to
represent it (right-hand side); obviously, the semantic
must match. A dproto defined in this way creates an
hierarchical dependency (a tree) among dprotos, where the
composition inherits the annotations from its members. The
data representation (dr) assigns symbolic identifiers to refer
to the different parts of the semantic composition.

2) Composition by semantics (type II): in this case,
the dproto is a stand-alone definition. However, the
semantic annotation is a composite in the modelled
domain. This is possible because, as opposed to the
previous form of composition, the choice of coordinate
representation coord (i.e., a homogeneous transformation)
fully describe the semantic concept of Pose. Listing 7
shows another example with Pose semantic, as
alternative of Listing 6. However, it is possible to define
one or more view of dproto definitions in this category,
to refer to part of the composition.

dproto s_plain_pose :: geometry {
semantic = Pose
composes = {

Position = s_plain_position
Orientation = s_plain_rotation

}
dr = {position = Position,

orientation = Orientation}
}

Listing 6. s plain pose, a composed dproto of dprotos (type I).
The semantic of the dproto is Pose, which is a composite concept
of the domain geometry, formed by Position and Orientation.
composes relates the members of the semantic composition with other
dproto definitions.

dproto s_plain_pose2 :: geometry {
semantic = Pose
coord = homogeneous_transformation
algebraic = ht_matrix
ddr = :: c99 { double[16] }
dr =
{ 0={0,0}, 1={0,1}, 2={0,2}, 3={0,3}, ... }

}

Listing 7. A snippet of a dproto “s plain pose2”, composite by
semantics (type II).

View (view): a relation that applies to a dproto com-
posed by semantics (type II). A view refers to a part of
the composite dproto, whose semantic value matches
another dproto. Listing 8 illustrates two view definitions,
all based on the dproto model in Listing 7: the left-hand
side of the relation denotes a source, that is, the composite
dproto and the corresponding semantic value subject of the
view; the right-hand side of the relation denotes a target, that
is a dproto semantically equivalent to the selected part;
finally, the definition concludes with the mapping relation
based on algebraic accessors.

C. Relations

The previous session introduced few relations already,
which are essential for a minimal dproto definition. In
addition, there are other inter-dproto relations; the one
proposed by the current version of the DSL follows.

Alias (alias): a bidirectional equivalence relation
between algebraic definitions. This relation maps
each different symbol used in the abstract data types
having the exact meaning. Listing 9 shows an example,
where the position 3 and position named are
interchangeable, from named-based accessor (Scalar)
to an index-based accessor (Vector), and vice
versa. This creates a relation between dprotos, e.g.,
between semantic ros position (Listing 1) and
s plain position (Listing 4), which are now equivalent
even if the algebraic used is not the same.
Conversion (conversion): a unidirectional relation be-
tween two dproto definitions, to declare the existence
of an external function implementation that perform the
conversion between the dproto indicated. This allows to
delegate (part of) the conversion, which is useful to overcome

view s_plain_pose2.Position -> s_plain_position {
{3,0} = Z, {3,1} = Y, {3,2} = Z

}
view s_plain_pose2.Orientation->s_plain_rotation

{ {0,0}={0,0}, {0,1}={0,1}, ..., {2,2}={2,2} }

Listing 8. view definitions on the dproto s plain pose2 of Listing 7.

alias position3 <-> position_named {
0 = X, 1 = Y, 2 = Z

}
conversion semantic_ros_quaternion ->

s_plain_rotation = quat2rot

Listing 9. Example of an alias and a conversion inter-dproto
relations.

to unmodelled aspects of the domain, or any limitation of
the underlying reference implementation. A usage example
is provided in Listing 9, where the conversion between
dproto is delegated to an external function that implements
a change between different coordinate representations.

V. AUTOMATIC TYPE CONVERSIONS

This section describes automatic data prototype conver-
sion, which is an example of exploitation of the semantic
annotations modelled by dproto definitions and their re-
lations. Strictly speaking, the subject of the conversion is
not the data prototype dproto, but an instance of it, called
data block (dblx). The minimal definition of a data block is
given by the combination of the data instance with its meta-
data, which must contain at least a reference to its meta-
model (i.e.,, its dproto). In fact, it is not necessary to pack
the whole dproto definition with the data, as long as the
implementation allows to retrieve that information from an
unique identifier. A conversion from a dblx (the source)
and another (the target) consists in computing the values
of the target dblx from the values of the source, such
that they have the same information content. The conversion
is possible only if the dblx are semantically equivalent,
which is verifiable from their dproto definitions, and
any additional relation previously modelled; Table I briefly
summarises these convertibility requirements. The design of
a reference implementation that performs such conversions
should consider a two-step procedure: i) assess the feasibility
of the conversion, by checking the semantic equivalence of
the source and the target dblx; ii) compute the conversion.
The first step allows to compute the distance of the con-
version, defined as the number and the type of conversions
steps necessary to perform the conversion. For those cases
in which each conversion step is bounded in terms of
number and type of operations to perform, the execution of
the conversion is deterministic. This is guaranteed for the
conversion type 1 and 2, while it depends on the external
function implementation for conversions of type 3. From this
type of analysis is possible to establish the overhead caused
by the data type conversions, which is relevant in real-time
applications.

algebraic quat :: Vector{4}
algebraic quat_named :: Scalar{x,y,z,w}
algebraic orient_rot_mx :: Matrix{3,3}

alias quat_named <-> quat { x=0, y=1, z=3, w=4 }

units quat_units :: qudt, quat {
unitless=0, unitless=1 unitless=2, unitless=3

}

...

dproto asn_quaternion :: geometry {
semantic = Orientation
coord = quaternion
algebraic = quat_named
ddr = :: ASN1 {

Base-Types.Wrappers-Quaterniond
}
dr = {re=w, im.0=x, im.1=y, im.2=z}
units = ...

}

dproto e_rotation :: geometry {
semantic = Orientation
coord = rot_matrix
algebraic = orient_rot_mx
ddr = :: Eigen { Matrix<double,3,3> }
dr = { ... }
units = ...

}

dproto ROT :: geometry {
semantic = Orientation
coord = rot_matrix
algebraic = orient_rot_mx
ddr = :: c99 { double[9] }
dr = { ... }
units = ...

}

dproto QUAT :: geometric {
semantic = Orientation
coord = quaternion
algebraic = quat
ddr = :: c99 { double[4] }
dr = { 0=0, 1=1, 2=2, 3=3 }
units = quat_units

}

conversion QUAT -> ROT = quat2rot

Listing 10. A sample of dproto models that form the graph-based knowl-
edge of Fig. 1. A conversion from asn quaternion to e rotation is
performed, generating the static code shown in Listing 11.

A. Reference Implementation

An automated data type conversion tool (dconv [4]) has
been realised to support the research hypothesis of this paper.
The software is provided in form of a Lua module and
a command-line tool. The choice of the Lua programming
language [22] is made to guarantee easy interoperability with
C/C++ and other languages, and to have a minimal impact
on the software component that uses it. The same library
provides: i) a code generator that emit the body of a requested
conversion function, to be embedded directly in the user-
code; ii) a runtime converter, that perform the conversion
directly on the data allocated by the application. The current
implementation is at prototypal stage, and it only targets to

TABLE I
SUMMARY OF THE CONVERSION TYPES SUPPORTED AND THEIR REQUIREMENTS.

n. type Conversion Type Requirements for Convertibility
1 direct plain conversion same semantic, coord and algebraic.
2 direct conversion by alias same semantic and coord, different algebraic but alias known.
3 direct conversion by conversion same semantic, different coord and conversion relation

known: conversion delegated to the external function.
4 direct composite conversion both are composition, same semantic, members convertible.
5 indirect conversion semantic must be compatible. Conversion performed by an ordered

sequence of direct conversions, through other dprotos as intermediate steps.
6 indirect composite conversion semantic must be compatible. A composite conversion with at least

one member that requires an indirect conversion.

direct conversion
by alias

asn_quaternion e_rotation

QUAT ROT

direct conversion
by conversion function

direct plain
conversion

requested conversion
(not directly available)

Fig. 1. Example of indirect conversion (type 5) with distance 3. The data
type associated with the dproto asn quaternion is converted to a data
type associated with the dproto e rotation.

double QUAT_tmp_2[4];
double ROT_tmp_3[9];
QUAT_tmp_2[0] = src.im.arr[0];
QUAT_tmp_2[1] = src.im.arr[1];
QUAT_tmp_2[2] = src.im.arr[2];
QUAT_tmp_2[3] = src.re;
quat2rot(QUAT_tmp_2,ROT_tmp_3);
tgt(0,0) = ROT_tmp_3[0];
tgt(0,1) = ROT_tmp_3[1];
tgt(0,2) = ROT_tmp_3[2];
tgt(1,0) = ROT_tmp_3[3];
tgt(1,1) = ROT_tmp_3[4];
tgt(1,2) = ROT_tmp_3[5];
tgt(2,0) = ROT_tmp_3[6];
tgt(2,1) = ROT_tmp_3[7];
tgt(2,2) = ROT_tmp_3[8];

Listing 11. Example of statically generated body function (C code). This
converts an orientation, from a dblx (src) with coord quaternion and
ddr ASN.1, to a dblx tgt with coord rotation matrix and ddr Eigen,
by means of a composite indirect conversion (type 5).

C/C++ code. Moreover, the support is limited to the geomet-
ric domain described in this paper. As a part of the future
work, a schema would be added to allow the definition of
customised domains. Nevertheless, dconv already supports
several digital data representation widely used in robotics,
like existing IDLs (e.g., ROS-IDL, ASN.1, SmartSoft Com-
munication Object DSL), and also Eigen [23] classes and
C99-compatible Plain Old Data (POD). dconv generates
an uniform accessor schema based on the algebraic
information provided by the dproto definitions. To each
assessor is associated an operation, specific to the static
code generator or to the runtime conversion engine. The
set of dproto definitions and relations form a graph-
based knowledge space, upon which conversion queries are

performed. If a valid path from a source dproto to a
target dproto is found, a conversion function is generated,
chaining the previously defined operations.

B. Examples

Static code generation: the Listing 11 shows the gen-
erated body function to perform the conversion from
asn conversion and e rotation, from the model il-
lustrated in Listing 10.In this case, a direct conversion is not
possible, but from the graph-based knowledge defined by the
dproto models (see Fig. 1), a path is found to realise an
indirect conversion (type 5). The generated code uses the
accessors defined by the indicated IDL (ASN.1 and Eigen
Matrix class in this example).
Runtime conversion: it performs the conversion directly, on
the allocated data provided by the application. In this case,
the conversion engine must be embedded in the software
component. Hence, this tool is a first step towards software
components that the can adapt themselves at runtime, and to
realise proxies between different middleware. TO this end,
a simple ROS publish/subscribe example of this is provided
along the sources of the tool. More details, conversion and
usage examples can be found online.

VI. CONCLUSIONS

The proposed DSL and the dconv reference implemen-
tation facilitates the creation of multi-“vendor” robotics
software systems, by allowing developers to create or to
reuse formalizations of the complete semantic meaning of
geometric data structures they must introduce in their soft-
ware. The short-term ambition of the dconv development is
to let it mature via implementations in multi-partner robotics
research projects, with a focus on “realtime” control and
sensor fusion components. These efforts have started already,
and they are expected to lead to a draft standard candidate
for the robotics community, following the proven approach of
the IETF (Internet Engineering Task Force) in standardisation
via small composable standards that come with reference
implementations from the start.

ACKNOWLEDGMENT
The authors gratefully acknowledge the financial support by the European

Community’s Horizon 2020 Programme projects RobMoSys (H2020-ICT-
732410), and ESROCOS (H2020-ICT-730080). The KU Leuven Robotics
Research Group is a core lab of Flanders Make (Strategic Research Centre
for the Manufacturing Industry in Flanders).

REFERENCES

[1] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. B. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in ICRA Workshop on Open Source Software, 2009.

[2] Open Source Robotics Foundation, “ROS2 common interfaces,” https:
//github.com/ros2/common interfaces.

[3] T. De Laet, S. Bellens, R. Smits, E. Aertbeliën, H. Bruyninckx,
and J. De Schutter, “Geometric relations between rigid bodies (Part
1): Semantics for standardization,” IEEE Robotics and Automation
Magazine, vol. 20, no. 1, pp. 84–93, 2013.

[4] E. Scioni, “dconv, an Automatic Datatype Cnversion Tool,” Software
repository, 2018, https://github.com/haianos/dconv-tool.

[5] D. Stampfer, A. Lotz, M. Lutz, and C. Schlegen, “The SmartMDSD
Toolchain: an Integrated MDSD Workflow and Integrated Develop-
ment Environment (IDE) for Robotics Software,” Journal of Software
Engineering in Robotics, vol. 7, no. 1, pp. 3–19, 2016.

[6] C. Schlegel, “SmartSoft: Components and toolchain for robotics,” http:
//smart-robotics.sourceforge.net/.

[7] ——, “SmartSoft: Components and toolchain for robotics,” http://
www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html.

[8] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The Architecture Analysis
& Design Language (AADL): An introduction,” Tech. Rep., 2006.

[9] M. Perrotin, E. Conquet, J. Delange, A. Schiele, and T. Tsiodras,
“Taste: A real-time software engineering tool-chain overview, status,
and future,” in SDL 2011: Integrating System and Software Modeling,
I. Ober and I. Ober, Eds. Springer Berlin Heidelberg, 2012, pp.
26–37.

[10] J. Larmouth, ASN.1 Complete. Academic Press, OSS (Open Systems
Solutions), 1999.

[11] “Google protocol buffers: Google’s data interchange format,” https:
//developers.google.com/protocol-buffers, 2018.

[12] G. LLC, “Google flatbuffers: a memory efficient serialization library,”
https://google.github.io/flatbuffers/, 2018.

[13] The HDF Group, “Hierarchical Data Format, version 5,” https://portal.
hdfgroup.org/display/HDF5/HDF5.

[14] T. R. Gruber, “Toward principles for the design of ontologies used
for knowledge sharing,” International Journal of Human-Computer
Studies, vol. 43, no. 5–6, pp. 907–928, 1995.

[15] T. R. Gruber and G. R. Olsen, “An ontology for engineering mathemat-
ics,” in Fourth International Conference on Principles of Knowledge
Representation and Reasoning, 1994, pp. 258–269.

[16] W3C, “QUDT (Quantities, Units, Dimensions, and Types),” http://
www.qudt.org.

[17] H. Rijgersberg, M. F. J. van Assem, and J. L. Top, “Ontology of units
of measure and related concepts,” Semantic Web — Interoperability,
Usability, Applicability, vol. 4, no. 1, pp. 3–13, 2013.

[18] M. Sporny, D. Longley, G. Kellogg, M. Lanthaler, and N. Lindström,
“A JSON-based serialization for Linked Data,” http://www.w3.org/TR/
json-ld/, 2014.

[19] J. Earley, “Relational level data structures for programming
languages,” Acta Informatica, vol. 2, no. 4, pp. 293–309, Dec 1973.
[Online]. Available: https://doi.org/10.1007/BF00289502

[20] P. Hawkins, A. Aiken, K. Fisher, M. Rinard, and M. Sagiv, “Data
representation synthesis,” in Proceedings of the 32Nd ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’11. New York, NY, USA: ACM, 2011, pp. 38–49.
[Online]. Available: http://doi.acm.org/10.1145/1993498.1993504

[21] C. Loncaric, M. D. Ernst, and E. Torlak, “Generalized data structure
synthesis,” in International Conference on Software Engineering,
2018.

[22] R. Ierusalimschy, L. H. de Figueiredo, and W. C. Filho, “Lua—an
extensible extension language,” Softw. Pract. Exper., vol. 26, no. 6,
pp. 635–652, 1996.

[23] G. Guennebaud, B. Jacob, et al., “Eigen v3,” http://eigen.tuxfamily.org,
2010.

	Executive summary
	Introduction
	Principles and basic tooling
	About flexibility, usability, optimality and composability
	Horizontal Composition: Software Components as Data Integration Systems
	Property Graph
	Introduction
	Property graph, Entity-Relation meta model (ER) and Block-Port-Connector meta model (BPC)
	Embedding knowledge in a property graph: a use case
	Tools and its implementation design
	Storing values in data blocks and its semantics

	The Model-based Function Composition Framework (MFCF)
	MFCF's User Workflow
	MFCF DSL
	Links between computational model and component model

	Horizontal Composition: data-conversion tool
	Integrated Technical Projects (2nd wave call)

	Motion, Perception and World Model Stacks
	World Model Stack
	World Model knowledge as a property-graph
	World Model Runtime
	World Model as a configuration of the information architecture
	World Model Mediator Component Design (WMMC)
	World Model Protocol
	WMMC implementation status

	Motion Stack
	Kinematic trees and motion solvers
	Other existing components and tools
	1st call of Integrated Technical Projects Results

	Perception Stack
	Perception components and functionalities

	Interaction with the pilots
	Introduction
	Flexible Assembly Cell (Siemens)
	Human-robot collaboration for assembly (CEA)
	Intralogistics Industry 4.0 Robot Fleet Pilot (HSU)
	Requirements on RobMoSys Methodology
	Current state

	Annex

