RobMoSys

H2020—ICT—732410

RoBMoSys

CompPoSABLE MODELS AND SOFTWARE
FOR RoBOTICS SYSTEMS

DEeLiverABLE D2.5:
MOoDELING FOUNDATION GUIDELINES AND META-META-MODEL
STRUCTURE

Dennis Stampfer (Hochschule Ulm)
Alex Lotz (Hochschule Ulm)
Christian Schlegel (Hochschule Ulm)

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH AND
INNOVATION PROGRAMME UNDER GRANT AGREEMENT NoO. 732410

&

RobMoSys RoeMoSys D2.5 H2020—ICT—732410

Project acronym: RobMoSys

Project full title: Composable Models and Software for Robotics Systems

Work Package: WP 2

Document number: D2.5

Document title: Modeling Foundation Guidelines and Meta-Meta-Model Structure

Version: 1.0

Due date: June 29th, 2018

Delivery date: June 29th, 2018

Nature: Report (R)

Dissemination level: Public (PU)

Editor: Dennis Stampfer (HSU), Alex Lotz (HSU), Christian Schlegel (HSU)

Author(s): Dennis Stampfer (HSU), Alex Lotz (HSU), Christian Schlegel (HSU),
Enea Scioni (KUL), Nico Huebel (KUL), Herman Bruyninckx (KUL),
Matteo Morelli (CEA), Chokri Mraidha (CEA), Sara Tucci (CEA),
Huascar Espinoza (CEA)

Reviewer: Sergi Garcia (PAL Robotics)

PAGE 2

June 2gth, 2018

(G

RobMoSys RoeMoSys D2.5 H2020—ICT—732410

Executive Summary

This deliverable provides the updated version (M18) of the modeling foundation guidelines and the
meta-meta-model structures with another update in M3o0. Such foundations provide the formal
basis for model structures and their processing.

Modeling foundation guidelines and meta-meta-model structures provide the means to express the
structures to manage the interfaces between different roles (robotics expert, domain expert,
component supplier, system builder, installation and deployment, operation), at different levels of
abstraction (e.g. from high-level “move and perceive” to “grasp firmly” to very detailed “manipulate
with pinch grasp and non-slipping prehension pressure”), and with respect to different concerns
(computation, coordination, configuration, communication) in an efficient and systematic way by
making the step change to a set of fully model-driven methods and tools for composition-oriented
engineering of robotics systems.

That is needed to enable a composition-oriented engineering process for robotic systems where the
properties of a system are predictable from the properties of its building blocks and their
composition “glue”. Designing a robotic system and building a robotic system becomes a process of
composition and configuration of building blocks.

The RobMoSys consortium uses a Wiki for the content of this document. This allows for a living
document with a continuous publishing process following the principles of composition for its
content. While the basic principles expressed in this initial version will remain stable, refinements
and extensions as well as improvements will be added continuously.

Thus, this document serves as a guide through that material of the Wiki visible on the RobMoSys
website which is relevant to this deliverable. A snapshot of the content of the Wiki at the time of
delivery of this document is attached in the appendix.

The presented version of this document is an update of "Deliverable D2.1: Modeling Foundation
Guidelines and Meta-Meta-Model Structures”. It extends the reading guide through the Wiki and
highlights the updates since the previous version of this deliverable. Since the initial version of the
deliverable, the structures have proven to be suitable and stable. The document lists examples of
their realization within RobMoSys tooling and examples where the RobMoSys approach has been
applied.

PAGE 3 June 2gth, 2018

@

RobMoSys RosMoSys D2.5 H2020—ICT—732410

Summary of Updates to this Document

D2.1 - June 30th, 2017
Initial version of this deliverable

D2.5 - June 30th, 2018

This document is an update of the initial deliverable D2.1. This document serves as an updated guide
to the RobMoSys wiki. Therefore, the following extensions of the RobMoSys Wiki contribute to this
deliverable:

e The RobMoSys Glossary has been extended
e The Meta-Model Structures has been updated and has demonstrated its suitability
o Minor updates have been undertaken: graphical notation and description has been
updated.
m Wiki Page on "Block-Port-Connector”
o The concept of Block-Port-Connector has demonstrated to be suitable through the
implementation and use in Papyrus4Robotics.
m Wiki Page on "Papyrus4Robotics”
e The Modeling Foundation Guidelines have been updated and extended
o Extended the description of the Ecosystem Organization
m The following new subpages have been added. They now describe the
realization in RobMoSys tooling. RobMoSys can now be experienced by
using tooling and the existing building blocks or systems.
e Wiki page on "Tooling Support for the RobMoSys Ecosystem
Organization”
m The Ecosystem Organization has been extended to cover the evolvement of
structures in Tier1
e Wiki page on “Tier 1 in Detail”
e Section “Ecosystem Organization in the Industry 4.0 Domain” and
Wiki page on "OPC Unified Architecture (OPC UA)”
o Extending and updating the Architectural Patterns and other related pages around
Robotic Behavior. The main pages that have been influenced are:
m Wiki page on “Architectural Pattern for Component Coordination”
m Wiki page on “Architectural Pattern for Task-Plot Coordination (Robotic
Behaviors)”
o Extending Roles in the ecosystem
m Adding the Behavior Developer Role Description and extending the
Component Supplier Role
e Wiki page on “Behavior Developer”
e Wiki page on "Component Supplier”
m Extending the description for the Performance Designer
e Wiki page on “Performance Designer”
e The Foundations and Structures have demonstrated feasibility through applying them
o Whole new section in the wiki with several subpages on “"Composition in an
Ecosystem” to illustrate composition by several examples. These examples also
describe how RobMoSys tooling can be used to apply the specified concepts.
m Wiki page on "Task-Level Composition for Robotic Behavior”
m Wiki page on “Service-based composition of software components”

PAGE 4 June 2gth, 2018

G
RobMoSys RoeMoSys D2.5 H2020—ICT—732410

m Wiki page on "Managing Cause-Effect Chains in Component Composition”
m Wiki page on “Coordinating Activities and Life Cycle of Software
Components”
o Examples of Tier 2 domain structures have been extended and its support through
RobMoSys tooling has been described
m Wiki page on “Flexible Navigation Stack”
o Extended the description of how the RobMoSys tooling supports in using the
meta-model structures and modeling foundation guidelines
m Wiki page on "Papyrus4Robotics"
m Wiki page on "The SmartMDSD Toolchain"

In addition to the wiki, the following extensions to this document have been made:

e Proven suitability to disseminate the RobMoSys concepts and knowledge through the wiki
in a very open and transparent way to engage the robotics community.

Comparison of the RobMoSys Ecosystem with OPC UA in the industry 4.0 domain
Description on how the RobMoSys Ecosystem Tier 1 structures evolve over time.

Description on how RobMoSys realizes the Ecosystem Tiers.

Description on the Block-Port-Connector realization alternatives.

PAGE § June 2gth, 2018

@

RobMoSys RoeMoSys D2.5

Content

Executive Summary
Summary of Updates to this Document
Content

Introduction
The RobMoSys Wiki
RobMoSys Ecosystem Organization
Contents in the RobMoSys Ecosystem

Ecosystem Organization in the Industry 4.0 Domain

Approach
Introduction
The Details of Tier-1
Block-Port-Connector Realization Alternatives
Modeling Foundation Guidelines

Meta-Meta-Model Structures

Appendix

Pace 6

H2020—ICT—732410

O N N N

10

11
11
12
14
15
15

15

June 2gth, 2018

&

RobMoSys RosMoSys D2.5 H2020—ICT—732410

1 Introduction

RobMoSys is about managing the interfaces between different roles (robotics expert, domain
expert, component supplier, system builder, installation, deployment and operation) and separate
concerns in an efficient and systematic way by making the step change to a set of fully model-driven
methods and tools for composition-oriented engineering of robotics systems.

It is about the first principles of composition, separation of roles and explicated models:

e understanding at design-time
e plausibility at run-time
e justifiability at inspection time

1.1 The RobMoSys Wiki

The RobMoSys consortium uses a Wiki for the content of this document. This allows for a living
document with a continuous publishing process following the principles of composition for its
content. While the basic principles expressed in this initial version will remain stable, refinements
and extensions as well as improvements will be added continuously.

Thus, this document serves as a guide through that material of the Wiki visible on the RobMoSys
website which is relevant to this deliverable. A snapshot of the content of the Wiki at the time of
delivery of this document is attached in the appendix.

This document refers to the RobMoSys wiki. A snapshot is attached in the appendix of this
document for simple printing. Additionally, it can be accessed online at
e http://www.robmosys.eu/wiki-sn-02/

We refer to specific wiki pages like this: Wiki Page on "<Title of wiki page>". These wiki pages can
be accessed via its title in the appendix and in the RobMoSys Wiki Jump-Page at
e http://www.robmosys.eu/wiki-sn-o2/jumppage

The live version of the wiki at http://www.robmosys.eu/wiki also reflects updates and ongoing
additions after the submission of this document. An up-to-date jump-page can be found at
® http://www.robmosys.eu/wiki/jumppage

The main philosophy behind the RobMoSys Wiki is to favour early access, openness, and
transparency over completeness. This is to support communication of RobMoSys being a
community endeavour. During more than one year of maintaining and sharing technical insights
through the Wiki, it was confirmed that this approach indeed simplifies and speeds up the
communication on one hand. On the other hand, it is very well appreciated by the closer RobMoSys
community (e.g. by integrated technical projects / ITPs) and the general robotics community. These
claims are supported by many positive feedbacks from the many events such as brokerage days,
conference workshops, the European Robotics Forum Workshop, and technical workshops with
RobMoSys ITPs.

1.2 RobMoSys Ecosystem Organization

An initial version of a Glossary provides definitions for the most relevant terms in the context of

PAGE 7 June 2gth, 2018

http://www.robmosys.eu/wiki-sn-02/
http://www.robmosys.eu/wiki-sn-02/jumppage
http://www.robmosys.eu/wiki
http://www.robmosys.eu/wiki/jumppage

(G

RobMoSys RosMoSys D2.5 H2020—ICT—732410

RobMoSys. See
e Wiki Page on “Glossary”

RobMoSys envisions a robotics business ecosystem in which a large number of loosely
interconnected participants depend on each other for their mutual effectiveness and individual
success. The modeling foundation guidelines and the meta-meta-model structures are driven by the
needs of the typical tiers of an ecosystem and the needs of their stakeholders (see figure 1). The
different tiers are arranged along levels of abstractions. Figure 1 also illustrates the amount of
experts and people contributing to and using the particular tiers.

Tier 1 structures the ecosystem in general for robotics. It is shaped by the drivers of the ecosystem
that define an overall composition structure which enables composition. Tier 1 contains the main
technical structures for composition and the lower tiers conform to Tier 1 (similar to, for example,
the ecosystem of the Debian GNU/Linux OS and its structures). Tier 1 is shaped by few
representative experts for ecosystems and composition. This is kick-started by the RobMoSys
project.

Structures defined on Tier 1 can be compared to structures that are defined for the PC industry. The
personal computer market is based on stable interfaces that change only slowly but allow for parts
changing rapidly since the way parts interact can last longer than the parts themselves and there is a
huge amount of cooperating and competing players involved. This resulted in a tremendous offer of
composable systems and components.

Tier 2 conforms to these foundations, structuring the particular domains within robotics and is
shaped by the experts of these domains (representatives of the individual sub-domains in robotics),
for example, object recognition, manipulation, or SLAM.

Tier 3 conforms to the domain-structures of Tier 2 to supply and to use content. Here are the main
"users" of the ecosystem, for example component suppliers and system builders. The number of
users and contributors is significantly larger than at the above tiers as everyone contributing or using
a building block is located at this tier.

Ecosystem Tiers
and groups of roles

Tier Elements in terms of modeling

Composition
Structure

Tier 1 meta-meta-model

Ecosystem A
l Drivers conforms
to
Domain Domain- del
Experts Models meta-mode
A conforms

to
Ecosystem ‘ Content for
Users C] \ E— model

Figure 1: Tiers of an Ecosystem, their elements and the elements in terms of modeling.

Pace 8 June 2gth, 2018

&

RobMoSys RosMoSys D2.5 H2020—ICT—732410

Tier 1 further distinguishes between generic composition structures (Modeling Foundation
Guidelines and Meta-Meta-Model Structures such as scientific grounding and
block-port-connector concepts), and the RobMoSys composition structures (concepts for robotics
building blocks). Deliverable D2.1 focusses on generic composition structures while D2.2 focuses on
the RobMoSys composition structures which are both at Tier 1.

See:

e Wiki page on “"Ecosystem Organization”

Contents in the RobMoSys Ecosystem

The realization of the three composition tiers in tooling validates the feasibility of the overall
approach through applying it. The RobMoSys tooling implements a vertical example of the
composition tiers. See:

e Wiki page on "SmartMDSD Toolchain Support for the RobMoSys Ecosystem
Organization"
e \Wiki page on "Getting Started With Papyrus4Robotics"

The structures of Tier 1 have been implemented in Papyrus4Robotics to support modeling at Tier 2
and Tier 3. They also have been implemented in the SmartMDSD Toolchain to support modeling,
code-generation and use of previously developed software components at Tier 2 and Tier 3. See

e Wiki page on "Papyrus4Robotics"
o Wiki page on "The SmartMDSD Toolchain"

Examples of Tier 2 domain models support the feasibility of the RobMoSys approach for domain
modeling. A repository of domain models for use with the SmartMDSD Toolchain has been set up at

1

e Wiki page on "Flexible Navigation Stack"

To demonstrate Tier 3, a repository of previously developed software components for use with the
SmartMDSD Toolchain has been set up®. A repository of systems that serve as an example for use
with the SmartMDSD Toolchain has been set up as well. Initial pilot skeletons are available that
demonstrate running systems. See

e Wiki page on "The SmartMDSD Toolchain"
e Wiki page on "Gazebo/TIAGo/SmartSoft Scenario"

The RobMoSys Ecosystem, Foundation Guidelines, and Meta-Model Structures tend to be stable:
the recent discussions with the running integrated technical projects (ITPs) allow for an early
conclusion that the RobMoSys structures allow for integration of the ITP contributions without
altering the RobMoSys structures.

* https://aithub.com/Servicerobotics-Ulm/DomainModelsRepositories
2 https://aithub.com/Servicerobotics-Ulm/ComponentRepository
3 https://aithub.com/Servicerobotics-Ulm/SystemRepository

PAGE 9 June 2gth, 2018

https://github.com/Servicerobotics-Ulm/DomainModelsRepositories
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://github.com/Servicerobotics-Ulm/SystemRepository

1

RobMoSys RoeMoSys D2.5 H2020—ICT—732410

Ecosystem Organization in the Industry 4.0 Domain

The organization of an ecosystem in three tiers can also be found in other domains. For example, a
significant part of the industry 4.0 domain is shifting towards the OPC Unified Architecture* (OPC
UA). OPC UA is a standard for machine-to-machine communication comprising communication
infrastructure and information models for semantic data exchange. OPC UA is standardizing
connectivity of industrial devices and enables the interoperability among products of different
vendors. It does not yet address the next level of interoperability which we call “composability”.

The OPC UA ecosystem is in its structures exactly conformant to the explicated tiers of the
RobMoSys ecosystem approach. The OPC foundation is the driver in tier 1, the companion
specifications belong to tier 2 and finally there are the users at tier 3. The strong point about OPC UA
is that it is driven by industry in a joint effort and that they successfully manage the ramp up of an
ecosystem along these tiers.

A direct comparison of the RobMoSys Ecosystem with OPC UA is given in the figure below.

RobMoSys Ecosystem Tiers RobMoSys % OPC UA World M UA
and groups of roles Tier Elements
RobMoSys
. T e.g. service-oriented software
Tier 1 COSTPO':SItlon component model, robotics OPC UA e.g. information
ructure task models, communication models, variables,
l" Ecosystem conforms Pattems Standard methods
Drivers
to Q

e.g. vision, robotics,

Tier 2
e Domain %% Domain- e.qg. vision, flexible navigation _OPC UA_ § . devices, kitchen
- * E 3 = stack, motion-perception-world Companion Specifications equipment
) L Xperts o Models model stack, manipulation. FaN

""" conforms H

Tier 3 I:l to e.g. vision, flexible navigation OPC UA ;'g'ci":‘se' c;ef,:sszrs
i\ * Ecosystem ‘ Content for | Stack, motion-perception-world | p,iiding Blocks and Systems | robots '
Users l:l model stack, manipulation. (Clients/Servers)

Exchange

Figure 1b: Direct comparison of the RobMoSys Ecosystem and the OPC UA Ecosystem.

As prominent example for domain models (companion specifications), VDMA is working on
companion specifications for visions and robotics®. Companion specifications sometimes contain
additional concepts that have evolved in a particular domain, but that are generally applicable. For
example, the companion specification for vision foresees a generic state automaton for components
with component-specific sub-states---a very similar concept to the RobMoSys component life-cycle
and state pattern’. In the long-run, they may be adopted by OPC UA itself, thus move from Tier 2 to
Tier 3. This movement of structures describes the evolvement of an ecosystem and also has been
identified for RobMoSys (see wiki page on ,Tier 1 in detail*). OPC UA is actively postulating the
creation of companion specifications by providing support and guidance.

OPC UA eases device integration thanks to an overall methodology (Tier 1) and domain-specific
standards (composition Tier 2). Device suppliers now can adopt the Tier 2 standards and gain
compatibility with users that expect these standards. OPC UA, however, does not specifically aim for
composition and is, in fact, less suitable for composition of software components. It misses
adequate abstractions and concepts (e.g. such as RobMoSys communication patterns). However,
composability starts being addressed in OPC UA as it can be observed in recent developments that
are on the way to introduce the concept of skills.

OPC UA can also be used as an underlying communication infrastructure below the RobMoSys
structures. In the context of composition, the challenge with OPC UA is to introduce additional
structures that enable composition. This is done by, for example, the RobMoSys communication

4 https://opcfoundation.org

5 https://opcfoundation.org/markets-collaboration/vdma-machine-vision

® https://opcfoundation.org/markets-collaboration/vdma-robotics

7 Wiki page on “Coordinating Activities and Life Cycle of Software Components”

PAGE 10 June 2gth, 2018

https://opcfoundation.org/
https://opcfoundation.org/markets-collaboration/vdma-machine-vision
https://opcfoundation.org/markets-collaboration/vdma-robotics

G
RobMoSys RoeMoSys D2.5 H2020—ICT—732410

patterns. This is where the German national BMWi/PAICE Project “Service Robot Network”®
(SeRoNet) is adopting parts of the RobMoSys composition structures and provides a mapping to
OPC UA. Thereby, SeRoNet can fully benefit from composition as introduced by RobMoSys but also
manages the seamless integration with the traditional OPC UA world, for example to use OPC UA
powered devices.

In general, the industry 4.0 world based on OPC UA has a fully conformant way of thinking with
respect to the overall RobMoSys world. Thus, there is a very good chance to communicate the
RobMoSys contributions to that domain and thereby link the robotics domain with the automation
domain. While OPC UA and its companion specifications at the moment are at the level of
integration with a roadmap towards the next levels which we call composability, RobMoSys already
now proposes solutions to address composability. Due to the very same ecosystem structures, there
is a very good chance to enable adoption of the RobMoSys outcomes within the industry driven OPC
UA automation domain. For RobMoSys, the strength of OPC UA is that it provides standardized and
uniform ways to access all kinds of devices like sensors, actuators, machineries, cloud services etc.
RobMoSys puts its focus on the software composition for most complex sensori-motor systems
which then can get networked with industry 4.0 environments via OPC UA.

See also:
e Wiki page on "OPC Unified Architecture (OPC UA)”

e Wiki page on “Tier 1 in Detail”

2 Approach

2.1 Introduction

Structural models describe the static aspects of a system, its parts and relationships. It is widely
accepted to represent structural models as a set of connected blocks. Blocks encapsulate
functionalities and interact with their external world (which can be other blocks) via ports. A port
establishes an interface that external elements can use to interact with the block. Connectors
connect ports of blocks. Note that a block represents a generic entity. It can for instance represent a
logical / functional element (data processing, controlling, actuating), a piece of software (a software
component) or even a physical entity (e.g. a sensor or an actuator). A block can encapsulate other
blocks for reducing complexity (nesting for information hiding and information abstraction). Blocks
can be arranged such that they represent abstraction levels in vertical stacks.

As generic representation behind blocks, ports and connectors, we have chosen hierarchical
hypergraphs which represent links between different models and different views (whether it is a
S/W component model, a H/W component model, a kinematic chain, a model for task plots, etc.).
They also allow for sound foundations for managing constraints and partial bindings across different
models and provide the basis for navigating through such structures.

Behavioral models describe the dynamic aspects of a system, for instance, a chain of actions or
system states and associated events / transitions. Again, the port-based modeling paradigm with
ports, blocks and connectors can be used to structure the behavioral models. Behavioral models can
be composed out of other behavioral models through the port-based modeling paradigm.
Behavioral models can range from continuous time phenomena to discrete event systems, from
reactive systems to planning systems. They can range from finite-state-automatons (as used for
managing the life-cycle inside a component) over different forms of process networks (to model
behavioral characteristics of connected components) to robot coordination languages (such as

8 https://www.seronet-projekt.de

PAGE 11 June 2gth, 2018

https://www.seronet-projekt.de/

G
RobMoSys RoeMoSys D2.5 H2020—ICT—732410

task-nets used for orchestration of the overall robot behavior and subordinated components).

Knowledge models are formal relationships between primitives and parameters in the structural
and the behavioural models, to encode dependencies between them that hold in particular contexts.
In contrast to the structural and the behavioural models, knowledge models are not best served by
means of a block-port-connector approach, but by plain formal n-ary (or “graph”) relationships; and
hierarchy is an extremely important structural property of knowledge relationships and such
knowledge hierarchies can overlap, which is a fundamental (*compositional”) property of “contexts”
or “namespaces”.

Finally, a robotics system is composed out of building blocks (components and their horizontal and
vertical composition). A component is a block which encapsulates functional blocks, behavioural
blocks, the inter-relationships between these blocks and their configurations. A component comes
with data ports, coordination ports and configuration ports. Again, a component can encapsulate
other components with their functionalities, behaviours and configurations. The advantage of
encapsulation is that a system can be modeled by composing and connecting the ports of its
sub-systems, independently of alternative or future implementations of these sub-systems.
Aggregate ports can describe very high-level connections between components which can be
refined into various types of interaction models (e.g. patterns for geometrical interaction, patterns
for information exchange with quality-of-service).

Both, structural and behavioral models are necessary to define the system, but structural models are
necessary to organize the the system in units and to hide complexity. In this way, different roles
(software engineer, behavior developer, system builder, etc.) are exposed to different parts of the
system model at different levels of granularity. Most importantly, the different roles can add
constraints to those parts visible to them at any time refining the problem space (requirements) and
| or the solution space for other downstream developer roles.

Thanks to structural modeling, all the different roles can compose different parts of the system at
different levels of granularity and for different concerns. For instance, blocks can be composed
under the constraints of a specific architectural pattern. Blocks of different nature can also be
composed together, for instance blocks representing functionalities can be composed with blocks
representing computing resources to describe which resources will be used by a given functionality.

As said, design becomes a process of composition and configuration of components. The target
system is designed using predefined, modular components which are selected, configured and
assembled in a way that the design specifications are met. Models for system-of-systems comprise
structural models and behavioural models for both, the internals of a component and the interaction
between components. For example, system-level behavioural models relate to component
configurations, the behavioural models of the components and the interaction between the
components.

2.2 The Details of Tier-1

Figure 2 shows the details of the structure of Tier-1. All the elements in Tier-1 are summarized as
meta-meta-models. Moreover, the meta-meta-models within Tier-1 are organized themselves in a
hierarchical manner in order to best serve the realization of the RobMoSys objectives. The lowest
level within Tier 1 contains the RobMoSys composition structures. Tier-2 then conforms to these
composition structures.

PAGE 12 June 2gth, 2018

(G

RobMoSys RoeMoSys D2.5 H2020—ICT—732410

Scientific
grounding:
Hypergraphs conforms-to
Block-Port-Connector,

NPC4, Constraints,

Relations, etc.
& conforms-to

RobMoSys composition

structure: =
Blocks: Relations: Views: —_—
- Service - Middleware - Component ;
- Component Binding Developer V. forn‘:allze 8
- Activity - Wish - Performance V. , Architectural
- Task Fulfillment - Service V. o Patterns
- - = s
S conforms-to
- P
&.@‘ apply & generalize . AN
- Via architectural patterns:
= Human translates best practices and lessons
Via applying structures: learned as described in architectural patterns
Applying compasition structures in domain- into formal models using the RobMoSys Block-
modeling may require adding additional Port-Connector meta-models to result in the
structures. Many of these structures prove to RobMoSys composition-structure.

be general or may be generalized to become
domain-independent. These structures then
can become part of Tier 1 structures.

Figure 2: Details of the structure of Tier-1.

There are two approaches on how to come up with the composition structures in Tier 1. RobMoSys is
a community effort and will guide contributors in one of these approaches such that their knowledge
and methodology becomes accessible through the composition structures. For example, the
following two approaches have already proven to be successful with respect to the integrated
technical projects (ITPs) of RobMoSys.

The first and initial approach to come up with composition structures is to formalize architectural
patterns (Fig. 2). See

e Wiki page on “Architectural Patterns”

The second approach is to evolve the composition structures over time by generalizing existing
domain-specific structures. In some cases, the composition structures of Tier 1 may not be sufficient
or not complete for modeling in a particular robotics domain. This situation requires additional
structures to be added on Tier 2. However, many of these structures tend to be generally applicable
or may be generalized such that they become domain-independent and finally part of the
composition structures. This is illustrated in the figure below.

PAGE 13 June 2gth, 2018

1

RobMoSys RoBMoSys D2.5 H2020—ICT—732410

<

» Step 1: Identify A&
- Step 2: Transfer Scientific
« Step 3. Work on Consistency grounding:
and Integrate Hypergraphs

ﬁconforms-to
* Result (4): Harmonized Bttt cnartnr
Composition Structures NPCA. Cormaints;
. Relations, etc.
A / \"\conforms-to

RobMoSys composition £ 3
Additional Structures

structure:
Generic to Robotics

2| Blocks: Relations

- Service Middlewar
) ig Structures Integrated
. Tad to RobMoSys

* 2! \\conforms-to
v b
& < £
A \ Addition&l Structures
/v Required for this Domain
Motion Stack (WP3) (pere: Motion Stack)

... Stack

Figure 3: Evolvement of Tier 1 composition structures via applying them on lower tiers.

The first step (step 1, figure above) is to identify the additional structures that are independent of an
application but general to a domain. The second step is to transfer these structures to Tier 1, thereby
making them domain independent (step 2, figure above). The final step is to work on the
consistency of the newly identified structures with the existing composition structures with the aim
to integrate them (step 3, figure above).

For example, it is necessary to shape them to the overall RobMoSys approach, taking separation of
roles, composability, etc. into account. This results in the next generation of harmonized
composition structures (step 4, figure above).

See:

e Wiki page on “Tier 1 in Detail”

2.3 Block-Port-Connector Realization Alternatives

RobMoSys describes the Block-Port-Connector concept (including the concepts of topology and
mereology) as a generic and recurring mechanism that can be found in different meta-meta-model
realization alternatives. Two widely known realization alternatives are Eclipse Ecore and Essential
Meta-Object Facility (EMOF). While this level alone is not sufficient to realize composition in
robotics, it provides an essential foundation for the RobMoSys composition structures (i.e., the
RobMoSys actual meta-models).

Meanwhile, several of the realization-independent RobMoSys composition structures have been
realized within the SmartMDSD Toolchain (based on Eclipse Ecore, Xtext and Sirius technologies)
and within the Papyrus4Robotics Toolchain (leveraging concepts from
https://www.omg.org/spec/MARTE/ based on UML profiles). See

e Wiki page on “"Papyrus4Robotics”

PAGE 14 June 2gth, 2018

https://www.omg.org/spec/MARTE/

(G

RobMoSys RoeMoSys D2.5 H2020—ICT—732410

e Wiki page on "The SmartMDSD Toolchain”

These realization alternatives validate and support the feasibility of the specified structures at Tier 1.
The existing RobMoSys tooling builds on the composition structures to model Tier 2 / Tier 3. This
indirectly validates the concepts of Tier 1.

2.4 Modeling Foundation Guidelines

The following list of pages and their subpages provide the set of fundamental principles in
RobMoSys.

e Wiki Page on “"General Principles":
Wiki Page on “Separation of Levels and Separation of Concerns”
Wiki Page on “Architectural Patterns”
Wiki Page on “"Ecosystem Organization”
Wiki page on "Tier 1 in Detail”
Wiki Page on “User-Stories”
Wiki Page on “PC Analogy: Explaining RobMoSys by the example of the PC
domain”
e Wiki Page on “Your Role in the RobMoSys Ecosystem”:
o Wiki Page on "Roles in the Ecosystem”

O O O O O O

2.5 Meta-Meta-Model Structures

The following list of Wiki pages and their subpages provide the first set of Meta-Meta-Model
structures. This D2.1 document focuses on the two topmost layers within Tier-1 whereas the
document D2.2 (besides other content) covers the lowest layer in Tier-1 namely the RobMoSys
composition structures and views.

e Wiki Pages on “Tier 1 Structure”
o Wiki Pages on “Scientific Grounding: Hypergraph and Entity-Relation model”
o Wiki Pages on "Block-Port-Connector”

3 Appendix

A snapshot as of June 29th, 2018 of the RobMoSys Wiki is attached in the appendix for simple
printing. The snapshot can be accessed online via http://robmosys.eu/wiki-sn-o02. The live version of
the wiki can be found at http://www.robmosys.eu/wiki.

PAGE 15 June 2gth, 2018

http://robmosys.eu/wiki-sn-02
http://www.robmosys.eu/wiki

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

RobMoSys Wiki

e “Section 1/ Excellence”: excerpt of RobMoSys Grant Agreement, Annex 1 (part B) |]

* Presentation of the RobMoSys project at European Robotics Forum 2017, Edinburgh | »

e Presentation “Modeling Principles and Modeling Foundations” at the RobMoSys Brokerage Day, July

5th 2017, Leuven [i

The RobMoSys Wiki provides technical details on the RobMoSys approach including examples realizing the
RobMoSys structures. The main philosophy behind the RobMoSys Wiki is to favour early access, openness,
and transparency over completeness. This is to support communication of RobMoSys being a community

website [http:/www.robmosys.eu].

Please note: The RobMoSys consortium is continuously updating this wiki to provide early insights. See the

Glossary and FAQ

questions.

Your Role in the RobMoSys Ecosystem

http://robmosys.eu/wiki-sn-02/start 2018-06-29

http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/composition:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/download/section-1-excellence-excerpt-of-robmosys-grant-agreement-annex-1-part-b/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
http://robmosys.eu/download/project-overview-modeling-principles-and-foundations-christian-schlegel-hs-ulm/
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/changelog
https://robmosys.eu/wiki-sn-02/jumppage
https://robmosys.eu/wiki-sn-02/snapshots
https://robmosys.eu/wiki-sn-02/_detail/glossary.png?id=start
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/faq
https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:roles-ecosystem.png?id=start

Start reading here to see what your role is in the RobMoSys
ecosystem or learn more about Roles in the Ecosystem. Main
ecosystem users are:

e Behavior Developer
e Component Supplier
e Function Developer

e Performance Designer
. Safety Engmeer

. System Architect
e System Builder

Besides the ecosystem participants, there are also other roles like the Model-Driven Engineering tool
developers (see RobMoSys Composition Structures) and framework builders (see Software Baseline). Read a
quick introduction to the role of open call applicants in the project-level FAQ
[http://robmosys.eu/faq/#1501224896192-8bac1f66-275f].

General Principles

RobMoSys manages the interfaces between different roles and 5555550 e
separates concerns in an efficient and systematic way by making A T | e
the step change to a set of fully model-driven methods and tools i

for composition-oriented engineering of robotics systems. The

following list of pages provide some fundamental principles in R s
RobMoSys. /M thi \

rratas repoid

Earbarups

e Separation of Levels and Separation of Concerns
e Architectural Patterns

e Ecosystem Organization and Tiers

e User-Stories

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

e Roadmap of MetaModeling
e Modeling Principles i =
® Modeling Twin Aerivens arsemitn ez n sorwir. | |1

e Realization Alternatives
e Tier 1 Structure

e Scientific Grounding: Hypergraph and Entity-Relation model

e Block-Port-Connector

e RobMoSys Composition Structures (and metamodels)

Views which are used byroles

http://robmosys.eu/wiki-sn-02/start 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/baseline:start
http://robmosys.eu/faq/#1501224896192-8bac1f66-275f
https://robmosys.eu/wiki-sn-02/_media/general_principles:ecosystem:composition-tiers.png
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-02/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-02/modeling:roadmap
https://robmosys.eu/wiki-sn-02/modeling:principles
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

Tier 2: Examples of Domain Models

RobMoSys allows the definition of domain-specific models and
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

Motion, Perception, Worldmodel Stack
Flexible Navigation Stack

Active Object Recognition

e etc.

Tools and Software Baseline

RobMoSys provides a set of tools and a software baseline that
already conform to the RobMoSys approach. This set can serve
as a starting-point for implementations or demonstrations.

Tooling Baseline

e Roadmap of Tools and Software

e Development Environments and Tools
e SmartSoft World
e Papyrus for Robotics
e to be extended

Tier 3: Existing Building Blocks and Scenarios

e Components
e SmartSoft Components
e Scenarios and Systems
e Gazebo/Tiago/SmartSoft Scenario
e Cause-Effect-Chain Example Scenario

Composition in an Ecosystem

RobMoSys adopts a composition-oriented approach to system integration that
manages, maintains and assures system-level properties, while preserving
modularity and independence of existing robotics platforms and code bases, yet

can build on top of them.

e Introduction to Composition in an Ecosystem
e We illustrate composition by:
e Task-Level Composition for Robotic Behavior

e Service-based composition of software components

e Composition of algorithms

e Managing Cause-Effect Chains in Component Composition

http://robmosys.eu/wiki-sn-02/start

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/system-examples:intralogistic.jpg
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/domain_models:motion-perception-worldmodel:start
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/domain_models:active-object-recognition:start
https://robmosys.eu/wiki-sn-02/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-02/baseline:roadmap
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-02/baseline:components:smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:cause-effect-chain-scenario_smartsoft
https://robmosys.eu/wiki-sn-02/_detail/bricks-300.png?id=start
https://robmosys.eu/wiki-sn-02/composition:introduction
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/composition:algorithms:start
https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start

e Coordinating Activities and Life Cycle of Software Components

Pilots: Demonstrating the RobMoSys Approach

RobMoSys uses pilots to demonstrate the use of its approach
through the development of full applications with robots. Pilots
span different domains and different kind of applications. The
pilots can be provided to project contributors to support
designing, developing, testing, benchmarking and demonstrating
their contribution.

e Goods Transport in a Company:
e Intralogistics Industry 4.0 Robot Fleet Pilot
e Mobile Manipulation for manufacturing applications on
a product line:
e Flexible Assembly Cell Pilot
e Human Robot Collaboration for Assembly Pilot
e Mobile manipulation for assistive robotics in a domestic environment or in care institutions:
e Assistive Mobile Manipulation Pilot
e Modular Educational Robot Pilot

The project is open for constructive suggestions from the community for further pilots or extensions to existing

pilots, as long as “platform”, “composability” and “model-tool-code” are first-class citizens of those
suggestions.

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing
approaches should be used wherever possible. The following
list provides some common approaches that are considered

relevant within the RobMoSys context. = ,m_;j T i

S R [T I
by ~rpermiiarare o BliH e i
[

Freey
L]
- Modelng Leasml

e General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.) e T e
e Robotics Approaches (ROS, YARP, RTC, etc.)
e Middlewares (DDS)

N wapiiey Lkl i

Trarsberrapa prds Lspuagrie o graesd
it L i st ek Lad
P B AAEL i i o e

the renmrg i ra @eaye L. bat reghn i

start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/start

http://robmosys.eu/wiki-sn-02/start 2018-06-29

https://robmosys.eu/wiki-sn-02/composition:component-activities:start
https://robmosys.eu/wiki-sn-02/_detail/pilots:assistive-mobile-manipulation.png?id=start
https://robmosys.eu/wiki-sn-02/pilots:intralogistics
https://robmosys.eu/wiki-sn-02/pilots:flexible-assembly
https://robmosys.eu/wiki-sn-02/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-02/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-02/pilots:education
https://robmosys.eu/wiki-sn-02/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=start
https://robmosys.eu/wiki-sn-02/other_approaches:modeling_languages
https://robmosys.eu/wiki-sn-02/other_approaches:opc-ua

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

RobMoSys Glossary

The glossary contains descriptions of used terms.

General Terms
Ecosystem

A collaboration model (cf. Bosch2010.1), Tansiti20042)), which describes the many ways and advantages in
which stakeholders (e.g. experts in various fields or companies) network, collaborate, share efforts and costs
around a domain or product.

Robotics is a diverse and interdisciplinary field, and contributors have dedicated experience and can contribute
software building blocks using their expertise for use by others and system composition.

Participants in an ecosystem do not necessarily know each other, thus the challenge is to organize the
contributions without negotiating technical agreements and without adhering to a synchronized development
process to organize the contributions.

See Ecosystem Organization

Digital Platform

There are two different definitions of digital platforms:

e Economical Definition: Multi-sided market gateways creating value by enabling interaction between
two or more complementary customer groups.

e Innovation Definition: Reference architecture/implementation with an innovation ecosystem triggering
broad value creation.

Platform is not to be confused with the MDA's [http://www.omg.org/mda/] definition. This definition relates to a
concrete technology (in most cases referring to a communication middleware technology such as e.g. CORBA).

The term “Platform” is also used in RobMoSys with respect to the target deployment platform / robot platform.
See Platform Metamodel. This is not to be confused with the “Digital Platform”.

System Composition (Activity)

The action or activity of putting together a service robotics application from existing building blocks (here:
software components) in a meaningful way, flexibly combining and re-combining them depending on the
application's needs.

See also: System Composition in an Ecosystem

System Integration (Activity)

The activity that requires effort to combine components, requiring modification or additional action to make
them work with others (see Petty201 33)).

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
http://www.omg.org/mda/
https://robmosys.eu/wiki-sn-02/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-02/composition:introduction

We distinguish integration as an activity and integration as in “integration-centric”.

See also: System Composition in an Ecosystem

Composability

e The ability to combine and
recombine building blocks as- - — - -
is into different systems for
different purposes in a rules how to composition know about

meaningful way. ousid these rules their properties
knowledge about the properties of the .Eomposmon

e [t is the basic prerequisite for .
system composition since it is < ensure overall consistency
the property that makes parts
become building blocks.
Composability has aspects
both between components (parts) and the application (whole). Composability comprises syntactic and
semantic aspects.

prog‘eriy select to match requfremfnts

e Composability requires that properties of sub-system are invariant (“remain satisfied”) under
composition

e Splittability is “inverse” relationship of composability
Compositionality

e The ability to compose different modules in a methodological way in order to meet predictable
functional and extra-functional requirements.

e Compositionality is a system-level design concern, that reflects the extent to which system designers are
able to predict the behaviour of their system on the basis of the formally known behaviour of each of the
system’s components.

Component

A component is the unit of composition that provides functionality to the system through formally defined

services at a certain level of abstraction (cf. Szyperski2002f.1..).).

A component holds the implementation to bridge between services and functions. A component is defined
through a component model and can realize one or more services and interacts with others through services
only. When speaking of components, we refer to explicit software components as in the SmartSoft World, in

[http://www.aadl.info/]).

A component comprises several levels. It is the unit of composition that is being exchanged in the ecosystem.

See also:

Architectural Pattern Software Components
e Component Metamodel

Component Supplier role

Component Development View

Service

A service can be defined in two different ways:
http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/composition:introduction
https://robmosys.eu/wiki-sn-02/_detail/building-blocks-and-systems.png?id=glossary
http://www.aadl.info/
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/modeling:views:component_development

e aservice in the sense of service-oriented architectures (SOA) that provides a self-contained business
functionality to a consumer independent of its realization

See also:

e Communication Pattern

System

A combination of interacting elements organized to achieve one or more stated purposes. 2

System-of-systems

Any system should, in itself, be usable as a building block in a larger system-of-systems. In other words, being
a component or a system is not an inherent property of any set of software pieces that are composed together in
one way or another.

Architecture

An organizational structure of a system that describes the relationships and interactions between the system's
elements. Architectural aspects can be found at different levels of abstraction.

Extra-Functional Properties

Extra-functional properties (see Sentilles2012%)) are system-level requirements that rule the way in which the
system must execute a function, considering physical constraints as time and space. Typical extra-functional
properties specify constraints on progress, frequency of execution, maximum time for the execution, mean time
between failures, etc.

Synonyms
¢ non-functional properties

Modeling Twin

A modeling twin describes the packaging of a software/hardware artefact with its model-based representation in
order to ship it as a whole (i.e. bundle) to other participants in an ecosystem. The model part of the modling
twin is mandatory while the software/hardware part is optional (depending on the current artefact at hand).

at the same time connecting several views in order to be able to define model-driven tooling that supports in the
design of consistent overall models and in communicating the design intents to successive developer roles and
successive development phases.

In this sense, a view establishes the link between primitives in the RobMoSys composition structures and the
RobMoSys roles. Views enable roles to focus on their responsibility and expertise only. The RobMoSys

composition structures ensure composability of building blocks contributed and used by the role.

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns#service_level
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

See: RobMoSys Views

Engineering Model

In contrast to Scientific Modelling [https://en.wikipedia.org/wiki/Scientific_modelling], engineering models
additionally need to be machine-processable in order to enable composition and usage of this model in other
models. This is a fundamental feature that improves scalability and modularity of models and model-driven
engineering methods. In other words, engineering models always need to provide a benefit and serve a clear
purpose with respect to all the other surrounding models of the overall system where this model is part of.

Activity (in a RobMoSys software component)

The entity that handles the execution of business logic within a component and manages continuous and one-
shot operations. In many operating systems activities are mapped to preemptive threads that can be executed
concurrently on a CPU core. In some contexts threads are also called tasks, however, this term is to be avoided
for this kind of entity within the RobMoSys context as it is reserved for (behavior) tasks (see Task Level).

See Coordinating Activities and Life Cycle of Software Components

Mission (Level)

See Separation of Levels and Separation of Concerns

Task (as in task plot for robotic behavior or as in task level)

not refer to an operating system thread (which is calledactivity in RobMoSys).
Synonyms

e job
Skill (Level)

See Separation of Levels and Separation of Concerns

Service (Level)

See Separation of Levels and Separation of Concerns

Function (Level)

See Separation of Levels and Separation of Concerns

Execution Container (Level)

See Separation of Levels and Separation of Concerns

Operating System and Middleware (Level)

See Separation of Levels and Separation of Concerns

Hardware (Level)

See Separation of Levels and Separation of Concerns
http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:views:start
https://en.wikipedia.org/wiki/Scientific_modelling
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/composition:component-activities:start
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

SmartSoft / The SmartSoft World

An umbrella term for concepts, tools (e.g. the SmartMDSD Toolchain), and content (e.g. software components)
that are developed at the Service Robotics Research Center Ulm (Service Robotics Ulm). The latest generation
of the SmartSoft world adheres to the RobMoSys structures. See The SmartSoft World.

Communication Pattern

The semantics in which software components exchange data over component services. RobMoSys adopts a set
of few but sufficient communication patterns.

See also:

e Service

General Principles

Separation of Roles

A principle that enables and supports different groups of stakeholders in playing their role in an overall
development workflow without being required to become an expert in every field (in what other roles cover).

A role has a specific view on the system at an adequate abstraction level using relevant elements only.

It is closely related to separation of concerns and a necessary prerequisite for system composition towards an
robotics ecosystem.

Separation of Concerns

A principle in computer science and software engineering that identifies and decouples different problem areas

to view and solve them independent from each other (see Dijkstra1982_7...).).

It is the basis for separation of roles and a necessary prerequisite for system composition towards an robotics
ecosystem.

Freedom OF choice vs. freedom FROM choice

System development tools generally follow one of the two following approaches:

e One approach is called freedom of choice. One tries to support as many different schemes as possible
and then leaves it to the user to decide which one best fits his needs. However, that requires huge
expertise and discipline at the user side in order to avoid mixing noninteroperable schemes. Typically,
academia tends towards preferring this approach since it seems to be as open and flexible as possible.
However, the price to pay is high since there is no guidance with respect to ensuring composability and
system level conformance.

e Freedom from choice (see Lee2010%)) gives clear guidance with respect to selected structures and can
ensure composability and system level conformance. However, there is a high responsibility in coming
up with the appropriate structures such that they do not block progress and future designs.

Architectural Pattern

e A selection of a (sub)set of concerns and levels to fulfill an objective
e An architectural pattern addresses a single level, may connect two related levels or may involve several
levels

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

e See Architectural Patterns
e e.g. extra-functional property

Objectives for Architectural Patterns

e Facilitate building systems by composition
e Support Separation of Roles

Block, Port and Connector

A recurring principle for structuring meta-models at different levels of abstraction. It can be applied on the
same level and between different levels.

See Block-Port-Connector

Concerns

Computation (Concern)

Computation is related to active system parts that consume CPU time

Communication (Concern)

Communication concerns the exchange of information between related entities on the same level and also
between the levels themselves

Coordination (Concern)

e Design and modeling of robot behaviors
e i.e. what happens when and who is involved
e itincludes:
e execution order, (system) states
e error-handling, resp. error propagation
e run-time adaptation and (online) reconfiguraiton
e contingency handling and adaptation rules and strategies

Configuration (Concern)

e Configuration involves several entities (in contrast to parametrization which typically involves one
entity)
e for example: a set of components (path planning, localization, motion execution) that is
configured to work together (move to a destination)
e includes static/dynamic parameter-settings of individual components
¢ includes static/dynamic wiring between interacting components

Cross-Cutting Concern
A concern that cannot be separated from others or decomposed and influences or affects multiple properties
and areas in a system possibly at different levels of abstraction. For example, security cannot be considered in

isolation and cannot be added to a given application by introducing a security-module; it rather has to be
considered in all areas of the system.

Example

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector

e Non-Functional Properties involve several concerns

Roles

A certain task or activity with associated concerns that someone (individual, group or organization) takes in the

Development View view to come up with a component model that conforms to th&Component Metamodel.

Someone that takes a particular role typically is an expert in a particular field (e.g. object recognition). A role
takes a particular perspective or view on the overall workflow or application. It is associated with certain tasks,
duties, rights, and permissions which do not overlap with other roles.

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A role is

See also:

e Roles in the Ecosystem
e RobMoSys Views

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitit Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

References

Jan Bosch, Petra Bosch-Sijtsema. “From integration to composition: On the impact of software product lines,
global development and ecosystems”, in Journal of Systems and Software, Volume 83, Issue 1, January 2010,
Pages 67-76, ISSN 0164-1212, DOI: 10.1016/j.jss.2009.06.051 [http://doi.org/10.1016/j.jss.2009.06.051]

Mikel D. Petty and Eric W. Weisel. “A Composability Lexicon”, in Proc. Spring 2003 Simulation
Interoperability Workshop, March 2003, Orlando, USA.

Clemens Szyperski. “Component Software: Beyond Object-Oriented Programming (2nd ed.)”. In Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.

Séverine Sentilles. “Managing Extra-Functional Properties in Component-Based Development of Embedded

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
http://doi.org/10.1016/j.jss.2009.06.051

Systems”. Dissertation. Milardalen University, Visteras, Sweden, 2012.

E. W. Dijkstra. “On the role of scientific thought”. In Selected Writings on Computing: A Personal Perspective,
pages 60—66. Springer-Verlag, 1982.

Edward A. Lee. “Disciplined Heterogeneous Modeling”. In: MODELS 2010. Invited Keynote Talk. Oslo,
Norway, 2010.

glossary - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/glossary

http://robmosys.eu/wiki-sn-02/glossary 2018-06-29

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Architectural Patterns

Introduction

“A pattern describes a particular recurring design problem that arises in specific design contexts, and
presents a solution to it. The solution scheme is specified by describing its constituent components, their

responsibilities and relationships, and the ways in which they collaborate.” =’

Moreover, Buschmann et. al.3) lists some common properties of a pattern:
e “Patterns document existing, well-proven design experience.”
e “Patterns provide a common vocabulary and understanding for design principles.”
e “Patterns support the construction of software with defined properties.”
e “Patterns help you build complex and heterogeneous software. Patterns help you manage software
complexity.”

The proposed scheme by Buschmann for describing a software pattern consists of a Context, Problem and the
Solution. This triple is used below to also describe individual architectural patterns which analogously address
recurring design problems in robotics software development, each occurring in a specific design context, and
present a well-proven solution to the design problem. There are two fundamental objectives that drive the
design of all presented architectural patterns, namely:

e Facilitate building systems by composition
e Support Separation of Roles

Each architectural pattern needs to contribute towards these two objectives.

Template for an Architectural Pattern

This is a template for describing an architectural pattern including the required sections that the description
must comprise.

Context

A context describes a situation in which the design problem occurs. Also relate the context to:

e the Levels and Concerns
e involved Roles

Problem

This part describes a recurring problem that repeatedly arises in a given context. This can start with a general,
open ended problem and get more concrete with driving forces and concrete requirements that the solution
must fulfill. Also, constraints to consider and desired properties of the solution can be expressed here.

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu

Solution

The solution describes how the problem is solved, thereby balancing the driving forces. In some cases,
available technologies can be listed here that solve the given problem.

Optional: Discussion

Any discussion of shortcomings, differences or references to other patterns can be described here.
Optional: Example(s)

Specific scenarios or technologies that help to understand the problem and/or solution can be listed here.

List of Architectural Patterns

(alphabetical order)

e Architectural Pattern for Communication

e Architectural Pattern for Component Coordination

e Architectural Pattern for Software Components

e Architectural Pattern for Managing Transitions of System States

e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

e Architectural Pattern for Service Definitions

e Architectural Pattern for Stepwise Management of Extra-Functional Properties

Further Candidates for Architectural Patterns

Architectural Pattern for Coordination-Frame Transformation

e Transformation tree (e.g. TF in ROS, Time-Stamps, Pose-Stamps, etc.)
Subsidiarity Principle

e at any time a clear control hierarchy

e delegate decision spaces top-down in the hierarchy
Knowledge Representation

e central Knowledge Base

e synchronize and conflate distributed system-models over global IDs
Reservation based Resource Management

e in KB through Tasks and Skills for coordination of Components

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. “Pattern-Oriented Software

Architecture, Volume 1, A System of Patterns”. Wiley Press, 1996, ISBN: 978-0-471-95869-7
[http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html]

general_principles:architectural _patterns:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:communication
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:managing_transitive_system_states
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:service_definitions
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_management_nfp
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Architectural Pattern for Stepwise Management of
Extra-Functional Properties

Context

Besides of “pure” functions, realistic systems also need to specify and to manage extra-functional properties
that might involve different system parts at different levels of abstraction. Extra-functional system properties
specify how well a system performs given a certain system configuration.

There are two main developer roles that are involved in the specification of extra-functional properties:

e Component Supplier specifies functional constraints of individual building blocks (i.e. components)
e System Builder defines extra-functional properties within the predefined boundaries by the involved

components

Extra-functional properties are cross-cutting in nature (i.e. combining communication, computation and
coordination) and relate to several levels of abstraction:

e Task Plot (level) provides the run-time context for the extra-functional properties

e Service (level) link components and is mainly related to the communication concern of extra-functional
properties

¢ Function (level) is related to the computation concern of extra-functional properties

e Execution Container (level) relates to the coordination concern of extra-functional properties

e Hardware (level) finally does both, computation and communication of extra-functional properties

Problem

e Extra-functional system properties such as e.g. end-to-end response times are cross-cutting in nature and
typically involve knowledge and contributions from different developer roles (e.g. component
developers and system builders) who are often working independently in different places and at
different points in time. This easily leads to inconsistencies in the system. Resolving inconsistencies
typically requires expert knowledge and deep insights into all the distributed system parts

e Extra-functional properties bridge between functional constraints in individual building blocks and
application-specific system requirements

e Extra-functional properties might be grounded in several system parts that are distributed over several
components

e Tracing and assuring extra-functional properties might involve additional (dedicated) analysis tools

Solution

e The specification of functional aspects of individual building blocks must be linked with the definition
of application-specific, extra-functional system aspects on model level

¢ Individual building blocks specify functional constraints that restrict the remaining design space to be
exploited for a later system design

e System-specification allows only those design options that do not conflict with the individual building-
block constraints

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_managemen®(0ifBp 06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/glossary#extra-functional_properties
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

e Dedicated analysis tools simulate run-time conditions and predict extra-functional system behavior (i.e.
the run-time performance quality of a system)

e Optionally: a run-time monitoring mechanism can assure compliance with specified extra-functional
properties

Example

End-to-end response time from sensing until acting in a service robot can be considered as one particular extra-
functional property

e this end-to-end response time typically involves several interconnected components forming a data-flow
chain of components

e cach component in a chain contributes with a certain delay to the overall end-to-end time

e the component’s internal delay might be the result of the internally used device driver with certain
execution characteristics or otherwise result from the internally configured activities (i.e. tasks/threads)

¢ individual components should leave as much configuration freedom as possible and only specify really
needed functional constraints (such as an unchangeable device driver behavior)

e a specified system-level end-to-end response time needs to be checked with respect to predefined
functional constraints in individual components and the overall end-to-end run-time behavior of the
entire chain of components

e for analysing the run-time behavior of the entire chain of components at design-time, dedicated,
matured and powerful analysis tools such as SymTA/S can be used

e run-time behavior can also be directly monitored in an executed robotic system using a dedicated
monitoring infrastructure

This example is described with more details in a dedicated wiki page: Managing Cause-Effect Chains in
Component Composition.

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:stepwise_management_nfp - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural _patterns:stepwise_management_nfp

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_managemen®(0ifBp 06-29

https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Architectural Pattern for Software Components

Context

e A common way to handle system complexity is Component-Based Software Engineering

e Individual components are composable building-blocks that can be (re-)used in different applications
(i.e. systems)

e Components in a system are not independent of each other but need to exchange data

e Interconnected components realize (and collaboratively execute) overall system functions (e.g. the

Modeling and developing a software component is the main responsibility of Component Suppliers.

This architectural pattern relates to the following abstraction levels:

e Skill (level) requires a coordination interface for each component

e Service (level) specifies interaction points to other components (i.e. the communication concern)

e Function (level) realizes the component’s internal functionality

e Execution Container (level) links functionality with the execution platform (i.e. the computation
concern)

e Hardware (level) allows to directly interact with sensors and/or actuators within a component

Problem

e The overall system behavior at run-time is the result of sets of interconnected components that need to
be executed in a systematic and deterministic way.

e Real-world environments are open-ended and unpredictable in nature which requires a certain
adaptability and flexibility of the robot system behavior.

e System flexibility in turn requires run-time reconfigurability of individual components.
Configuration options of individual components might involve design-time and run-time
configurability and depend on the internal (i.e. functional) realization of a component.

e There are cases where several provided services might need to be realized in a single component (e.g.
because the used library cannot be separated into several components)
e The overall role of a component is manifold:

e to realize a coherent set of provided services

¢ to specify dependencies to other services (provided by other components)

e to encapsulate (i.e. decouple) the functional (internal) realization of services from their general
representation on system level

e to specify allowed configuration options and possible run-time modes (i.e. to be used from the
skill level)

¢ to hide platform-related details such as communication middleware, operating system and
internally used device drivers (i.e. mapping to the execution container and interacting with
sensors/actuators)

Solution

The concept of a component spans across several abstraction levels:

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

Abstraction Levels Coordination Lavers

MISSION Deliberative Layer
ool : i Sequencing Layer
BEHAVIOR ;
COORDINATION | : SKILL

SERVICE
COMPOMENT FUMNCTION

EXECUTION CONTAINER Skill Layer
05 { MIDDLEWARE
HARDWARE

From a functional point of view, a component spans over “Execution Container”, “Function”, “Service” and
optionally also the “Skill” levels. From the robotic behavior coordination point of view, a component is on the

level of robotic skillsL).

A flexible component model that allows different bundlings of several provided services and that decouples the
service definition from its realization within a component:

e a component can realize more than one provided service but a certain provided service is realized by
exactly one distinct component
e a component should implement or use a service but not define it (service definition is a separated step)

In addition to the “regular” services a component also implements a generic configuration and coordination
interface that provides access to:

¢ the component's life-cycle state automaton

e admissible run-time modes (i.e. activity states)

e the component's configuration parameters (i.e. allowed parameter sets)

e the coordinated dynamic wiring of component’s services (i.e. without conflicting with the component's
internal functionality)

See also:

e Component metamodel

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Acomponents
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller, and Mark G. Slack.
“Experiences with an architecture for intelligent, reactive agents”. In: Journal of Experimental & Theoretical
Artificial Intelligence, Volume 9, 1997, DOI:10.1080/095281397147103
[http://dx.doi.org/10.1080/095281397147103].

general_principles:architectural_patterns:components - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural _patterns:components

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components 2018-06-29

http://dx.doi.org/10.1080/095281397147103

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Architectural Pattern for Managing Transitions of
System States

(To be extended)

e (i.e. System-Mode Transitions)
e synchronize system-modes over shared IDs
e recognize (i.e. awareness about) transitive system-states

Context

Problem

Solution

Discussion

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitit Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitit Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:managing_transitive_system_states - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:managing_transitive_system_states

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:managing_transitive 0d8s tém 29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Architectural Pattern for Communication

Context

Communication between entities (i.e. exchange of information). Communication is a concern and relates to the

following levels:

Service (level) structures communication

Execution container (level) provides resources for communication
Operating System / Middleware (level) realizes communication
Hardware (level) does communication

This architectural pattern relates to the following roles:

e Service Designer: selects communication pattern (see below)

Problem

e A huge number of communication middlewares
e A huge number of overlapping and conflicting communication schemes
e Requirements that the solution must fulfill:

e Realize vertical (i.e. layers) and horizontal (e.g. components) exchange of information (with the

goal to enable communication, coordination and configuration)

e Support different schemes for data-flow oriented communication and coordination/configuration

concerns
e At the minimum provide:
o Publish/Subscribe (i.e. data-flow) communication semantics
e Request/Response (i.e. on demand) communication semantics

Solution

Support independence of the underlying middleware solution (i.e. middleware abstraction layer)
Reduce the huge variety of overlapping communication semantics in order to improve
composability between components

Decouple the access to communication within a component (functional-level) from the
communication between two interacting components (service-level)

An essential set of communication patterns that is rich enough to cover common communication use-cases, yet
at the same time reduced enough to support composability.

o CommunicationPatterns (for continuous data transfer)

Request/Response
e c.g. SmartSoft-Query
Publish/Subscribe
e ec.g. SmartSoft-Push (sub-variants: PushNewest and PushTimed)

e ConfigurationPattern (for component configuration)

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:communication

Component Parametrization

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder

e c.g. SmartSoft-Parameter
e Dynamic Wiring
e ec.g. SmartSoft-Wiring
e CoordinationPattern (for skill realization)
e Component Lifecycle Automaton
e c.g. SmartSoft-State (generic lifecycle state automaton)
e Component (activity) Modes
e c.g. SmartSoft-State (user-defined states) and SmartSoft-Parameter (trigger)
e Component Feedback
e c.g. SmartSoft-Event

See also:

e Communication Patterns

Discussion

Different middlewares allow for different middleware abstraction levels. For instance, message-based
middlewares require a protocol-based abstraction, while e.g. DDS allows for a higher level of abstraction (i.e.
directly using the publish/subscribe communication with accordingly preselected QoS attributes). In any case,
middleware details should be hidden from both, the component’s internal communication access and the
communication semantics between components.

The separation of patterns into groups for Communication (i.e. continuous data exchange), Configuration (i.e.
parametrization of individual components) and Coordination (i.e. skill-component interaction) provides
solutions for recurring communication problems and clarifies the purpose of a particular pattern.

The communication access from within a component (i.e. communication interface access) needs to be as
flexible as possible as long as it does not violate with the clearly specified communication semantics outside of
the component (resp. between interacting components).

Not every semantic detail needs to be made explicit on model level (some may come from ““de-facto standard”
implementations). The focus in models need to be on a consistent representation and systematic management of
different communication schemes.

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural _patterns:communication - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural _patterns:communication

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:communication 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Architectural Pattern for Service Definitions

(To be extended)

e Granularity of components and services
e Abstraction-level of services

Context

Problem

Solution

Discussion

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:service_definitions - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:service_definitions

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:service_definitionf018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Architectural Pattern for Task-Plot Coordination
(Robotic Behaviors)

A description of this architectural pattern can be found here [http://www.servicerobotik-ulm.de/drupal/?
g=node/86]. The architecture is a generic architecture for robotics behavior. In terms of the abstraction levels,

this pattern addresses task and skill levels; in terms of concerns, it addresses coordination and configuration.

See also:

e Task-Level Composition for Robotic Behavior

Context

Service robots act in unstructured and open-ended environments that require flexibility and adaptability in
execution for the robotic behavior. The basic robot functionality is realized by software components. Software
components are typically general software building blocks that are independent of a specific application or
scenario. By contrast, the robot’s behavior is highly application-specific and depends on the desired tasks that
the robot is supposed to perform and the expected environments where the robot will operate in.

Problem

e A static sequence of actions is too inflexible for coping with the dynamics of the real world where each
single action can fail or can produce unexpected results

e Robust behaviors require several alternative strategies for performing a task whose combinatorial

combination easily explodes if statically designed in advance

e Robot behaviors need to be expressed on different levels of abstraction (i.e. high-level tasks such as e.g.

”

“make coffee” are refined to more specific sub-tasks such as e.g. “approach kitchen”, “operate the
coffee machine”, etc.)

e Components are active system parts that continuously exchange data while robot behaviors are event-
driven, passive parts that react to events for switching into adequate successive behavior steps
(depending on the so far successfully executed actions or failures in execution)

¢ A robot behavior bridges between continuous execution in components and event-driven
coordination on task plot (level)

Solution

Robotic Behavior spans across several levels:

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior 2018-06-

29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

ROBOTIC
BEHAVIOR
COORDINATION

COMPOMENT

Abstraction Levels

Coordination Layers

EXECUTION CONTAINER

05 { MIDDLEWARE

HARDWARE

MISSION Deliberative Layer
TASK
Sequencing Layer
SKILL
SERVICE
FUNCTION

Skill Layer

e Robotic behavior is about continuous vs. discrete (see here [http://www.servicerobotik-ulm.de/drupal/?

[http://www.servicerobotik-ulm.de/drupal/?q=node/86]

This pattern is supported by the SmartSoft World via SmartTCL [http://www.servicerobotik-ulm.de/drupal/?
g=node/84] and Dynamic State Charts [http://www.servicerobotik-ulm.de/drupal/?q=node/87]

Discussion

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a

Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen

2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process

driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,

Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

general_principles:architectural _patterns:robotic_behavior - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural _patterns:robotic_behavior

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior

2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Arobotic_behavior
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Architectural Pattern for Component Coordination

The here proposed pattern structures and semantically enriches the access of the functionalities within
components for coordination by defining a component coordination interface. The interface enables the run-
time coordination of the components by robotic behavior models on skill and task abstraction level. This
interface is the foundation for robotic behavior development and system orchestration (as described in
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

Context

The architectural pattern can be used in the context of coordination of closed software components. The pattern
deals only with the concern of coordination and is located at the abstraction level of services, lifting the access
to the functionalities within a software component to the skill abstraction level (see Separation of Levels and
Separation of Concerns). It involves the roles of theService i
Supplier and the Behavior Developer.

Problem

Functionalities within closed software components needs to be coordinated to so that the robot as a whole is
able to provide a service. The access to the functionalities within the components needs to be on a balanced
level to avoid fine grained interaction, so that the user of the software component does not need to know
implementation specific details of the component.

The coordination of the component needs to be possible without binding the behavior models (task level
description) to a concrete component.

Solution

The solution is to define an uniform behavior coordination interface for robotics software components. The
interface is two fold: the coordinating component part and the coordinated component part. The coordinating
component part is typically realized/implemented by a sequencer component in case of a 3T / three tier
architecture (see Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

The coordination access to a component via the interface can be grouped into six basic categories, each with a
different purpose, semantic and communication mechanism:

e Configuration - Run-Time configuration or parameterization of components, for coordination.

e Activation - Activation of activities and therefor the functionalities within the components.

e Results (Events) - Receiving the results of the activation of the functionalities within the components.

e Connection - Coordination of the inter-component connections and thereby configuring the data flow of
the coordinated components.

e Component Life-Cycle - Providing access to components life-cycle e.g. shutdown or error states of the
components.

e Information Query - Requesting and receiving information for coordination from components.

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordinaid8-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior

Coordinator & | Coordinated 1 |
Connection
| Agencda | \-* Activity
Configuration
| Event Handler | \\\“i
| Interpreter | Activation
| | [cyclic, acyclic
_\\‘*‘)‘ Parameter
Results (Event) % Param X
-‘—_{ Param ¥
cg 8 o Infarmation Que
-

The relation of the interface parts to the component parts is shown by the following figure:

Conrdinating Companent [Sequencer] - Comporent

Coorcinated Comporent ; Compenent

«Coordnations aCorfigurationCoordinations
Eehavior L oordinat ion-interface- Beravior-Coordination-interface-
Master Hawe
Pl tery S i ManRTEry-Sarices
- sCanligurations
~Configurations =Configurations o
Mol Inberproter [Execution Fausre T -4 i ater I_-"‘E_)__{ [e —— (Faramete
Ceordiations =y «Comdinations g e =
Litecycle _‘(_,,_ Lfecyde 1_.‘)
LifeCyclesate I 4
aCordinations T L
Acthation Adtivation]
. . =Coordnations
£ s .
State (Contirucus) _"\E-) Stte (Cortiruous _(L]
LEERERRNERR TR TR ot oot | | (oM p e rmene [e Cperalierode 3
', Trigger (Singhe) Qj Trigger Iingle) i u A7
k' W
\\ BRI
" =Coordinations o =Coorainations | C "y
N, AL Time-Cennaction- H (O Prun-Time-Conmection- A
Management e Maragement ——
il =Communicaions
) =Computations COMpCnen-
£ I | Adivity sEnice
) el eptiand-Landces Opticral-Servicas
aCoordinations =Coord rations rc =Coordinations = perie Sarvice _)
Everd-Handlar 3 Cata-Query — Data-cery < Frodder
HEN « [~O
L {— Sarvicn
1 O ratiore aCoo difati e (s Requestor
- Resuit-Event Q: il Eery.] o
bttt
T
T
T | 1 - |

The realization of the coordination interface within RobMoSys is done using the Communication/Coordination
and Configuration Pattern.

See also:

e Component metamodel

Discussion

The interface proposed in the pattern harmonizes the coordination access to the components and the

functionality encapsulated by them. This allows for the separation of the behavior coordination and behavior
models from the functionalities.

See also

e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
e Architectural Pattern for Software Components
e Separation of Levels and Separation of Concerns

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordinaid8-06-29

https://robmosys.eu/wiki-sn-02/_media/general_principles:architectural_patterns:coordination-cycle.png
https://robmosys.eu/wiki-sn-02/_detail/general_principles:architectural_patterns:behaviorinterfacestructureview_hres_1.png?id=general_principles%3Aarchitectural_patterns%3Acomponent-coordination
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

general_principles:architectural_patterns:component-coordination - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:architectural _patterns:component-coordination

http://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordinatiddm®-06-29

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Separation of Levels and Separation of Concerns

The figure below illustrates the separation of levels and the separation of concerns. Please also refer to the
glossary for descriptions of used terms. The levels indicate abstractions in a robotics system.

The levels can be seen as an analogy to “ISO/OSI model” for robotics that addresses additional concerns
beyond communication. The analogy is interesting, because ISO/OSI partitions the communication aspect in
different levels of abstraction that then help to discuss and locate contributions. The ISO/OSI separations in
levels allows to develop efficient solutions for each level. Establishing such levels for robotics would clearly
help to communicate between robotics experts—as ISO/OSI does in computer science.

The levels and concerns can be used to identify and illustrate architectural patterns. The blue line in the figure
is an abstract example. An architectural pattern combines several levels and several concerns. For example, the
architectural pattern for a software component spans across the levels of service, function and execution
container.

See also

e Architectural Patterns

Concerns
o
Xs)
o > o o
#° & &° &
Ry oF o L
& & o &9
P P c® P
Mission
Task Plot N
o8
. '@'9{9
@3‘0\@@
qb
%] .
T Service
>
Q .
= Function
Execution Container
. . Q,‘ef’
Operating System | Middleware P
R
e
Hardware &
‘@-

About the Levels

e The lower levels address more concerns and are more cross-cutting in their nature
e The higher levels are more abstract and address less concerns / individual concerns. They thus allow a

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_corddBn®6-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/_detail/general_principles:levels-concerns2.png?id=general_principles%3Aseparation_of_levels_and_separation_of_concerns

better separation of concerns and separation of roles.

e By definition, a level can not be defined on its own, since its semantics is the relationships between the
items at this “level” and those at the other levels. This exercise to get these relationships well-defined is
a tough one, this is of high priority though, since “level”/“layer” is one of the most often used term in
(software) architecture.

e A layer is on top of another, because it depends on it. Every layer can exist without the layers above it,
and requires the layers below it to function. A layer encapsulates and addresses a different part of the
needs of much robotic systems, thereby reducing the complexity of the associated engineering solutions.

e A good layering goes for abstraction layers. Otherwise, different layers just go for another level of
indirection. An abstraction layer is a way of hiding that allows the separation of concerns and facilitates
interoperability and platform independence.

On the number and separation of levels

¢ Individual levels always exist but are not always explicitly visible.

e Transition between layers can be fluent

e There are single layer approaches (clear separation between layers offering full flexibility in
composition) but also hybrid ones (combining several adjacent layers into one loosing flexibility). For
example, ROS1 implemented both the middleware and execution container while in ROS2, the
middleware level is planned to be separated.

e Different levels might require different technologies

e Individual levels may also be separated horizontally (e.g. fleet of robots vs. an individual robot, or group
of components vs. an individual component)

Example: Levels

e Below are examples for each of the levels.
e They demonstrate the level of abstraction that can be found in each layer.

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_ corRddBnd6-29

Generic Example:

MISSION
S510 serve customers
serve as butler
TASKPLOT 0~ T o o7
deliver coffee
SKILL grasp ohject with constraint
SERVICE move manipulator
FUNCTION IK Solver
EXEC. CONT. o
activity

pthread socket
FIFO scheduler

HARDWARE Manipulator LaserScanner

CPU Architecture
Mobile Platform

The individual Levels

Mission (Level)

e A higher level objective/goal for the robot to achieve.
e Atrun-time, a robot might need to prioritize one mission over another in order to rise the probability of
success and/or to increase the overall quality of service

Examples

e In logistics: do order picking for order 45
e serve customer
e serve as butler

Synonyms

e goal
e objective

Task (Level)

e A task (on the Task level) is a symbolic representation of what and how a robot is able to do something,

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_corddBn®6-29

https://robmosys.eu/wiki-sn-02/_media/general_principles:layers_and_examples2.png

independent of the realization.

e A job that is described independent of the functional realization.

e Includes explicit or implicit constraints.

e tasks might be executed in sequence or in parallel

o task-sets might be predefined statically (at design-time) or dynamically generated (e.g. using a symbolic
planner)

e tasks might need to be refined hierarchically (i.e. from a high-level task down to a set of low-level tasks)

e not to be confused with tasks in the sense of processes/threads (see Execution Container)

e see also: Task-Level Composition for Robotic Behavior

Examples

e Move to room nr. 26

e Grasp blue cup

e Get a cup from the kitchen
e deliver coffee

Synonyms
e job
See also:

e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

Skill (Level)

Defines basic capabilities of a robot. The area of transition between high-level tasks and concrete
configurations and parameterizations of components on the service-level.

Skills enable tasks to become independent of the actual realization in components.

A collection of skills is required for the robot to do a certain task. For example, a butler robot requires skills for
navigation, object recognition, mobile manipulation, speaking, etc. A component often implements a certain
skill, but skills might also be realized by multiple components.

Skill-level often interfaces between symbolic and subsymbolic representations.
Examples

e An abstract high level task (e.g. move-to kitchen) is mapped to concrete configurations and services that
components offer (e.g. parameterize path planning, localization and motion execution components with
destination set to kitchen).

e grasp object with constraint

Synonyms

e capability
e system-function

See also:

e Architectural Pattern for Component Coordination

Service (Level)

A service is a system-level entity that serves as the only access point between components to exchange

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_corddBn®6-29

https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordination

information at a proper level of abstraction.

Services follow a service contract and separate the internal and external view of a component. They describe
the functional boundaries between components. Services consist of communication semantics, data structure
and additional properties.

Components realize services and might depend on existence of a certain type of service(s) in a later system.

See also: Service-based Composition

Function (Level)

e a coherent set of algorithms, for example implemented in libraries, that serve a unique functional
purpose
e a piece of software that performs a specific action when invoked using a certain set of inputs to achieve

a desired outcomel)

Example

A function implemented in an library, e.g. OpenCV Blob Finder
An implemented algorithm, e.g. PID-controller

Functions developed or modeled in Matlab, Simulink, etc.
Inverse kinematics (IK) solver

Synonyms
e functional block

Execution Container (Level)

e provides the infrastructure and resources for the functional level
e provides mappings towards the underlying infrastructure (e.g. operating system, communication
middleware).

Examples

e Access to scheduler
e Threads, eventually processes

Operating System and Middleware (Level)
Example elements on this level: e.g. phread, socket, FIFO scheduler

An Operating System is, for example, responsible for:

e Memory management
Inter-Process-Communication
Networking-Stack, e.g. TCP
Hardware Abstraction Layer

Examples for Operating System

e Linux, Windows
e FreeRTOS, QNX, vxWorks

A (communication) middleware is a software layer between the application and network stack of the operating
system. Communication middlewares are very common in distributed systems, but also for local

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_ corRddBnd6-29

https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start

communication between applications. They provide an abstract interface for communication independent of the
operating system and network stack.

There are many distributed middleware systems available. However, they are designed to support as many
different styles of programming and as many use-cases as possible. They focus on freedom of choice and, as
result, there is an overwhelming number of ways on how to implement even a simple two-way communication
using one of these general purpose middleware solutions. These various options might result in non-
interoperable behaviors at the system architecture level.

For a component model as a common basis, it is therefore necessary to be independent of a certain middleware.
Examples

e OMG CORBA
e OMG DDS
e ACE

Hardware (Level)

Solid pieces of bare metal that the robot is built of and uses to interact with the physical environment. It
includes actors/sensors and processing unit.

Examples

e Sensors: laser scanner, camera
e Actuators: manipulator, robot base/mobile platform
e Processing units: embedded computer, cpu architecture

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

“Systems and software engineering — Vocabulary,” in ISO/IEC/IEEE 24765:2010(E) , vol., no., pp.1-418, Dec.
152010 DOI: 10.1109/IEEESTD.2010.5733835https://doi.org/10.1109/IEEESTD.2010.5733835
[https://doi.org/10.1109/IEEESTD.2010.5733835]

general_principles:separation_of_levels_and_separation_of_concerns - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

http://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_corddBn®6-29

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://doi.org/10.1109/IEEESTD.2010.5733835

e RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

General Principles

RobMoSys manages the interfaces between different roles and %3500 i
separates concerns in an efficient and systematic way by making il e
Criviers e

the step change to a set of fully model-driven methods and tools
for composition-oriented engineering of robotics systems. The 7 =
following list of pages provide some fundamental principles in bt W e S 0

RobMoSys. /;:ﬂ the \\

Canignt ke
[

e Separation of Levels and Separation of Concerns
e Architectural Patterns

e Ecosystem Organization and Tiers

e User-Stories

s repoic

general_principles:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:start

http://robmosys.eu/wiki-sn-02/general_principles:start

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_media/general_principles:ecosystem:composition-tiers.png
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Analogy: The PC Domain

We use the analogy of hardware in the PC Domain to illustrate concepts of RobMoSys. Using an analogy, we
can describe particular concepts in a given context (the pc domain), which is easier to understand since the
context of the PC domain is widely known. One can then transfer information given to the robotics domain.
The PC domain is only an analogy that helps to illustrate concepts; the PC domain is different than robotics, so
do not read too much into the examples given here.

Configuration, Composition, and Integration
Using the PC Domain, we illustrate the terms Configuration, Composition, and Integration.

Configuration

Configuration is lik going to a retail store that is specialized in a certain range of products, e.g. Dell or Apple,
and as for a computer. What you get is a list of possible configurations of a computer where you can select its
components from a list of predefined components. This means going through a product configurator, selecting
the base product and selecting some extra options, e.g. hard drive capacity.

This essentially is a product line approach where parts of the product line and its variants is even visible to the
customer.

Composition

Composition is like going to a computer retail store and buying and assembling the parts in an assisted way: for
example, based on the items in the shopping cart, let the customer know:

e that the five PCle cards will not fit the mainboard with only 4 slots
o that the power supply is not sufficient to power the system
o that the graphics card has an additional power socket which is not provided by the power supply

There are some online computer retailers that provide this kind of features. All this information is available in
data sheets, but not all customers have the knowledge and experience to understand it. They need the support
described above. Even experts are lost in case there is no data sheet.

In robotics, there is neither a superordinate structure such as PCle, no data-sheets for components, and no
support for selecting components.

Integration (in contrast to composition)

Integration is like assembling parts with non-standard interfaces that do not allow to separate and exchange
parts afterwards, for example, a battery that is soldered inside a laptop. Even after ripping out the battery, it
cannot be used as there is no knowledge about the battery, no data sheet: How much power? How about
electrical polarity/pin assignments? One starts to reverse-engineer to discover the properties using a voltmeter
and other tools.

Ecosystem Example: Graphics Cards

http://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu

In the PC industry, different ecosystem participants can supply and use building blocks to flexibly compose
systems based on their needs. There are graphics card suppliers that do not know where their product is being
used or for what purpose. They supply their graphics card and adhere to an specified interface (e.g. PCI
express) to make sure it can be used with any mainboard. They can build their graphics card using off-the-shelf
building blocks (e.g. Nvidia graphics chip and standard memory). They provide data sheets for the graphics
card that specifies the properties of the product which are necessary to use it. The data sheet does not need to
expose internal details or layouts (protected IP) of the graphics card.

Vo ping a-e- “ Graphics Card
. Supplier

v Graphics Card
GPU P
Supplier Basic part L] CPU ;
{Intel graphics Supplier
chip) R
External View: E:l___lnternal Basic part
Defined interface View =t by L ! R
B (PCI-Express) Bac pavt ifo pins =—e
| Gamer PC o
— Standards
Il"j Committee ifo pins=—= Baiif:-g?ﬂ
Basic part
[Mvidia graphics Office PC
chip)
Graphics Card Mainboard Office
System Supplier
. . . Integrator
External View: Mainboard
Defined interface
(PCl-Express) =~ L]

Basic part Builder
(Memaory)

;- e pins.._.. Basic pan
B o 0= L
! ete. "] ! Mainboard '
l_,“',‘

&1

based on their need.

What Enables Composition in the PC Domain?

Enablers of composability in the PC domain are:

¢ Building blocks adhere to superordinate structures (e.g. PCle)
e Building blocks explicate properties in data sheets (e.g. power supply, form factor, thermal
information)

Thanks to this enablers, the following is possible in the PC domain and RobMoSys aims at the same for
robotics:

Views

Thanks to explicated properties in data sheets, specific views on a system can be taken. They are independent
and each address concerns of the system. For example:

e A form factor view: will everything fit into the case? Are there enough slots in the casing for assembling
the hard discs?

e A thermal view: how is heat flowing through the system and is the ventilation sufficient?

e A power supply view:

http://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart
https://robmosys.eu/wiki-sn-02/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart

e General layout view: are there enough slots in the casing to access the PCI cards from the outside? Are
there enough slots PCle slots on the mainboard?

Decoupling supply and use

Thanks to data sheets, one can plan a system and come up with a blueprint for later assembly since data sheets
contain all necessary information. The physical devices do not need to be present at that stage and can be
assembled by someone else based on the blueprint. The blueprint can be used to verify the system: for example
the performance might not be sufficient for the intended application.

IP is still flexible

Exposing properties in a data sheet does not mean to expose intellectual property (IP). It is only about exposing
the information that is relevant to use it (e.g. external view / interface), size of the device, power supply, etc.
Information about the internals of the building block (circuit layout, chipset used, capacitors used, etc.)

Flexible composition Combinations and alternatives

Adhering to superordinate structures means gaining access to all other building blocks that adhere to the same
structure. This gives high flexibility in composing parts.

RobMoSys Composition Tiers in the PC Domain

The below picture illustrated the Ecosystem Organization in composition Tiers using examples of the PC
domain.

and groups of roles 1.4

RobMoSys Examples of Er‘* Examples of
Ecosystem Tiers the PC Analogy .TLI Robotics

Tier 1

e.g. Semiconductor standards, e.g. robotics architectural patterns and
Ecosystem computer architecture, USB, ropotics composition structures (service- ‘
l ‘ By PCle, modern use of ethernet, oriented software component model, robotics
etc. task models, communication patterns, etc.)

Tier 2 e e.g. laptop PC, desktop PC, industry e.g. Flexible Navigation Stack, Active Object
e ' Domain [~""% PC, ATX, ITX, Mini-ITX, VGA, HDMI, Recognition Stack, Motion-Perception-World-
: [Experts =-=- SATA, IDE, CPU socket, GPU socket, Model Stack

----- USB mass storage, etc.

Tier 3 El e.g. graphics card, CPU, TPM, e.g. robotics software components (Motion
‘\ ' Ecosystem ‘ Memory, power supply, USB SSD Planning, SLAM, Object Recognition), robotics
5‘ n Users C 1 Hard disc, USB stick, etc. functional libraries (MRPT, OpenCV, PCL),
applications (Pilots, Logistics Fleet, Production

Cell, Healthcare Servicerobot), etc.
The RobMoSys composition Tiers illustrated with examples of the PC domain.

General-purpose standards for the pc domain are located at Tier 1. USB for example can be used to connect
almost any device. Every computer has a need for storage capacity. Within this domain, Universal Mass
Storage (UMS, also known as “USB mass storage”) is based on USB and makes USB devices accessible as a
hard disk to enable file transfer (Tier 2 in this analogy). Hardware vendors and users can offer or use any
particular device with storage capacity that supports UMS on “Tier 3”. With the intention to connect a portable
device for the sake of transfering files, any of these devices that supports UMS may be suitable: a particular
USB stick, portable SSD Harddisk, Digital Camera, or mobile phone. Additional modeled descriptions must
then support the system integrator in choosing the right building block: digital camera might be used to transfer
documents, but the USB stick or SSD harddisk is probably the first choice depending on the file's size and
other factors.

Data Sheets and The Modeling Twin

http://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/_detail/general_principles:pc_analogy:analogy-composition-tiers.png?id=general_principles%3Apc_analogy%3Astart

physical building block. See What Enables Composition in the PC Domainto learn about the benefits.

[

(o WY
 Represents -

B —— =

Data Sheet Building Block

general_principles:pc_analogy:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start

http://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/_detail/general_principles:pc_analogy:modeling-twins-abstract-pcdomain.png?id=general_principles%3Apc_analogy%3Astart

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Ecosystem Organization

Composition Tiers

The general composition structure distinguishes three tiers.

RobMoSys envisions a robotics business ecosystem in which a large number of loosely interconnected
participants depend on each other for their mutual effectiveness and individual success. The modeling
foundation guidelines and the meta-meta-model structures are driven by the needs of the typical tiers of an
ecosystem and the needs of their stakeholders (see figure 1). The different tiers are arranged along levels of
abstractions. Figure 1 also illustrates the amount of experts or people contributing or using the particular tiers.

Tier 1 structures the ecosystem in general for robotics. It is shaped by the drivers of the ecosystem that define
an overall composition structure which enables composition and which the lower tiers conform to (similar to,
for example, the ecosystem of the Debian GNU/Linux OS and its structures). Tier 1 is shaped by few
representative experts for ecosystems and composition. This is kick-started by the RobMoSys project.
Structures defined on Tier 1 can be compared to structures that are defined for the PC industry. The personal
computer market is based on stable interfaces that change only slowly but allow for parts changing rapidly
since the way parts interact can last longer than the parts themselves and there is a huge amount of cooperating
and competing players involved. This resulted in a tremendous offer of composable systems and components.

Tier 2 conforms to these foundations, structuring the particular domains within robotics and is shaped by the
experts of these domains, for example, object recognition, manipulation, or SLAM. Tier 2 is shaped by
representatives of the individual sub-domains in robotics.

Tier 3 conforms to the domain-structures of Tier 2 to supply and to use content. Here are the main “users” of
the ecosystem, for example component suppliers and system builders. The number of users and contributors is
significantly larger than on the above tiers as everyone contributing or using a building block is located at this
tier.

Ecosystem Tiers Tier Elements in terms of modeling

and groups of roles

Composition
Structure
A

Tier 1 meta-meta-model

conforms
to

Ecosystem
l Drivers
Domain-
Models

Tier 2
T contarm

i Domain
P ! Experts
to
Tler 3 |:
' Ecusvstem ‘ Content for
Users maodel

meta-model

LTy

Exchange

Tier 1: Composition-Structure — Meta-Structure

Tier 1 structures the ecosystem in general for robotics, independent of the sub-domains. It is shaped by the
drivers of the ecosystem that define an overall structure which enables composition and which is to be filled by

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:composition-tiers.png?id=general_principles%3Aecosystem%3Astart

the lower tiers. Tier 1 defines general concepts and models for system composition such as the concept of
service definitions, concept of components, and the composition-workflow that is tailored to service robotics.
ils for more information.

In terms of meta-modeling, elements of this tier correspond to/are meta-meta-models
Elements on this tier

RobMoSys Composition Structures, e.g.

e concept of service definitions
e concept of components, i.e. the Component Metamodel
e aset of communication semantics to choose from

Examples of roles on this tier

Content on this tier is defined by the ecosystem drivers, i.e. the RobMoSys community with moderation of the
RobMoSys consortium.

See also

e Tier 1 Details

Tier 2: Robotics-Domain-Specific Structures — Robotics Domain Models

Tier 2 structures the particular domains within service robotics. It is shaped by the experts of these domains, for
example experts from object recognition, from manipulation, or from SLAM. This is a community effort

which structures each robotics domain by creating domain-models. Experts working at this level define
concrete service definition models, for example a service definition for robot localization.

Domain-models, for example, are “Service Definitions” that cover data structure, communication semantics
and additional properties for specific services such as “robot localization”. To find such a service definition,
domain experts of each particular domain discuss how to represent the location/position of a robot and what
additional attributes are required and how they are represented (e.g. how the accuracy is represented).

In terms of meta-modeling, elements of this tier correspond to/are meta-models

Examples of elements on this tier

e service definitions for localization
e definition of how a robot pose with uncertainty is represented

Examples of roles on this tier

e These are experts in the particular domain (SLAM, object recognition, manipulation), for example the
manipulation domain to come up with domain-models for a composable motion stack based on the
RobMoSys composition structures on Tier 1.

e Service Designer role

Tier 3: Ecosystem Content

Tier 3 uses the domain-structures from Tier 2 to fill them with content: to supply or to use content. It is shaped
by the users of the ecosystem, for example component suppliers and system builders. They use the domain-
models to create models as actual “content” of the ecosystem to be supplied and used. On this tier, for

example, concrete Gmapping component for SLAM that provides a localization service is supplied to a system
http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer

builder to compose a delivery robot.

In terms of meta-modeling, elements of this tier correspond to/are models (of components/systems)

Examples of elements on this tier

e Components for AMCL localization, Gmapping, etc. providing a localization service
e Task plot: how to make coffee

e Composed applications: A restaurant butler robot

e Component model based on the Component Metamodel

Examples of roles on this tier

e Component Supplier
e System Architect

RobMoSys Modeling Support

e See the various meta-models of the RobMoSys composition structures.

RobMoSys Tooling Support

e See how the SmartMDSD Toolchain supports the RobMoSys Ecosystem Organizationin three
composition tiers
e See how Papyrus4Robotics supports the three composition tiers

See also

e Analogy: The PC Domain
e Roles in the Ecosystem
e Tier 1 Details

e Composition in an Ecosystem

Acknowledgement

This document contains material from:

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitit Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:ecosystem:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:start

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4robotics
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/composition:start
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

G

RobMoSys

RobMoSys Wiki

http://www.robmosys.eu

Roles in the Ecosystem

The participants in the ecosystem (see Ecosystem Organization) take one or several “roles” to use and supply

building blocks. The RobMoSys composition structures define which parts are variable and which parts are
fixed, i.e. guided by the structures to ensure composability. Each role uses dedicated views to work on models

and Modeling Twin
Ty
!
Component Behavior
Supplier Developer

System
Architect

List of Roles

(alphabetical order)

Behavior Developer
Component Supplier
Function Developer
Performance Designer

Roles in Context of Composition Tiers

The figure below illustrates the roles and their corresponding

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

System Builder

[

a1

..... [E===)

s B

g wenimsat
iy B %ele

[
-

=1 -
:i§<,.¢.‘,

.
e gy

activities that use or create models on each

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:roles-ecosystem.png?id=general_principles%3Aecosystem%3Aroles
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start

Roles on Composition Tiers:

Tierl

Defines the composition-
gructure, structures
the ecosystem.

Thisis e.g. the RobMeSys
consortium.

Tier2
Sructuresthe domains
within robetics

Thisise.g. the
manipulation domain

Tier3

These are the users
of the ecogystem. It
is about providing and
using content.

E.g. SMEs providing
specific solutions as
component or building
concrete systems.

See also

5 _

Ecosystemn
Driver

Service
Designer

Component
Supplier

%_

Systemn
Integrator

Activities Artifacts
{in the composition-workflow) (models)
/(‘(Eﬁ”iti"” of “cregtes Communication Pattem
Composition-Structures
7
s
s
s
__________________ T shuses T T 71~
rd
s
s
/(‘(__Creatlel) «“credtes \J Data Structure |
Service Definitions '“"r@_fte” |
\-% Service Definition |
s
__________________ e Ep
s
o peuse s
#
/(‘(E:mponent |ecregte»
Development Component |
i
s
s
s
/
T puses
£
s System Configuration
System wredtes .\J e
Integration = (Robot Application)

{list is not complete)

e Ecosystem Organization to learn about Ecosystem and its Composition Tiers

e RobMoSys Views to learn about the concept of views that roles use

e Modeling Twin

general_principles:ecosystem:roles - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:roles-use-case-models.png?id=general_principles%3Aecosystem%3Aroles
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

System Builder

from the ecosystem that realize the needed services. Matchmaking must be made on the basis of offered
services and on other properties, e.g. the required accuracy. Another concern of system builders is to package
everything together such as e.g. also the robotic behavior models from behavior developers and making the
system ready for deployment.

Synonym:

e Within the literature, this role is sometimes called “system integrator” which is considered inappropriate
within the RobMoSys context, because of its close relation to “system integration” which contrasts to

Related views and models:

e System Component Architecture Metamodel

See also:

System Architect

Component Supplier
User Stories including this role

Roles in the Ecosystem

general_principles:ecosystem:roles:system_builder - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system builder 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

K' RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Function Developer

Provides content on function-level to be used by component suppliers.

Synonym:

® none
Related views and models:

. to be defined
See also:

e Component Supplier
ies including this role

general_principles:ecosystem:roles:function_developer - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

K' RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Service Designer

component supplier and system architect. This enables the definition of “de-facto” standard service definitions
within a specific robotics sub-domain such as “object recognition”, “mobile manipulation”, “SLAM”, etc. For
example, they can define what is a common (good) representation for a “localization” service that should be

used (and shared) within the “SLAM” domain.

Synonym:
e none
Related views and models:

e Service Design View
e Service-Definition Metamodel

See also:

s including this role
Roles in the Ecosystem

Acknowledgement

This document contains material from:

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

general_principles:ecosystem:roles:service_designer - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/modeling:views:service_design
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Performance Designer

properties. Therefore, predefined Activities within components are configured exploiting their left-open
variability such that several Activities form trigger chains and thus realize application-specific end-to-end
timings. Based on a performance model, a Compositional Performance Analysis (CPA) can be automatically
triggered to simulate and validate the envisioned run-time performance of a system. Moreover, a performance
model can be used by the System Builder role to refine the instantiated components of a given system. Further
details can be found in:

e Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170-176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

e Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [https://mediatum.ub.tum.de/?id=1362587]

Synonym:
e none
Related views and models:

e Performance Metamodel

See also:

e User Stories including this role

e Roles in the Ecosystem

general_principles:ecosystem:roles:performance_designer - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance designer 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://mediatum.ub.tum.de/?id=1362587
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

K' RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Component Supplier

A component supplier is a role on Tier 3 that offer software components as units of composition that provide or

definitions and functions. He/she therefore uses models from the roles service designer and function developer.

One of the tasks of the component supplier is also to implement a skill that lifts the abstraction of a component
from the service level to the task level (see Separation of Levels and Separation of Concerns). These skills are
then used be the behavior developer to orchestrate components.

Synonym:
e component developer
Related views and models:

e Component Development View
e Component-Definition Metamodel

See also:

Service Designer

Function Developer
User Stories including this role

Roles in the Ecosystem

general_principles:ecosystem:roles:component_supplier - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Behavior Developer

The role of the Behavior Developer is responsible for developing tasks or task-plots (composition of tasks)
modeling how a robotics system, consisting of software components, is orchestrated at run-time to provide a
service as a whole system. The role models robot behavior through the tasks at the according abstraction level

The tasks that the behavior developer models make use of the functionalities provided by the components.
Functionalities that are implemented within software components become accessible through skills (skill
Levels and Separation of Concerns). Thereby the tasks itself are independent of any component and can be
reused with a robotics system consisting of different software components. To connect tasks to components the
role uses the skill definitions (Domain Experts, Tier 2), as interface to the skills.

Skills are defined at Tier 2 and are implemented in Tier 3 by the component supplier role.

models. Thereby the component independent tasks are linked with skills provided by the selected components,
according to the skill definitions used by the tasks.

The role of the Behavior Developer is driven by the needs of an application or a service a robotic system has to
provide. It realizes variability at a task level, thereby using and fixing some of the variability provided either by
skills or by other reused tasks. The role may also introduce additional variability at the task level and specify

rules and policies how this variability will be bound at run-time, using the then available information (context).

Synonym:
e none
Related views and models:

e Robotic Behavior Metamodel

See also:

e User Stories including this role

e Roles in the Ecosystem

e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
e Task-Level Composition for Robotic Behavior

e Separation of Levels and Separation of Concerns

e Component Supplier

general_principles:ecosystem:roles:behavior_developer - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior developer 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Safety Engineer

The Safety Engineer is responsible to define safety-related system aspects and closely interacts with system
builders.

Synonym:
e none

Related views and models:

e ... link view (to be defined)
e ... link model (to be defined)

See also:

e User Stories including this role

e Roles in the Ecosystem

general_principles:ecosystem:roles:safety_engineer - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:safety_engineer

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:safety engineer 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

System Architect

components. For example, a system architect might design a robot navigation stack based on mapping,
localization, and motion-execution services.

Synonym:
e none
Related views and models:

e System Service Architecture Metamodel

See also:

Service Designer

Roles in the Ecosystem

general_principles:ecosystem:roles:system_architect - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect

http://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system architect 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/general_principles:user_stories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

User Stories

The following user-stories provide more detailed examples of the primary user-stories [http://robmosys.eu/user-
stories/] and the user-stories presented at the ERF 2017 [http://robmosys.eu/download/sara-tucci-cea-christian-

schlegel-hs-ulm-presentation-of-the-robmosys-project/]. The user-stories are supposed to guide RobMoSys
consortium to provide the structures and the open call third party partners to apply.

User-stories are described in the As user, I want-style:

e Asa(role), I want (goal, objective, wish), so that (benefit)
e Asa(role), I can (perform some action), so that (some goal is achieved)

Some user-stories are described in context of a specific ecosystem participant or role. Some are not described
in a specific context and can apply to multiple roles. For example what is of interest to an integrator can be of
interest to a supplier since the integrator might also supply a system (see system-of-system).

See also:

e Roles in the Ecosystem

Composable commodities for robot navigation with traceable and
assured properties
A very generic but extremely important user story illustrating the full scope of RobMoSys by a single example:

Based on model-driven tools, develop and provide composable navigation components with all their explicated
properties, variation points, resource requirements etc. (the modeling twin / data sheet). Become able to

compose your navigation system out of these readily available commodity building blocks according to your
needs and be sure that your needs are being matched, that the properties become traceable etc.

e [, as system builder, just want to become able to compose robotics navigation out of commodity
building blocks according to my needs with predictable properties, assured matching with my
requirements, free from interference. It is just astonishing that this is not yet possible in robotics. (with
MoveBase being exactly an example of 1how it should not be)

Description of building blocks via model-based data sheets

RobMoSys achieves a specific level of quality and traceability in building blocks, their composition and the
applications.

as a component supplier

e [want my component to become part of as many systems as possible to ensure return-of-investment for
development costs and to make profit.

e I need to offer my software component (building block) such that others can easily decide whether it fits
their needs and how they can use it.
A data sheet contains everything you need to know to become able to use that software componentma
proper way (interface between the component and its environment) while protecting intellectual

http://robmosys.eu/wiki-sn-02/general_principles:user_stories 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
http://robmosys.eu/user-stories/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin

property. It contains information about the internals of the software component only as long as this is
needed for a proper use.

as a system builder

e [want to select from available components the one which best fits my requirements and expectations
(provided quality, required resources, offered configurability, price and licensing, etc.)

e [want to check via the data sheet (in form of a digital model) whether that building block with all its
strings attached fits into my system given the constraints of my system and given the variation points of
the building block. Thereto, I want to be able to import it into my system design to perform e.g. a what-
if analysis etc.

e [want to extract from my system design the specification of a missing building block such that someone
else can apply for providing a tailored software component according to my needs

e [want to use components as grey-box, use them “as-is”” and only adjust them within the variation points
expressed in the data-sheet without the need to examine or modify source code.

Replacement of component(s)

A hardware device is broken and the identical device is not available anymore (deprecated, discontinued, only
next version available). As a system builder,

e [want to check whether all my relevant system level properties and constraints are matched when I use
the new device.
e [also want to know how I need to configure it for that.

The very same holds true for software components where a software library used is not available anymore with
updates of other libraries etc.:

e As a system builder, when I remove a software component from a system, I want to know which
constraints define the now white spot in my design in order to fill in another one with the proper
configuration to again match the system level properties.

Example:

e From laser-based localization to visual localization
e Replacing a 6 DOF manipulator with a 5 DOF manipulator

Composition of components

I want to be able to predict selected properties of the composition of various software components given their
individual properties, their configurations, their composition. For example, I want to know about the required
resources, whether there are bottlenecks somewhere, whether there are no unnecessarily high update rates
without consumers requiring them etc.

I want to know about the consistency of the overall settings in order to increase the trust into the system. I want
to know that critical paths are transformed from design-time into run-time monitors and sanity checks, e.g.

Quality of Service

I would like to know whether the amount of resources and the achieved performance (in general, quality of task
achievement) is adequate. I want to know what kind of impact a decrease in resource assignment has on the
performance of the functionalities of the robot.

I want to make sure that properties are traceable through the system and are managed through the development

http://robmosys.eu/wiki-sn-02/general_principles:user_stories 2018-06-29

and composition steps. For example

e qualities at service ports of components are linked with component configurations which are linked with
configurations of the execution container and the underlying OS and middleware
e at deployment time (system builder), reservation based resource management should be tool supported

Determinism, e.g. for robot navigation

As system builder, I want my system (e.g. navigation system on a mobile robot) to work exactly the same way
again when I change the platform (e.g. change the mobile base or the laser ranger or the computing platform in
a mobile robot).

e [want to know that the intended functional dependencies and intended processing chains are finally
realized within my system composition

e [want to know that relevant functional dependencies are still valid even after replacing one of my
onboard computers by a different one

Free from hidden interference

e When extending a system, I want to know that I do not interfere with the already setup components,
already used resource shares etc.

e [want to be sure that deploying further components onto my system is free from hidden interference or
hidden side-effects.

Management of Non-Functional Properties

As system builder,

e [want to be able to adhere to functional and, in particular, to non-functional properties when composing
software components.

e [want to re-use software components as black (gray) boxes with explicated variation points such that
application-specific system-level attributes can be matched without going into the internals of the
building blocks.

e [want to be able to work on explicated system level properties: allow to design system properties such
as end-to-end latencies and explicit data-propagation semantics during system composition without
breaking component encapsulation.

e [want to be able to match / check / validate / guarantee required properties via proper configurations of
variation points, via sound deployments etc.

Separation of roles (in particular, between component providers (driven by technology) and system builders
(driven by the application domain) is considered a basic prerequisite towards the next level of market maturity
for software in robotics, and thus towards a software business ecosystem. Support for the system builder is
needed in order to know about the properties of resulting systems instead of wondering whether they match the
requirements or whether they are resource-adequate etc.

Gap between design-time assumptions and run-time situation

When a system is deployed, design-time assumptions might not hold. For many systems it is difficult to know
when the system fails during operation.

e As a system builder, I want to generate sanity checks, monitors and watchdogs from my design-time
models to be able to detect unwanted behavior and to detect operation outside of specified ranges.

http://robmosys.eu/wiki-sn-02/general_principles:user_stories 2018-06-29

System analysis tools

There are analysis tools in related domains not yet accessible to robotics as they are complex to use. I would
like to have support from these tools during the design of components, their selection and composition etc. I
want to better address what-if questions, to perform trade-off analysis etc. These tools should be attached to
robotics via dedicated model transformations without requiring me to get into them.

Task modeling for task-oriented robot programming

e Reusable and composable task blocks which express knowledge about how to execute tasks (action plot)
and what are good ways to execute tasks (qualities).

e Management of the constraints such that composition for parallel and nested execution is free of
conflicts and that open variation points can be bound at run-time according to the given situation ways
to link generic task descriptions (with all their constraints and resource requirements) with software
components (with all their configurations etc.)

Safety

e As safety engineer, I want to model limits for critical properties like the maximum speed when carrying
around a hot coffee, when maneuvering in a crowded environment, the maximum speed dependent on
visibility ranges etc.

e As safety engineer, [model constraints for particular applications and environments.

e As system builder, I want to be able to import these constraints such that tools help me to ensure design-
time consistency and run-time conformance with them (via generated hard-coded limits, via monitors,
via sanity checks etc.)

It is important to highlight what we are trying to say about system safety (not necessarily to prove), because
systems are safe in a particular context under a particular set of assumptions (e.g. by run-time monitors etc.).
The focus is possibly shifted from fail-safe to safe-operational, which may include some liveness in it. It is
about efficient falsification (the following things cannot happen) rather than costly verification (it always
behaves only like that).

general_principles:user_stories - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/general_principles:user_stories

http://robmosys.eu/wiki-sn-02/general_principles:user_stories 2018-06-29

e RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Tier 2: Examples of Domain Models

RobMoSys allows the definition of domain-specific models and ™
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

e Motion, Perception, Worldmodel Stack
Flexible Navigation Stack

Active Object Recognition

etc.

domain_models:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/domain_models:start

http://robmosys.eu/wiki-sn-02/domain_models:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_media/system-examples:intralogistic.jpg
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/domain_models:motion-perception-worldmodel:start
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/domain_models:active-object-recognition:start

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Flexible Navigation Stack

The flexible navigation stack is a set of components that realize specific navigation services to provide a
flexibly applicable navigation capability for a service robot. The services defined (service definitions) for the
navigation stack are a typical example of the Composition Tier 2 contents of the RobMoSys Ecosystem. This
navigation stack can be used with various robot platforms and different kinds of sensors. Moreover, it is able to
deal with unstructured and dynamic environments of variable scale. The focus hereinafter is to emphasize the
general design choices and architectural decisions of the navigation stack components. After that, the following
section provides some technical details and references for the concrete open-source components that can be
used already now, e.g. with the Robotino3 platform.

The figure on the right illustrates the three main levels
of the navigation stack. These levels describe the
shared responsibilities between different parts of the
navigation stack. These responsibilities are assigned
top down according to the subsidiarity principle (as
explained next).

Topological
Path Planning
(typically graph-based)

Geometrical
Path Planning
(typically grid-map-based)

Obstacle-avoidance
(based on direct sensor ™\

®
®
input, e.g. laser-scans) \E
.
)
>

update-fequency [reactivity

Environment
- open-ended R IESTD 0
- unpredictable
- human centric
- continuous

T R A

Obstacle Avoidance Level

The bottom level defines components (a full list is provided further below) related to the fast and reactive
obstacle-avoidance navigation loop. This loop ensures that regardless of where the robot has to move next, this
movement will not cause any collisions and the robot will not be commanded to execute a physically invalid
movement considering the robot's kinematic and dynamic constraints. Therefore this loop will only command
navigation values that never lead to a collision even if these commands might not directly lead toward the next
goal (e.g. because of the need to avoid a suddenly appeared obstacle in between). Consequently, this loop
might lead to a globally non-optimal, yet collision-free, navigation.

Geometrical Path Planning Level

At the middle level, a geometric path planner calculates intermediate way-points based on a grid-map of the

http://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/_media/domain_models:navigation-stack:navigation-stack.png

current environment. The planner relies on this map, which is updated during the navigation to accommodate
for changes in the environment. A localization component estimates the current position of the robot within
that maps. Several existing path-planning algorithms (using A* for example) allow the generation of
intermediate way-points to be individually approached by the lower obstacle-avoidance level. In contrast to the
lower obstacle-avoidance level, this intermediate geometric path planing level has a global view on the mapped
environment. This is useful to e.g. avoid local minima (by generating intermediate way-points around them). It
is worth mentioning that this intermediate level typically does not generate full trajectories (to be exactly
executed by the lower level), but sparse intermediate way-points. These way-points are within a direct line of
sight, which allows approaching them individually by the lower level without requiring a map. Overall, this
enables a clear separation of concerns between the two lower levels and avoids several disadvantages with
respect to wasting resources (due to e.g. too frequent need for path re-planning) continuous velocity changes
and too tight (i.e., inflexible and hardly exchangeable) coupling with the lower level.

Topological Path Planning Level

In some cases, even the intermediate level is not sufficient. For instance, if a robot needs to navigate in an
entire building consisting of several floors, maybe connected over elevators, then building a single huge grid
map becomes complicated, too inefficient and too resource consuming. In these cases, it is rather reasonable to
calculate several smaller grid-maps (e.g. one for each level or room in the building) and to concatenate these
grid-maps in a topological map (which is typically a graph). The responsibility of this top level is to provide a
logical plan how to navigate through the separated maps, e.g. through levels or rooms of a building.

Flexibility in the Navigation Stack

The separation of the navigation components into these three levels has several advantages. The levels can be
composed to individual navigation solutions best fitting the needs of the application or the current environment
a robot is navigating in. According to these needs the size of the stack can be changed, with the bottom level
being the most versatile and configurable one. For instance, some scenarios might require to manually
command a robot using a joystick. In that case, both upper levels would be replaced by a simple joystick driver
component, while the collision avoidance level still validates the navigation commands. In other scenarios, a
robot might always navigate in a single map only. For that the geometrical path-planner on the middle level
(without the topological path planner on top) is fully sufficient. Of course, there are also scenarios where all
three levels are needed. Even in these latter cases, components on the individual levels can be flexibly
exchanged (even at run-time, while moving) by alternatives because of a clear separation of responsibilities on
each level and due to the clear interfaces between the levels. For example, it is possible to exchange free

The navigation stack components and services

The figure below illustrates the interaction of the navigation components over generic navigation services.
While the navigation services are always stable, there are several alternatives for each of the fife navigation
components (see below) that realize the same services but internally implement different algorithms. This
decoupling between a component's internal implementation and the component's service-based interaction is a
fundamental principle in RobMoSys that enables a flexible reuse (i.e., exchange) of components by alternatives
with unique selling points and thus makes the navigation stack flexibly usable in different applications with
different requirements with respect to envisioned environments and the used robot platforms.

http://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start 2018-06-29

Laser =

get laser-scan from HW, ':UII
attach curr. pose and
publish to all subscribers

Push
laser-scan
BaseServer & ot B Planner [B Mapper [B
Sand Avoidance Push Push
velocity (vXivw) | calculate speed next-goal, goal-id map E
publish odometry - to next goal- g —————| plan intermediate E"‘— update map
and receive position using points to goal using current
velocity commands current laser scan position using laser-scan
- robot contour newest map

- kinematic and

dynamic properties
Trigger
Push destination

pose

The navigation stack consists of two hardware-related components, namely Laser and BaseServer. These two
components abstract away the used hardware. While the components themselves are specific to a particular
platform (e.g. Robotino3, PAL Tiago, etc.), they implement the following services that are platform-
independent:

e BaseServer

e The BaseServer acts as a hybrid component, it is both a scanner component in the sense that it
provides updated odometry values, and as a actuator component in the sense that it receives
navigation commands to be executed by the base platform.

e provides BaseStateService: PushPattern<DataType=CommBasicObjects.CommBaseState>:
This service continuously provides the current geometric position (i.e., odomentry) of the base
platform.

e provides NavigationVelocityService: SendPattern
<DataType=CommBasicObjects.CommNavigationVelocity>: This service receives
navigation-velocity command values which are executed by the base platform. The base platform
executes the latest available navigation command until a new value arrives and overrides the
previous value.

e provides LocalizationUpdateService: SendPattern < DataType =
CommBasicObjects.CommBasePositionUpdate >: This is an optional service that allows
correcting the robot's pose (i.e., its odometry) from a localization component (see below).

e Laser

e The Laser component receives odometry updates and publishes new laser-scans together with the
latest available odometry value. This component is one classical type of a scanner component.

e requires BaseStateService (see explanation above)

e provides LaserService: PushPattern
<DataType=CommBasicObjects.CommMobileLaserScan>: This service continuously
provides the current laser-scan including the CommBaseState (as the geometric frame) from the
time when the laser-scan has been recorded.

The other three navigation components implement the different capabilities of the navigation stack, namely (1)
obstacle avoidance, (2) mapping, and (3) path-planning. Again, similar to the two hardware-related components

above, the three components internally implement a specific algorithm and are exchangeable due to the
http://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/domain_models:navigation-stack:navigationcomponents.png?id=domain_models%3Anavigation-stack%3Astart
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service

following algorithm-independent service definitions that they individually implement:

e Mapper
e This component receives a current laser-scan and accumulates the information from this scan
into a locally maintained grid-map.
e requires LaserService (see explanation above)
o provides CurrGridMapPushService: PushPattern
<DataType=CommNavigationObjects. CommGridMap>: This is an updated grid-map.
e Planner

e This component takes a current grid-map and the current destination location?) as input and

calculates a path (consisting of intermediate way-points) to reach that destination.

o requires CurrGridMapPushService (see explanation above)

e provides PlannerGoalService: PushPattern < DataType =
CommNavigationObjects.CommPlannerGoal >: This is the next intermediate way-point for
the platform to approach.

e ObstacleAvoidance
e This component implements an obstacle-avoidance algorithm, such as e.g. the Curvature

Distance Lookup (CDL) [http://ieeexplore.ieee.org/document/724683/]:%...). approach. This
components takes two inputs, namely the current laser-scan and the next way-point to approach
and calculates a navigation command that approaches the next way-point on the as direct
curvature as possible avoiding any collisions.

e requires LaserService (see explanation above)

o requires PlannerGoalService (see explanation above)

o requires NavigationVelocityService: provides navigation-velocity commands to be executed by
the base platform, thus closing the loop back to the BaseServer (see explanation above).

e optional Localization

e This component implements a localization algorithm (such as e.g. AMCL
[https://www.ri.cmu.edu/publications/monte—carlo—localization—for—mol)-ﬁ.e:—.;(u)gE)ts/]) based on the
current laser-scan to calculate a current actual position of the robot within the environment. This
position is communicated through the LocalizationUpdateService (see below) to correct the
robot's odomentry (i.e., to improve the accuracy).

e requires LaserService (see explanation above)

o requires LocalizationUpdateService: This service provides a pose update for the robot's
odometry.

Overall, the three navigation components BaseServer, Laser and ObstacleAviodance together realize the
lowest obstacle avoidance level (see above). The Mapper, the Planner and optionally the Localization

components realize the middle geometric path planning level. Finally, the uppertopological path planning
level is realized by a symbolic planner component.

e SymbolicPlanner

e This is a generic component that is able to find solutions for a given problem domain. Internally,
this component might implement a symbolic planner algorithm like metric-ff or lama.

e provides SymbolicPlan: QueryPattern<Request=CommSymbolicPlannerRequest,
Answer=CommSymbolicPlannerPlan>: This query service allows querying for a solution for a
given problem domain. The problem domain is transferred within the Request object and the
solution is replied within the Answer object.

The symbolic planner component is not only used for geometric path planning but is a generic component that

Coordination Level.

http://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start 2018-06-29

http://ieeexplore.ieee.org/document/724683/
https://www.ri.cmu.edu/publications/monte-carlo-localization-for-mobile-robots/
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns

RobMoSys Modeling Support

The following composition structures are directly related to the realization of the navigation stack:

e ComponentDefinition Metamodel

e Service-Definition Metamodel

e Communication-Pattern Metamodel

e System Component Architecture Metamodel

RobMoSys Tooling Support

e The following page discusses the concrete models of this example using the SmartMDSD Toolchain:
Support for the Flexible Navigation Stack

Matthias Lutz, Christian Verbeek and Christian Schlegel. “Towards a Robot Fleet for Intra-Logistic Tasks:
Combining Free Robot Navigation with Multi-Robot Coordination at Bottlenecks”. In Proc. of the 21th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, September 6-9,
2016. Electronic ISBN: 978-1-5090-1314-2, DOI: 10.1109/ETFA.2016.7733602. Link
[https://doi.org/10.1109/ETFA.2016.7733602]

The next destination is commanded from the behavior-coordination component (seeRobotic Behavior
Metamodel for further details).

Christian Schlegel. “Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile
robot”. In IEEE International Conference on Intelligent Robots and Systems (IROS) Victoria, Canada, 1998.
DOI: 10.1109/IROS.1998.724683 [https://doi.org/10.1109/IROS.1998.724683].

domain_models:navigation-stack:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start

http://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://doi.org/10.1109/ETFA.2016.7733602
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior
https://doi.org/10.1109/IROS.1998.724683

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Pilots: Demonstrating the RobMoSys Approach

RobMoSys uses pilots to demonstrate the use of its approach
through the development of full applications with robots. Pilots
span different domains and different kind of applications. The
pilots can be provided to project contributors to support
designing, developing, testing, benchmarking and demonstrating
their contribution.

e Goods Transport in a Company:
e Intralogistics Industry 4.0 Robot Fleet Pilot
e Mobile Manipulation for manufacturing applications on
a product line:
e Flexible Assembly Cell Pilot
e Human Robot Collaboration for Assembly Pilot
e Mobile manipulation for assistive robotics in a domestic environment or in care institutions:
e Assistive Mobile Manipulation Pilot
e Modular Educational Robot Pilot

The project is open for constructive suggestions from the community for further pilots or extensions to existing

LLINT3

pilots, as long as “platform”, “composability” and “model-tool-code” are first-class citizens of those
suggestions.

pilots:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:start

http://robmosys.eu/wiki-sn-02/pilots:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/pilots:assistive-mobile-manipulation.png?id=pilots%3Astart
https://robmosys.eu/wiki-sn-02/pilots:intralogistics
https://robmosys.eu/wiki-sn-02/pilots:flexible-assembly
https://robmosys.eu/wiki-sn-02/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-02/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-02/pilots:education

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Modular Education Robot Pilot

This Pilot aims at validating the RobMoSys methodology by applying it in an educational scenario. The general
idea is to enable School and University teachers and students to access robot technology without any technical
knowledge of robotics, in order to design novel application and educational activities that involve a robot
system.

Hence, the main objectives of the Pilot are the following:

e Enable users to easily design new application with a simple user interface.
e Enable users to easily design new end-effector for the robot arm.
e Enable users to easily integrate the robot with web interface.

e Free from hidden interface / Replacement of components(s): the user wants to create a new interface for
an existing eDO robot without interfering with the existing components (e.g., a robot hand designed for
enabling the robot to communicate with tactile Sign Language tSL) or replace joints with custom object
designed by the user without interfering with the functions of the robot.

e Safety: The teachers want the robot to limit critical properties and add working constraints when robot
are used by children and underage student

e Quality of Service: the user doesn’t want waste time to configure and setup the robot. The robot need
auto-configurable its system and its interface with the educational environment.

The Pilot will use the e.DO Robot from Comau.

pilots:education - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:education

http://robmosys.eu/wiki-sn-02/pilots:education 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/pilots:comau-2.png?id=pilots%3Aeducation
https://robmosys.eu/wiki-sn-02/general_principles:user_stories

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Flexible Assembly Cell Pilot

The objective of this Pilot is to validate the RobMoSys methodology by applying it on a discrete manufacturing
task within a highly-flexible assembly cell. The pilot will validate the methodology through all stages, from
design to task execution. Some of the performance indicators that will be considered include robustness, ease of
integration and monitoring.

The assembly cell has a high degree of autonomy and does not rely on special-purpose tools or sensors. It
consists of two robotic arms in a shared workspace, each equipped with a 2D or 3D camera for perception and
a gripper for object manipulation.

This pilot demonstrates:

e Modeling of a discrete assembly task the cell operator should be able to specify different assembly
tasks using reusable and composable task blocks without having to know the details of the software and
hardware that will be ultimately realizing the task.

e Replacing a hardware component: the system builder should be able to replace a hardware component
and check whether the system can still perform all the required tasks.

pilots:flexible-assembly - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:flexible-assembly

http://robmosys.eu/wiki-sn-02/pilots:flexible-assembly 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/pilots:assembly_cell.png?id=pilots%3Aflexible-assembly
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#replacement_of_component_s

e RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Assistive Mobile Manipulation Pilot

The objective of this Pilot is to validate the RobMoSys methodology by applying it to an assistive robotics
scenario in a domestic environment. The pilot will validate the methodology across all stages from design to
task execution.

Some of the performance indicators that will be considered include ease of integration, flexibility when
adapting to a new customer's needs (e.g. a person with a specific physical constraint, such as blindness) and
effortless comparison between different alternatives using metrics.

l

Stage: apartment of a person with some physical constraints. The TIAGo mobile manipulator as an assistant for
the person.

This pilot demonstrates:

e Replacement of component(s): the System Builder wants to select and replace from available robot end-
effectors the one which best fits the requirements and expectations of the person with physical
constraints, taking into account specific metrics (provided quality, offered configurability, provided
skills, price and licensing, etc.).

e Free from hidden interference: the Component Developer wants to create a new interface for an existing
TIAGo robot without interfering with the existing components (e.g a tablet for the hard of hearing
person or an audio interface that uses a microphone and a speaker for a blind person).

e Composition of components: the System Builder wants to create a new TIAGo robot check via the data
sheet (in the form of a digital model) whether the new building block (the interface) fits into the system
given the constraints of the system and the variation points of the building block.

Available RobMoSys Software Baseline:

e The pilot is related to the Gazebo/TIAGo/SmartSoft Scenario. It runs the TIAGo platform with the

http://robmosys.eu/wiki-sn-02/pilots:assistive-manipulation 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/pilots:tiago_oldman.jpg?id=pilots%3Aassistive-manipulation
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#replacement_of_component_s
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#free_from_hidden_interference
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#composition_of_components
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

flexible navigation stack in the SmartSoft World.
e The pilot uses the TIAGo [http://tiago.pal-robotics.com] robot from PAL Robotics.

pilots:assistive-manipulation - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:assistive-manipulation

http://robmosys.eu/wiki-sn-02/pilots:assistive-manipulation 2018-06-29

https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://tiago.pal-robotics.com

¢ RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Intralogistics Industry 4.0 Robot Fleet Pilot

This pilot is about goods transport in a company, such as factory intra-logistics. It showcases the ease of system
integration via composition of software components to a complete robotics application. It can be used to
showcase the performance of goods delivery and according non-functional requirements.

e Video of the pilot in action [https://www.youtube.com/watch?v=qRSDxBOUVx0]

This pilot demonstrates:

e Task level composition
e Service-based composition of software components

Available RobMoSys Software Baseline

e The pilot is built using the SmartMDSD Toolchain by composing SmartSoft components

e The pilot features the flexible navigation stack.

e Components are coordinated using Robotics behavior coordination in SmartSoft: SmartTCL

e The pilot uses a fleet of Robotino3 robots. A packaged set of several components for immediate use,
including those from the navigation stack with the Robotino3 platform can be downloaded from
openrobotino.org [http://wiki.openrobotino.org/index.php?title=Smartsoft]. The navigation stack is also
usable with the Gazebo/Tiago/SmartSoft Scenario.

Pilot Roadmap

The SmartMDSD Toolchain v3 is currently being extended with a focus on conformance to the RobMoSys
composition structures. A stable and feature-complete version is expected for release end of 2017. By 1st of
http://robmosys.eu/wiki-sn-02/pilots:intralogistics 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://www.youtube.com/watch?v=qRSDxBOUVx0
https://robmosys.eu/wiki-sn-02/_detail/system-examples:intralogistic.jpg?id=pilots%3Aintralogistics
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:components:smartsoft
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

March 2018, the here described pilot will be supported by the SmartMDSD Toolchain v3. This includes
software components with full support of:

e Gazebo/TIAGo/SmartSoft Scenario in simulation using the Gazebo simulator.
e Navigation Stack using FESTO Robotino3 and Pioneer P3DX.

More software components and support for fleet coordination to follow. Further development steps and future
roadmap of this Pilot in the course of the RobMoSys project will follow with the publication of the second
open call.

pilots:intralogistics - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:intralogistics

http://robmosys.eu/wiki-sn-02/pilots:intralogistics 2018-06-29

https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Human Robot Collaboration for Assembly Pilot

The objective of this Pilot is to validate the RobMoSys methodology in the context of advanced manufacturing
where humans and robots are working together in the same production site. This pilot has 2 main objectives:

e Safety certification of the production site based on model-based risk analysis.
e Modeling once, using everywhere: reusing task description for several robots

This pilot demonstrates:

e Safety certification: The system integrators/the safety experts should be guided to set up a new
production site or to evaluate an existing one through the RobMoSys tools. Those tools should assist the
users to choose the appropriate configuration of the production site in order to be conformant to safety
norms.

e FEasing the development of robotics systems The components offered by the RobMoSys ecosystem
should be composable and easy to configure. The design and deployment tasks should be in the reach of
non-expert users.

e Flexibility and resistance to low-level changes The system builder and the integrators should be able to
design their task and to deploy it on different robots having the same capabilities.

pilots:hr-collaboration - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/pilots:hr-collaboration

http://robmosys.eu/wiki-sn-02/pilots:hr-collaboration 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/pilots:img_0108.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-02/_detail/pilots:cobomanip.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-02/_detail/pilots:polishing.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-02/_detail/pilots:hv_slim.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#safety
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:user_stories#replacement_of_component_s

\' RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Tools and Software Baseline

RobMoSys provides a set of tools and a software baseline that
already conform to the RobMoSys approach. This set can serve
as a starting-point for implementations or demonstrations.

Tooling Baseline

e Roadmap of Tools and Software

e Development Environments and Tools
e SmartSoft World
e Papyrus for Robotics
e to be extended

Tier 3: Existing Building Blocks and Scenarios

e Components
e SmartSoft Components
e Scenarios and Systems
e Gazebo/Tiago/SmartSoft Scenario
e Cause-Effect-Chain Example Scenario

baseline:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:start

http://robmosys.eu/wiki-sn-02/baseline:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-02/baseline:roadmap
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-02/baseline:components:smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:cause-effect-chain-scenario_smartsoft

G RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Roadmap of Tools and Software

The RobMoSys project makes a software baseline available to early work with concepts of RobMoSys

composition structures. This includes already existing metamodels and tooling, for example from the The

SmartSoft World and Papyrus4Robotics World.

RobMoSys
Composition Structures

Realization in
MetaModels and
Tooling

MetaModels of the
Software Baseline

eqg.:
SmartSoft World,
Papyrus4Robotics

RobMoSys <
Ecore MetaModels
and Tooling

sufficiently
<~ Gorformsto
RobMoSys
MetaModels
Human Readable
Meta-Models
conforms-to
< = — -
See also

e Roadmap of MetaModeling

|

r/Open
Call 1

L=

L Project
end

Atthe beginning of the project and the first openh-
call, the RebMoSys consortium provides an initial
set of composition structures. At the same time,
RobMoSys provides software baseline and tooling
(based on the SmartSeft Werld, Papyrus4Robetics
Word, and others) that sufficiently conforms to
the RobMoSys composition structures This
baszline will enable to work with and to build on
the concepts of the RobMaoSys composition
structures at a wery early stage.

During the course of the project, the bassline will
meve towards full conformance and the
RebMoSys project will provide MetaModels and
Tooling that is fully supporting the RobMoSys
composition structures

Referto the software baseline for information
about its degree of conformance.

e Conformance of SmartSoft to RobMoSys composition structures

http://robmosys.eu/wiki-sn-02/baseline:roadmap

baseline:roadmap - Last modified: 2018/06/29 17:54

http://www.robmosys.eu/wiki-sn-02/baseline:roadmap

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-02/_detail/modeling:roadmap.png?id=baseline%3Aroadmap
https://robmosys.eu/wiki-sn-02/modeling:roadmap
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Gazebo/TIA Go/SmartSoft Scenario

This scenario contributes to the Pilot mobile manipulation for assistive robotics in a domestic environment or
in care institutions and Intralogistics Industry 4.0 Robot Fleet Pilot

The robot platform <Manipulation> |
TIAGo from Pal- paE 8]
Robotics is o ”1" 7
accessible in the), vl' 5[
SmartSoft World. 1A 'l’\“ ;
A scenario was set o IT'/ -

<Object-recognition> E .

<Simulation> {]
GazeboBaseServer

1 i

up in which you
can use the
SmartSoft
navigation stack
and SmartTCL for
behaviour
coordination to
move TIAGo
around in the
Gazebo simulator.

The TIAGo robot platform in simulation can be used with the SmartMDSD Toolchain as available software for
the open calls where we emphasize: “do not re-invent in open call projects but build on existing technologies
and tools”.

The scenario includes:

e Navigation Stack: obstacle avoidance (CDL), recording maps with Gmapping, localization, path
planning
e SmartTCL for behavior coordination to move TIAGo around in the gazebo simulator

Available Baseline: Gazebo/TIA Go with the SmartMDSD Toolchain
v3

The models and components to run the Pal-Robotics TIAGo using SmartSoft/SmartMDSD Toolchain within
Gazebo are available in the SmartMDSD Toolchain v3 Virtual Machine as described here. If you are interested
in trying out the scenario with the SmartMDSD Toolchain v2, please refer to http://www.servicerobotik-
ulm.de/drupal/?q=node/91 [http://www.servicerobotik-ulm.de/drupal/?q=node/91].

http://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-02/pilots:intralogistics
https://robmosys.eu/wiki-sn-02/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
http://www.servicerobotik-ulm.de/drupal/?q=node/91

Open the SmartMDSD Toolchain in the virtual machine and take a look at the components. The main software
component that interacts with the Gazebo Simulation [http://gazebosim.org/] environment is the

SmartGazeboBaseServer [https://github.com/Servicerobotics-

Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer] component.

ll:l Emrtﬂuabnnanhmrj j

.I Veloc I:yhplﬂ-hqd#

)

B HavVelberviceln

1 LocalizationUpdat|
eHandler

ateSarviceln

1 BaseStateQueryHa|

nd ler

= BaseSatabg Quenyinsw

Compongnt

H.I SmartGazeboBaseServerParams

dbl-chck me

eSthteServiceOut

This component internally communicates with the Gazebo Simulation and provides communication-services
that are used by the other navigation components [https://github.com/Servicerobotics-Ulm/ComponentRepository]

(as shown in the figure below).

http://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/baseline:scenarios:tiagogazebo.png?id=baseline%3Ascenarios%3Atiago_smartsoft
http://gazebosim.org/
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer
https://robmosys.eu/wiki-sn-02/_detail/baseline:scenarios:smartgazebobaseservercomponentdefinition.jpg?id=baseline%3Ascenarios%3Atiago_smartsoft
https://github.com/Servicerobotics-Ulm/ComponentRepository

. 0B GazeboBaseServer e SmartCdlServen . o JoystickNavigation:
SmartGazeboBaseServer E] HavvelserdChent — SmartCdlServer SmartJoystickMavigation
r—=

[CommiblavigationVelacity

‘ [&] Commavigatianvelocity i_g}

It smasCdserse@arams [].—1'--——-1
! L i component i £
[EI " n:rmn ‘ LQJ

[E] mavvisandserver [K] Mayverskrviceout
IH LasgyServiceDut [FZ," LasefClient E 4 ? 2
— I— .9.:"“‘1 doi-chch me [E] JoystickServiceln
%A CommbickileLasersoan Lt rﬁ]
BaseStateServiceOut 2l i
@ | LY Pl::ff_':—'-'e“t e EumrFl aystick
o I
2 Comn{MobiteLasersian E.E::l} @m JanystickSerydeOut
! . caa.. ... s JoystickServer:
[MapperGridMap: = SmartJoystickServer
| SmartMapperGridMap I ETRREER
Py B RobotConsole: P
1 PHE] Lasarservican SmartRobotConsole t 4 i
(o]
CurrMapDut dhi-chck me
Iﬂ !il TH' Smaft] opilick ServerParamelers
V CommBaseState
A CommGridMap
X
!Ml“'"" CurkapClient
[——
Planner
SmartPlannerBreadthFirstSearch| %7 CommiflannerGeal
]
- H
12l
[F] a sesieClient [ﬂ PlanrgrGoalServer

The easiest way to test the components is to use the fully configured Virtualbox image with precompiled
component binaries and configured Gazebo Simulation environment with preloaded TIAGo models.

You will find a Readme.txt on the desktop within the virtual machine providing step-by-step instructions to
run the scenario. In short, to run the full scenario, open a Terminal within the virtual machine and type in:

./Desktop/start-tiago-deployment.sh start

Wait until the Gazebo simulation starts, loads the Tiago models and all the navigation componets start within
individual XTerms. Select the XTerm with the title “SmartRobotConsole” (be aware that some XTerms might
start on top of other XTerms thus hiding them).

e Within SmartRobotConsole XTerm type in the menu number: 99 (for selecting the Demos)
e Within the next menu, type in the number 2 (for the Planner-CDL Goto demonstration)
e Now the menu should ask to give in a new goal coordinate x/y in mm for the robot to drive to. As an
example type in:
e (-3000)(8000)

This coordinate should command the robot to drive to a neigbour room on the right.
Enjoy!
In order to stop the scenario, select your first Terminal window and type in:

./Desktop/start-tiago-deployment.sh stop

baseline:scenarios:tiago_smartsoft - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

http://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/baseline:scenarios:systemtiagonavigationsystemarchitecture.jpg?id=baseline%3Ascenarios%3Atiago_smartsoft

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

IDEs & Toolchains

Placeholder page. Please refer to Tools and Software Baseline

baseline:environment_tools:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:start

{- RobMoSys Wiki

RobMoSys http://www.robmosys.eu

The SmartSoft World

SmartSoft is an umbrella term for concepts and tools to build robotics systems. The
SmartSoft approach [http://www.servicerobotik-ulm.de/drupal/?q=node/19] defines a
systematic component-based robotics software development methodology and according
model-driven tools [http://www.servicerobotik-ulm.de/drupal/?q=node/20] that support
different developer roles in a collaborative design and development of robotic software
systems. The SmartSoft World includes (a non-complete list):

e The SmartMDSD Toolchain: an Integrated Development Environment (IDE) for

rowered by
robotics software development using model-driven software development. SmartSoft

e The SmartMARS Meta-Model: It defines the structures behind the service-

oriented and component-based approach.

e The SmartSoft Framework and implementation: two exchangeable reference implementations
(current: ACE middleware, former: CORBA middleware) and execution containers for several
platforms and operating systems.

e A repository with open sourcesoftware components for immediate reuse to compose new
applications (sensor access, skills, task sequencing, knowledge representation, etc.). They have been
built with the SmartSoft technologies and tools.

There are two main technology clusters in SmartSoft that adhere to the RobMoSys structures. One is the
SmartSoft robotics framework that provides a C++ library for programming robotics software components
independent of the underlying communication middleware. The other technology is the SmartMDSD Toolchain
that directly implements the RobMoSys metamodels and conforms to the RobMoSys structures. It serves as a
baseline for model-driven tooling.

SmartSoft is officially supported by FESTO Robotino [http://www.festo-didactic.com/int-en/learning-
systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-
edition.htm] (see also Robotino Wiki [http://wiki.openrobotino.org/index.php?title=Smartsoft]).

See: Getting started with the SmartSoft World [http:/www.servicerobotik-ulm.de/drupal/?q=node/7]

SmartMDSD Toolchain and the SmartSoft Framework

The SmartMDSD Toolchain has been introduced in 2009 and has been continuously refined and extended in
various public releases and three generations since then. The figure below shows the main generations of the
SmartMDSD Toolchain and the SmartSoft robotics framework.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/lib/exe/fetch.php?tok=1dc3ed&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2FPoweredBySmartSoft-single_small.png
http://www.servicerobotik-ulm.de/drupal/?q=node/19
http://www.servicerobotik-ulm.de/drupal/?q=node/20
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-02/baseline:components:smartsoft
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-edition.htm
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://www.servicerobotik-ulm.de/drupal/?q=node/7
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

: 1st gen Itemis Eclipse OAW : | 3rd gen Eclipse Juno + Papyrus ,
[a) il —r » C
E £5 IScpt. 2009 Dec. 2010 3 public May. 2013 : : (DE’E 0?-;013 12| public - June 2016 oo td-4th gen !
o5 0.2.0 wolo0) I (v0.10.11) v releases (v 2.12) -
=Lw 4 ; 8 s o - add Parameter modeling by the end-of 2017
tsa 2nd gen improved Deployment modeling 4th gen - Eclipse Neon ™,
ELS il - add Documentation DSL e e N,
F a June-Aug. 2013 jan. 2016 Dec. 2016
i e B S (v3.0x) (v3.2%)
ke b Lablnd e add Performance View
1 L 1 1 1 1 1 1 1 [
1 1 T 1 1 T 1 T 1 Ul
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018
e % g
3 22 | CORBA/SmartSoft i | ACE/SmartSoft v 2.x |
E g g ' using ACE+TAD implementation L ! add Parameter Pattern move to v 3 "-‘ :
F 5 C by the end of 2017 ™.
1] o
i g [ACESmantSoft, JACE/Smartsoft v 3.x "y
viox:changete * - [peessscssszssssssssesalog o
CMake build system add generic Push Pattern

Productive Releases

We encourage to use the latest stable release of the v3 toolchain. See The SmartMDSD Toolchain

The SmartMDSD Toolchain (version 2.x) and the SmartSoft framework (version 2.x) are very matured (TRL
6) are — among others — used by FESTO Robotino. They will be supported for a while but are not fully conform
to RobMoSys. The RobMoSys staff is happy to support you in choosing the right version depending on your
needs. (To all RobMoSys Integrated Projects: approach your coaches for help!)

Conformance to RobMoSys Composition Structures

The SmartSoft software baseline is continuously evolving to match the latest developments in robotics
software engineering methods. While many current SmartSoft structures already now fully conform to the
RobMoSys definitions, there are some necessary refinements that are summarized below.

- provider/requestor
- sve. contract

(e.g. update rate)
-nomxn
- connection oriented
- Forking/gining svc

Interface description
see PhD C. Schlegel
fig. 5.20 on page 78
(syncfasync/handler/...)

«Abstract»
CommunicationPattern

=
N ,

Component- Component-
| external
| View

| (service)

CommunicationPattern
StateAutomaton

Interface
(Function)

Object

internal i
|
|
|

N - -
~~. \ -7 =7
~~ N P -

T W A

PushTimed. Version 3 of the Toolchain will only include the generic
Push and will therefore conform to the RebMoSys communication
patterns.

Version 2 of SmartMDSD Teolchain includes PushNewest and B‘

Further differences between the current SmartMARS Metamodel and the RobMoSys composition structures
will be described in the same way here.

Licenses: SmartSoft is open source

The ACE/SmartSoft framework version 3 is licensed under the LGPL v3 license. The SmartMDSD Toolchain
v2.x uses the LGPL v2.1 license. The SmartMDSD Toolchain v3.x is licensed under 3-clause BSD license. The
SmartSoft components come in various open-source licenses (e.g. GPL/LGPL, see individual component).

Separation of Levels and Concerns in SmartSoft

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:toolchainhistory.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Astart
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:smartsoft:communication-pattern-view-smartsoft.png

SmartSoft provides implementations for the individual levels listed in Separation of Levels and Separation of
Concerns:

Level Available/Accessible in the SmartSoft World
Mission SmartTCL HL Interface

Task Plot SmartTCL Task Block

Skill SmartTCL Skill Block

Service Service Definitions:

- Communication Object (data structure)
- Communication Patterns (comm. semantics)
SmartSoft Components

Function C++ Library (libOpenRave)

Execution SmartTask

Container

OS/Middleware ACE, CORBA, DDS, Linux, Windows, iOS

Hardware URS, Sick, ARM, x86, Robotino, Segway,
MARS

Robotics Behavior in SmartSoft

SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] (and the concept of Dynamic State Charts
[http://www .servicerobotik-ulm.de/drupal/?q=node/87]) are realizations of the Architectural Pattern for Task-Plot
Coordination (Robotic Behaviors)

SmartSoft Terminology
To be extended

Communication Object

e A self-contained entity to hold and access information that is being exchanged via services between
components in SmartSoft.

e Communication objects are ordinary C++-like objects that define the data structure and implement
middleware-specific access methods and optional user access methods (getter and setter) for convenient
access.

e See also the RobMoSys definition for Communication Objects

Communication Pattern

Communication Patterns are a set of few but sufficient characteristics for the exchange of information over
services for component interaction in SmartSoft. Communication patterns are fix set of software patterns
defining recurring communication solutions for robotics software components. SmartSoft provides
communication patterns for the sake of composability, for example send, two-way request-response, and
publish/subscribe mechanisms on a timely or availability basis. SmartSoft communication patterns are an
implementation of the Architectural Pattern for Communication

Framework

Abstracts away platform-specific details such as independence of a particular operating-system (OS) and
http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:communication

communication middleware by providing a unified and platform independent API.

Quality of Service

Quality of Service (QoS) defines the ability of a system to meet application-specific customer needs and
expectations while remaining economically competitive. (see Wikipedia service-quality)

Further Resources

All about the SmartSoft World can be found at http://www.servicerobotik-ulm.de [http://www.servicerobotik-
ulm.de]. Selected links:

e Getting started with SmartSoft [http://www.servicerobotik-ulm.de/drupal/?q=node/7] provides an overview
and starting point

e Use SmartSoft and Gazebo to run the PAL robotics Tiago[http://www.servicerobotik-ulm.de/drupal/?
g=node/91] in simulation

Selected Publications

e Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software.”
In: Journal of Software Engineering for Robotics (JOSER): Special Issue on Domain-Specific
[http://joser.unibg it/index.php/joser/article/view/91]

e Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170-176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

e Matthias Lutz, Dennis Stampfer, Alex Lotz, and Christian Schlegel. “Service Robot Control
Architectures for Flexible and Robust Real-World Task Execution: Best Practices and Patterns.” In:
Workshop Roboter-Kontrollarchitekturen, co-located with Informatik 2014. Vol. P-232. GI-Edition:
Lecture Notes in Informatics (LNI). ISBN: 978-3-88579-626-8. Stuttgart: Bonner Kollen Verlag, 2014.
LINK [https://www.gi.de/service/publikationen/Ini/gi-edition- proceedings- 2014/gi-edition-lecture-notes-in-

informatics-Ini-p-232.html]

See also: Further Publications [http://www.servicerobotik-ulm.de/drupal/?q=node/15] and Technical Reports
[http://www .servicerobotik-ulm.de/drupal/?g=node/18] in context of SmartSoft.

baseline:environment_tools:smartsoft:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start 2018-06-29

http://www.servicerobotik-ulm.de
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/drupal/?q=node/91
http://joser.unibg.it/index.php/joser/article/view/91
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://www.gi.de/service/publikationen/lni/gi-edition- proceedings- 2014/gi-edition-lecture-notes-in-informatics-lni-p-232.html
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://www.servicerobotik-ulm.de/drupal/?q=node/18

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Support for Service-based Composition

This page uses the SmartMDSD Toolchain to illustrate the support forService-based Composition. Therefore,
the Gazebo/TTIAGo/SmartSoft Scenario is used as an example.

This page is a placeholder. Please refer to the Gazebo/TIAGo/SmartSoft Scenario that already uses the
principles of service-based composition.

baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start - Last modified: 2018/06/29
17:54

http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-
composition:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:serddd-damRs:

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

SmartMDSD Toolchain Support for the RobMoSys
Ecosystem Organization

This page describes how the SmartSoft World and the SmartMDSD Toolchain supports the three composition
tiers in the RobMoSys Ecosystem.

The SmartMDSD Toolchain is an Integrated Development Environment (IDE) for robotics software to support
system composition by realizing the RobMoSys composition structures (i.e., the RobMoSys meta-models) for
the three composition tiers in the RobMoSys Ecosystem

fledged code-generator that generates C++ code for

Therefore, SmartMDSD Toolchain provides textual ; ﬁ Ecnmpstem Tiers
SmartSoft Software Components. Moreover, dedicated l

. . . and groups of rokés
and graphical model editors, and implements a fully e
= (| Eoeh

r
model editors of the SmartMDSD Toolchain support - mcarafl P

the different developer roles in their individual T s TR
responsibilities according to their respective modeling /é:l () i ﬁ‘,ifi’““'

view. Existing content, such as the Flexible Navigation —t
Stack developed with the SmartMDSD Toolchain Enabling sccesso | | Gougly
demonstrates the usability of the modeling tools and Approach : Eﬁmfxﬁ‘mh
provides initial content to be used and extended by '

external parties. H S- .
L IFIUS

The SmartMDSD Toolchain is available as a s ecn pse
standalone installation [http://www.servicerobotik- -
ulm.de/files/SmartMDSD_Toolchain/releases/] and as a

virtual machine image [http://web2.servicerobotik-ulm.de/files/virtual-machine/] that includes a fully configured
SmartSoft installation and the components of theNavigation Stack.

Support for Composition Tier 1

The SmartMDSD Toolchain implements the RobMoSys composition structures using Eclipse Ecore.

The figure on the right illustrates by the
example of the component meta-model
how the RobMoSys composition
structures are realized based on Eclipse
Ecore. This and many other meta-models
are implemented within the SmartMDSD
Toolchain and are used to provide
e dedicated model editors for specific
Domain roles at the lower Tiers 2 and 3.

Etem “
Users |:|

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:eco@PdiBemotRE:

Ecosystem Tiers
and groups of roles

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start#robmosys_modeling_support
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start#robmosys_modeling_support
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:ecosystemsmartmdsdtoolchain.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/
http://web2.servicerobotik-ulm.de/files/virtual-machine/
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier1zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier1structure.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

RobMoSys Structures:

conforms to

Hypemgragh
A
conformate confarms to
Bleck-Part-Connectar Ecore
A A
conforms te canfermsta
= "P'_'_-‘—_h“"'n\
RobM oSy i
compemmon rctres (€~ AT nebtomsgcore e.g. ecore meta-model for
il b / Component definition
"1-_‘_‘_._._,-""

[0.%] extensians

lr\.'|r.:ﬂ-Fpﬂmpnrl LY rl:. C ompone D e e 071 coem nt | W ComponentDefinition k
it L
:"r'-'l ameipace | %' name: EString I Tl Coms

ey

[9..%] ¢
A brochl ovmpovsrng
= Element —

Support for Composition Tier 2

Ecosystem Tiers The SmartMDSD Toolchain supports in
and groups of roles modeling domain structures (i.e., domain
Tier 1 models) that conform to the RobMoSys
composition structures defined at Tier 1 (see
Em“n : above). On the one hand, this means that the

Toolchain internally implements the related
Service-Definition Metamodel (see the Ecore
diagram below) as part of Tier 1, and, on the
other hand, the Toolchain provides relevant

model editor (see the Eclipse screenshot
Ecosystem - ‘\ below) to support the involved Service

Domain |

Experts

models (i.e., service definitions). These
domain models are used at the next Tier 3 to (a) implement components that realize specific services and to
(b) compose systems by interconnecting required and provided services of related components.

S — : : —_—
ServiceDafMade| | = SenviceDafRepasitony Wﬁbsmﬁem:el:leﬁniq | % ServiceProperty Ser\lke:rope
. - an I rty at the
[0.1] repasitory) o name: EString [0..*] services T 18] properties o name : EString mzmentis
i 3 ng 1 :
i | just a
laceholder
) ' or afuture
[0.#) imparts Fully-fledged
definition
[&‘CDmmRepulrrmnrl 4 ServiceRepoVersion] 3 f‘;_ﬂ;_}{l’ﬂkwiﬂmsﬁﬂk'?ﬂ: % CoordinationServiceDefinition
efiartion
ImportedNamespace T major : Eint | % statePattern : StatePattern
: ESkring = minor : Elnt e ParameterPattern:
i ; —_— L parameterPattern
2l pRith x cu WiringPattern:
— DynamicwiringPattern
| [3..1] sarvicaraf . meaitoringPattem :
3 1 MonitaringPaktern
&y OneWayCommunica & TwoldayCommunic =
 vonService = ottonsendce
fo.*] servl(.esI
= e -
4 DptionalCoordinationService
; ' name ; EString
"'E ForkingServiceDe H" JainingServiceDefi | RequestanswerSer
InlEion nitlon viceDefinitian
. pattern: | | pattern: pattern:
* Forking Pattern © JoiningPattern * RequastAnswarP
attern

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:eco@PdiBemotRE:

https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier2zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:servicedefinition.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

The SmartMDSD Toolchain screenshot below shows an excerpt of the domain models of the Fl
Navigation Stack.

runtime-oxygen-tc-v3.4 - CommMNavigationObjects/model/CommMNavigationObjects.services - Eclipse PlatFform

2~ ARY L - B-0-AU-B By~ S

Quick Access ||| B 5 T_F &
% Model Explorer £2 =n |[B CommMNavigationObjects.services & = A"
s - 26= ServiceDefRepository CommNavigationObjects wersion 1.0
- 27
z I8 Jun
2 s a 29 * Base-related service-definitions

30 - f
18 JoiningServiceDefinition NavigationvelocityService {

SendPattern <DataType=CommBasicObjects.CommNavigationVelocity>
1

* &5 > CommBasicObjects [Domai
¥ =5 > CommLocalizationObjects |
¥ > CommMNavigationObjects [[

» 3 JRE System Library [java-8-c

OeO0=F0o:

[V S ey N

JoiningServiceDefinition LocalizationUpdateService {

B L WL L LW L W

- #>model 6 SendPattern < DataType = CommBasicObjects.CommBasePositionUpdate >
+ ¥ CommMNavigationObjects.| . }
ki > CommNavigationObject] 9= ForkingServiceDefinition BatteryEventService {
* B CommMavigationObjects.: 8 EventPattern <
y¥C igationObiects.| 1 ActivationType=CommBasicObjects.CommBatteryParameter
-5 CommMNavigationObjects. 42 EventType=CommBasicObjects.CommBatteryEvent
» i, Referenced Libraries 43 EventStateType=CommBasicObjects.CommBatteryState
23> opcua j } =
* Zysmartsoft 46
* 5 = CommRobotinoObjects [Dc j; / o) :)
ne . 1 & ¥ Lanner ry 1a i1t1io
¢ -5 > CommTrackinaObiects [Dol 49 e
Bz gutline &2 = g 30 ForkingServiceDefinition PlannerGoalServ;ce {_
51 PushPattern < DataType = CommNavigationObjects.CommPlannerGoal =
FE) L 52 }
e tE 53
* - NavigationVelocityService: Se 542 ForkingServiceDefinition PlannerEventService {
»8-LocalizationUpdateService: S|| 35 ENSNEERT B §= Al i Sl
pi e - 56 ActivationType=CommNavigationObjects. CommPlannerEventParameter
»+E BatteryEventService: Events< 57 EventType-CommNavigationObjects.CommPlannerEventResult
»+EPlannerCoalService: Push<Cc 58 EventStateType=CommNavigationObjects.PlannerEventState
»=E PlannerEventService: Event< :'0' \ .
»~E CurrGridMapPushService: Pu 61
reR CurrGridMapQueryservice: Q 62 ’*) -
63 * Mapping service-definitions
v LongTermGridMapQuerySen. 64
v+E GoalEventService: Event<Cor 65 ForkingServiceDefinition CurrGridMapPushService {
66 S ; " 4 o
+-BRobotBlockedEventsService: F :: \ PushPattern <DataType=CommNavigationObjects.CommGridMap>
[2 - [l - s =i - - - -
Writable Insert 1:1

All the domain models of the Flexible Navigation Stack and other stacks are publicly available for immediate
use in the Github repository:

e DomainModelsRepositories [https://github.com/Servicerobotics-Ulm/DomainModelsRepositories]

Support for Composition Tier 3
The Tier 3 is about adding content to the Ecosystem in the form of reusable software components and systems.

The SmartMDSD Toolchain supports in developing components and in composing previously developed
components to systems, as well as deploying systems to robotic target platforms.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:eco@PdiBemotRE:

https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:navigationservcies.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier3zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

Similar to Tier 2, the SmartMDSD
Toolchain implements several
RobMoSys composition structures
(i.e., Ecore-based meta-models) for
Tier 3 related to component
development, system composition,
and deployment. On the one hand, at

Ecosystem Tiers
and groups of roles

E“m?‘l: :.: :I: this Tier 3, Component Suppliers can
i develop individual components that
realize selected service definitions
Ecosystem (i.e., domain models from Tier 2).
Users On the other hand, System Builders

can compose components to new
systems. Other roles, such as
Performance Designer, Safety Engineer, and Behavior Developer cooperatively contribute to a system from
different modeling viewpoints. This Tier 3 consists of the majority of Toolchain users as these are all the
Ecosystem participants who provide concrete content and who compete with building block alternatives with
unique selling points thus altogether realizing a robotics component and system market.

The figure below shows the Component-Definition Metamodel based on Ecore as an example. Several other
meta-models are realized within the SmartMDSD Toolchain as well. A most recent version of the meta-model
realizations can be found in the SmartMDSD Toolchain sources (which are open-source using the BSD3
License).

< ServiceRepolmport i ot ren cmr it | [0..*] extensions
| [0..*] imports [& componentDefModel 0..1] companent [® compenentDefinition

— importedMamespace . | | }
T £ Eztring 2 5! name : EString 'il ComponentExtension
—_— - [0..*] plements
+ 2 ComponentElement] AbstractComponent)
/ Bbearsar EE Elsraih [0..1] behaviarslave
| T name: EString
[1..1] pubject ,-;, R 4 Behauiorﬁlavelnterfacel <» BehaviorMasterinterface
— name: EString = — hame: EString =
r . 1 "glaye" L "master"
] ComponentSubNode | service: _ ~ service:
| $* CoordinationServiceD 5* CoordinationServiceD
L] [0..*] ebgervers efinition efinition
[0..*] ofservers Fa¥)
‘ Q.ﬂwtivily | ‘ I InputHandler | | I ReguestHandler | [0..*] extensions |
., extensions : _, optional: ., activeQueue : (o o R Componentsenicat]
_J 0% activityExtension i EBoolean = False i EBoolean =Ffalse H Campanenﬂ;emce__ H xtenstan
[1..1] agswerPort L [' i
[0..*] InputLinks [1..1]ipput -
" [r
‘ *2 InputLink | ‘ B inputpaort | | = AnswerPort | ‘ I outputPort | | T RequestPort |
— optional: service : service : service : service :
* EBoolean = False 5* OneWayCommuni 5* TwoWayCommun " OneWayCommun 5 TwoWayCo mmuni
7 fname: EString cationService icationService icationService cationService
| [1..4] input T
[1..1] activit

Based on the Component-Definition Metamodel (shown in the Ecore diagram above), the SmartMDSD
Toolchain implements a graphical Component-Definition model editor, that allows modeling components such
as e.g. the PioneerBaseServer component shown in the screenshot below.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:eco@PdiBemotRE:

https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:componentdefinition.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component

runtime-oxygen-tc-v3.4 - platform:/resource/SmartPioneerBaseServer/representations.aird/SmartPioneerBaseServer - Eclipse Platform

i AR O PrB B O QDA ey Quick Access | i| | iy) B
% Mmodel Explorer 2 = B A smartPioneerBaseServer X = "
ES Y| eav@~in~M-~ = L B B I AvmE . Palette b
- @ S Fr?
type Filter text a hEaQAD -

% Component Tool-Palet... =

=
3= SmartLaserLMS?OOSer\Ier |Compe lBS tPioneerB s.mrJ E : : l
i3 > SmartMapperGridMap [Compone & ImportDomainModels
-4 = SmartPioneerBaseServer [Compo * component
+ B4 Project Dependencies » A InputPort
»®\ JRE System Library [java-8-openjd B CutputPort
~#% > model A navfrelin () : SR
i PositionOu lequestorPort
= [MSmartPioneerBaseServer.compo - consiraints A ot
" nswerer-or

*[3 Component Def Model
+ PreemptiveTask

B oleafoupsn L, .
* 3 Component Definition Smartk 1 + %7 MandatorylnputLink
» ¥ smartPioneerBaseServer.compo 1 ‘ 1 47 ObserverLink
+ [¥SmartPioneerBaseServer.compo Leni e s [Z] ActivationConstraints
@ > SmartPioneerBaseServerComp | Coreoutepuensenver i} smartpioneerBaseserverparams @ substatesinding
: L’ s s:‘:l]':soft it componentParameters
= -
% outline & = g) seRoNet Tools

5 (0 < [properties [t Problems {lt system Parameter € |} component Parame & ¢ /ErrorLog & console = O

CompeonentParameter SmartPioneerBaseServerParams compenent SmartPioneerBaseServer |
B InternalParameter Robot |
/** Enable (true) or disable (false) motors at startup. Defines the state of the base’ 'motors™-button on startug
enable_motors : Boolean = true

/** Enable (true) or disable (false) sonar at startup. */
enable_sonar : Boolean = false

J/** Set maximum translation velocity of rebot [mmys]. */
maxvel : Int32 = 1000

J/** Set maximum translation acceleration of robot [mm/s*2]. */
maxVelace : Int32 = 300

Several fully implement components based on the SmartMDSD Toolchain and the SmartSoft framework can
be found in this Github repository:

e https://github.com/Servicerobotics-Ulm/ComponentRepository [https://github.com/Servicerobotics-
Ulm/ComponentRepository]

Besides of the component-development view (that is used for illustration above), the SmartMDSD Toolchain
implements several other system-related modeling views that enable the related developer roles to define
relevant system models.

See next:

e Flexible Navigation Stack
o Gazebo/TIAGo/SmartSoft Scenario
e The SmartMDSD Toolchain

baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:eco@PdiBemotRE:

https://robmosys.eu/wiki-sn-02/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:smartpioeerbaseserver.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

1\- RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Support for the Flexible Navigation Stack

Navigation Stack.

Ready-to-run Example: Tiago

Robotics Tiago platform within the Gazebo simulation. It features PAL Robotics Tiago: see
SmartGazeboBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer] as virtual robot base. This example is available
“ready-to-go” in the virtual machine image. A screenshot of the SmartMDSD Toolchain displaying the flexible
navigation stack:

o GazeboBaseServer e o SmartCdlServen o JoystickNavigation:
SmartGazeboBaseServer F] HavvelserdChient — SmartCdlServer SmartJoystickMavigation
‘ ra} =] Commblavigationelity
[commMavigationelocity | Sy In" SmartCdSerseParams ety

[El MayYeltenvicein | component ‘ q‘
parameies |
e [E] mevVisendserver (K] MayverprviceOut
Iﬂ LaserServiceOut R} LasefClient
P b3
S —— | H doi-ghich, [E] JoystickServiceln
*A CommbicbileLasersan Lg} i res
i
BaseStateServiceOut Holh
L . (B} M vev it 97 comflowtck
i H
2 Comn{MobiteLasersian E‘.".;.la‘ @m JoystickSendeOut
N O ST I R =] JoystickSenver:
o MappelﬁridMap_: Smart loystickServer
SmartMapperGridMap componen|
ey 3 RobotConsale: Ty
§ BJHLE] Lasarservicein SmartRobotConsole t 41
=t
CurrMaplut chi-chck me
IEI !i!- TH Smadi apstick SerperParamebars
A CommBaseState

A Commridiap
- -

r 9,
1 e
i.t\;,-li-__!'-‘_.; CurMapClignt

!D Planner:
SmartPlannerBreadthFirstSearch| %7 CommilannerGoal
=1
1
[R_I Ba':c-g;l':\:cubnt m PlanngrGoatserver

Available Software Components in the SmartSoft World

The fife ready-to-use navigation components of the navigation stack can be downloaded from the SmartSoft

of references provides documentation for the fife navigation components:

e SmartCdlServer [https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer]:
this is the main obstacle-avoidance component that uses the Curvature Distance Lookup (CDL)

[http://ieeexplore.ieee.org/document/724683/]_1...). approach in its core

e SmartPlannerBreadthFirstSearch [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch]: this is geometrical path-planning
component using a breadth-first-search algorithm

e SmartMapperGridMap [https://github.com/Servicerobotics-

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:nav2@dBidt-20:

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-02/_detail/baseline:scenarios:systemtiagonavigationsystemarchitecture.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Anavigation-stack%3Astart
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
http://ieeexplore.ieee.org/document/724683/
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartMapperGridMap

Ulm/ComponentRepository/tree/master/SmartMapperGridMap]: this component calculates up to date
occupancy grid maps

e SmartAmcl [https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartAmcl]: this is a
localization component internally using the Adaptive Monte Carlo Localization (AMCL)
[http://wiki.ros.org/amcl] algorithm.

The SmartCdlServer [https:/github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer]
component (see figure below) deserves some further explanations. In a nutshell, this component receives laser-
scans and next goals (which can be either a position, velocity, orientation or even undefined). Based on these
inputs, the internal CDL algorithm calculates a set of collision-free navigation-commands. Each of these
navigation-commands is equally valid, the selection of one “appropriate” one is performed upon a configurable
navigation-strategy. For example, one strategy might try to maximize the overall velocity, another might try to
stay in the middle of a hallway, yet another strategy might try reaching the next goal closest possible (often the
default strategy). This separation between the general obstacle-avoidance and the definition of different
strategies adds flexibility with respect to applicability of this component in different scenarios.

SmartCOLServer
navigation- . N
ol = - havigation- .
d :I\s ChL <L I command -
examples: navigation
- position (x.y) M /E -
- velocity strategy
- orientation
- none gg ,—|A—‘
sensor- "policies"
data {configuration)

There is a list of further components related to different sensor types and robot platforms as alternatives to the
above list of components: More precisely, the following two to use robot platforms are supported directly:

e Pioneer P3DX: SmartPioneerBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer]

The following sensor component provides updated laser-scans using the SICK LMS200 laser scanner:

e SmartLaserLMS200Server [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server]: provides lase-scans.

The Flexible Navigation Stack with FESTO Robotino3

Note: all components and links in this section refer to the v2-generation of the SmartMDSD Toolchain:

e SmartRobotionBaseServer: see the Robotino3 Wiki [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

with the Robotino3 platform can be downloaded from here [http://wiki.openrobotino.org/index.php?
title=Smartsoft].

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:nav2@dBidt-20:

https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartAmcl
http://wiki.ros.org/amcl
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
https://robmosys.eu/wiki-sn-02/_media/domain_models:navigation-stack:cdl-component.png
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://wiki.openrobotino.org/index.php?title=Smartsoft

Another application that uses this navigation stack in a structured and coordinated fleet environment using e.g.

Christian Schlegel. “Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile
robot”. In IEEE International Conference on Intelligent Robots and Systems (IROS) Victoria, Canada, 1998.
DOI: 10.1109/IROS.1998.724683 [https://doi.org/10.1109/IROS.1998.724683].

Matthias Lutz, Christian Verbeek and Christian Schlegel. “Towards a Robot Fleet for Intra-Logistic Tasks:
Combining Free Robot Navigation with Multi-Robot Coordination at Bottlenecks”. In Proc. of the 21th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, September 6-9,
2016. Electronic ISBN: 978-1-5090-1314-2, DOI: 10.1109/ETFA.2016.7733602
[https://doi.org/10.1109/ETFA.2016.7733602]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:nav2@dBidt-20:

http://ieeexplore.ieee.org/document/7733602/
https://doi.org/10.1109/IROS.1998.724683
https://doi.org/10.1109/ETFA.2016.7733602

RobMoSys

RobMoSys Wiki

http://www.robmosys.eu

Support for Coordinating Activities and Life Cycle
of Software Components

This page describes how the SmartMDSD Toolchain supports Coordinating Activities and Life Cycle of

Software Components.

Example Use-Cases for Component Operation Modes

As an example, the figure on the
right shows the model of the
“SmartAmcl” component (i.e., a
component providing a localization
service based on the “Adaptive
Monte Carlo Localization”
approach). This component internally
specifies a single activity called
“AmclTask”. Moreover, the
“AmclTask” is mapped to the
component's operation mode called
“active” (see green ellipse in the
figure). As stated above, the
component's lifecycle does not need
to be explicitly modeled as it is

pdateServiceQut

B LocalizationEventServiceQut

= smartAmcl }
() AmelTask S
’_ s, B Localizabio
— - [
_active ' =
B LaserServiceln o S -
By SmartAmclStates o0
B, 818
|mD ﬁ, 4 ‘ﬁ
dibd-chck me
"I' SmartAmclParams

implicitly available for each component by default. Additionally, the component's lifecycle provides two
default operation modes called “active” and “neutral” (as part of the “Alive” submachine within the
component's lifecycle). That is, if the “active” operation mode is activated, then the referencedactivity
“AmclTask” is activated thus consuming the relevant resources. By contrast, switching into the “neutral”
operation mode implicitly deactivates theoperation mode “active” and thus the referencedactivity
“AmclTask”. In other words, the component is conveyed into a “standby” mode thus releasing the relevant

resources.

The two default operation modes “active” and “neutral” cover the majority of simple software components
that provide a single service based on a single activity with a functional block. However, more complex
components allow the definition of multiple provided services and several activities within a single component.
For such cases, a more detailed model of the component's operation modes is required.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:com@didnt)6a@m:

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/composition:component-activities:start
https://robmosys.eu/wiki-sn-02/_detail/composition:component-activities:smartamcl.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart

ll:E Smart M:ppirﬁridﬂ:pj 3
Q LMIIIMI
e S
b | u?iii;ﬁﬂﬂf;f?' @Eﬂﬁigiiiifis i i:;

= LemdueryServer
) fm“l
f"f"‘f"{@ B cfrMapout
congirainlg

2 CurrQuerySer

".'I SmartMa pp!-lﬂ.'itlj.HapP‘ar;mg wverHandler G
parameion

tt = N

CEELNN T T-
L SmartMapperGridMapStates

.

el

i

As an example for a more complex ¢ BuildLtmMap I | % BuildCurrMap
component, the figure above provides the

model of the “SmartMapper” component. This
component provides three services, namely

“LtmQueryServer”, “CurrQueryServer” and

“CurrMapOut”. The first service provides a
long-term map while the other two services
provide access to the current map (i.e., a grid-

map of a local section from the long-term
map). The component internally maintains

and updates both map types. There are different situations at runtime, where either one of the map types is
needed, or both map types are used, or none of the map types is currently needed. The model of the

L < BuildBothMa sz

component's operation modes (see figure on the right) supports all these cases. As can be further seen in the
component model (in the figure above) the “LtmMapTask™ activity is only active if one of theoperation
modes “BuildLtmMap” or “BuildBothMaps” is active. Respectively, the “CurrMapTaskactivity is only
active if one of the operation modes ‘“BuildCurrMap” or “BuildBothMaps” is active. Please note that the
“neutral” operation mode is not explicitly modeled as it implicitly exists for every component by default.

See also:

e Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State Management of a
Component”, in Technical Report 2011/01, Hochschule Ulm, Germany, ISSN 1868-3452, 201 lPDF
[http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

e Component Development View

e Component-Definition Metamodel

baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start - Last modified: 2018/06/29
17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-
activities:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:com@didn)6ad®

https://robmosys.eu/wiki-sn-02/_detail/composition:component-activities:smartmapper.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart
https://robmosys.eu/wiki-sn-02/_detail/composition:component-activities:mapperstates.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component

G

RobMoSys

RobMoSys Wiki

http://www.robmosys.eu

Support for Managing Cause-Effect Chains in
Component Composition

This page uses the SmartMDSD Toolchain to illustrate the Management of Cause-Effect Chains in Component

Example Use-Case for Managing Cause-Effect Chains

The figure below shows a schematic illustration of the Gazebo/TIAGo/SmartSoft Scenario consisting of
navigation components altogether providing collision-avoidance and path-planning navigation functionality.
This example is used in the following to discuss different aspects related to managing cause-effect chains
which are again related to managing performance-related system aspects.

Ao, = ~
n O“’o T~
Laser [:} ¢ oy 5 r?@,: ~ .
e, (0, " ~
(&5, 9. Ocy, o5 -
get laser-scan from HW, g "’"3‘.—:;3 al’@a C&f(-uf “:’}@ =
attach curr. pose and Cf)ﬁ =" PJ’D',} s Obo
publish to all subscribers '?ge Cﬁ,f:_. ,0,9 ¢ ~
&) it Fi)g to "3_? ~ .
— 9,}}@ {94".0 ~ .
0"\) ~

o
o \

Q | | push newest \
\Q?" ;| (sporadic) \
'b"' ’ laser-scan A\
& \

BaseServer CoL |::}; push newest Planner]:::lr.J push newest | Mapper E} !
{sporadic) {sporadic) {sporadic) :
velocity (vxaw) | calculate speed next-gosl. goal-id map

publish odometry El}-l— to next goal g] plan intermediate S"'":— update map

and recefve pasition using: points to goal using current

velocity commands - current laser scan pasition using laser-scan

- robot contour newest map
push timed - kinematic and y,
{10 Hz) dynamic properties 7

o5

The example system in the figure above consists of five navigation components, from which two are related to
hardware devices (i.e., the Pioneer Base and the SICK Laser) and the other three components respectively
implementing collision-avoidance (i.e., the CDL component), mapping and path-planning. As an example, two
performance-related design questions are introduced in the following with the focus on discussing the
architectural choices and the relevant modeling options:

1. How fast can a robot react to sudden obstacles taking the current components into account?
2. How often does the robot need to recalculate the path to its current destination (thus reacting to major
map changes)?

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:navigationexamplequestion.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart

The component development view

The design and management of performance-related system aspects can be approached from two different
viewpoints. On the one hand, individual components can specify implementation-specific configuration
boundaries (as shown in the example below). On the other hand, a system that instantiates relevant navigation
components can refine their configurations (within the predefined configuration boundaries) to meet
application-specific performance requirements (see next section).

eclipse-workspace - platform:/resource /SmartPlannerBreadthFirstSearch/representations.aird/SmartPlannerBreadthFirst

0 A Q¥ R R R RN WA -TR SRR R A Rl R Quick Access | || 15 (@
iz Model Explorer & = B8 | & smartCdlServer & SmartPlannerBreadthFirstSearch & =a

R T |leavipriliv - M OE w X B B 7 A |dPalette B
type Filker text a o E 0t

& Ccomponent Tool-Palette
&, importDomainModels

¥ By > smartsoft

lB SmartPlannerBreadthFirstSea
% README.md

) C® Component

¥ <} > representations.aird m P

* i > SmartLaserLMSs2005erver [Co — = B o G v » X InputPort
¥ii > SmartMapperCridMap [Comp|| 3 BaseSt3teClient o f@] B CutputPort
Hii = SmartPioneerBaseserver [Co — H!____‘__EEI‘ J B PlarnerEventSencer |+ RequestorPork
*igf = SmartPlannerBreadthFirstse SOt » 7 AnswererPort

» =4 Project Dependencies A curtagpClient + €3 PreemptiveTask

» @, JRE Syztem Library [java-8-op L, SmartPlannerStates pammenses + $7 MandataryinputLink

% > model ;
= = 2 Observerink

> 5 LF mrlldﬂl =4 --g i

Gk e .
{1} smeriannerparams (=] ActivationConstraints

b M emartPlannerArsadthFirsrs,

2 gutline & = @ substateinding
5 — Iu ComponentParameters
B, Statesutomaton
e——l @ seRoNet Tools
I i »— :
= 2 --*:.-L’:'ﬁ Ppr——— | [Properties &2 [2 Problems lf System Parame 1if ComponentPa @ Console SyProgress = O
B i
2 1 _
P [Z] Activation Constraints true
General * Properties
Semantic @ Configurable
Shile Min Act Freq: (& 2.0
Appearance E
Max ActFreq: @ 100
Synchronized diagram =

The figure above shows the model of the “SmartPlannerBreadthFirstSearch” component as a representative
example for demonstrating the role of the Component Supplier. The responsibility of this role is to define and
to implement a component so that it can be (re-)used in different systems. Among other things, the component
supplier also is responsible to define component-specific, performance-related constraints (if the internal
business logic of this component requires specific execution characteristics). For example, the planner
component (in the figure above) specifies that the “PlannerTask” should be executed with an update frequency
within the boundaries from 2.0 to 10.0 Hertz and that the actual update frequency can be configured within
these boundaries during a later system configuration phase.

e Component Development View
e Component Supplier Role
e Component Definition Metamodel

The system-configuration view

instantiate and compose components to a system and to specify initial wiring as well as initial configurations of

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:smartplannertc.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder

these components.

Ii'} smartplmrmmr

E} FronktLaser:
SmartLaserLM52005arvar

E LaserScanServer:
CommMobileLaserSca

B LecalizationUpdateServer:

LaserClent:

dollick me CommMobilel aserScan

e System Configuration View
e System Builder Role

I:} Planner:
smartPlannerBreadthFirstSearch

E BaseStateClient:
CommBaseState

i —1
=»

PlannerGoalServer:
3 E CommiPlannerGoal

CurMapClient:
= CommGridMap Loin
E:}ir: 3
SmartCdlServer
PlannerGealClient —
[:} smartMapperGridMap: CommPlannerGoal
SmartMapperGridMap
E CurPushServer:
E CommGridMap pammetar s
E| LaserClient i l 1
CommMobileLaserScan chlolick me

0 SmartJoystickServer:
SmartJoystickServer
paramoiars

dolclick me

e System Component Architecture Metamodel

The performance view

B NawgationVeloatyServer:

pmmbavigation oty

A given system (as e.g. shown in the previous section) can be refined so that performance-related
configurations are designed in combination, which is the main responsibility of the Performance Designer (as

discussed next).

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:sysnavconfig.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-02/modeling:views:system-configuration-view
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer

ComponentC

:I'\ TaskC1

InC1

TaskB1 ComponentD

TaskD1

InA1
InAZ2

InA2

A performance designer refines the configurations of activity models from the selected components of the
system configuration view (see preceding section). Therefore, several activities are considered in combination
and the component shells are blended out (as they are not relevant for this performance view). The figure
above illustrates the transformation from a system-configuration model to an activity-net.

- P L T L R AU R v 2w Quick access |||z (TR &
% Madel Explorer 12 = O | & systemPerformanceDiagram 2 =
El Tk P e | o ERAET ~| mME <k palette 3

@& s--

type Filter bext ™ : & TaskMode.. ©

b ¥ CommBasicObjects [raskrede
bEF CommLocalizationObjects B registenin_.
» & CommmavigationObjects B rigeertnput
:i ::::atr;nr:calmdklonkenano 2 DataFlaw
X perlodicTi
P SmartCdlserver
= 2 T P ExecutionT..
» & smartoystickNavigation efscheduler
B Smartoys bk erver
»ESmartLaser MS200Servar © CPUTok:
P SmartMapperGridMap © GPucers
(@ SmartPioneerBasetarver @ TaskCPUAF..
» L smartPlannerBreadthFirstSearch H TaskChadn. «
» & sysMavigationScenaric ©9 TaskChain
@ todener
» (QEZESpecs
Souwlne o 5[5 T = 0O [Clproperties = ¥ Problems Y companent Parameter Editor view © ceonscle fif System Parameter Edivor View A

+ Model PerformMNavigationScenario

Rulers & Grid Display

- Measurement
Appescance Shewulet | lerunits | inches v
Semantic Show Grid
8 Grid in Front Grid Spacing | 0,125
. 18 5nap To Grid
Color | £ & snap Ta shapes

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:componentstotaskchains.svg.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:toolchainv3-performanceview.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart

The transformation of a system-configuration model of the navigation scenario into an activity-net results in the
model shown in the above figure. In this model individual activity nodes (orange blocks in the figure) can be
refined by selecting reasonable activation semantics (i.e., selecting a DataTrigger or a PeriodicTimer as an

activation-source for an activity node). Overall, an activity-net forms a directed graph with several paths
sometimes crossing the same activity nodes.

In order to specify end-to-end delays, individual (acyclic) paths of the overall activity-net need to be selected.
Such paths are called cause-effect chains and are visualized by the three rectangles in the above figure on the
right. For each of these cause-effect chains individual end-to-end delay requirements can be specified. These
end-to-end delay specifications can be now easily verified by triggering an automated performance analysis
(see next).

e Performance View

e Performance Designer Role

e Cause-Effect-Chain and its Analysis Metamodels

Performance Analysis based on SymTA/S

Based on the performance model (from the preceding section) a compositional performance analysis can be
automatically triggered which simulates different run-time conditions including scheduling and sampling

effects. This analysis allows verifying the specified end-to-end delays and based on the results to refine the
performance model.

P ey LN
- e 1 . =
:“““'m lII 5 e .II \\m - I', \\ \\\\;__
T \ b e 1 Y . S |
~ o ~— N\, o e \
~ b - Y. b = ~) % M
| [|
I'. I | |
1 !
A e h i

ts - T Histogram For Path FastReacth

RT Histogram for Path FastReactiveNavigationLoop

System Distribution, 50 of 50 gantts considerad

Tetal Loas: 400%

Relative RT for CPUCorel
areb

44—

As an example, the figure above shows the results of the compositional performance analysis which is
calculated using the SymTA/S timing analysis tool from Luxoft [https://auto.luxoft.com/uth/timing-analysis-tools/]
(formerly Symtavision). The results show for the cause-effect chain called “FastReactiveNavigationLoop” that

the distribution of the overall end-to-end delays is within the specified requirements defined in the performance
model.

Number of times (Rt

Ralative Rmiponse Time

See also:

e Managing Cause-Effect Chains in Component Composition

e Architectural Pattern for Stepwise Management of Extra-Functional Properties

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/modeling:views:performance-view
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:symtas-analysis.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://auto.luxoft.com/uth/timing-analysis-tools/
https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_management_nfp

e Cause-Effect-Chain and its Analysis Metamodels

Acknowledgement
This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a

Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-

chain:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cauldlStHec2X

https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://mediatum.ub.tum.de/?id=1362587

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

The SmartMDSD Toolchain

The SmartMDSD Toolchain is an Integrated Development Environment (IDE) for robotics software to support
system composition according to the structures of RobMoSys. It supports in applying the RobMoSys approach
with the SmartSoft World.

Download

e SmartMDSD Toolchain standalone download:
e http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/
[http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/|
e SmartMDSD Toolchain VirtualBox virtual machine image (development environment preinstalled):
e http://web2.servicerobotik-ulm.de/files/virtual-machine/ [http://web2.servicerobotik-

ulm.de/files/virtual-machine/]

e Please note: Virtualbox in Ubuntu 16.04 is experiencing some difficulties with kernel 4.13. If that
is the case, select the previous LTS-kernel 4.4 at boot-time, or install the latest version 5.2 of
Virtualbox from www.virtualbox.org [https://www.virtualbox.org/]

Available documentation

A lot of documentation exists for the SmartMDSD Toolchain v2 [http://www.servicerobotik-ulm.de/drupal/?
g=node/7]. As the SmartMDSD Toolchain v3 has just been released in March 2018, the documentation is

currently being adapted and updated to v3. In the meantime, please refer to:

e See readme.txt on the VM guest OS desktop for further instructions how to use the virtual machine and
preinstalled SmartMDSD Toolchain and SmartSoft Components

e PDF Readme [http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/v3.4/Readme.pdf]
accompanying the SmartMDSD Toolchain release

e Instructions how to use/run the Gazebo/TIAGo/SmartSoft Scenario that is included in the virtual
machine image.

If you want to use the SmartMDSD Toolchain v3 you need the ACE/SmartSoft Framework v3
[https://github.com/Servicerobotics-Ulm/AceSmartSoftFramework] installed.

Documentation is currently being migrated from v2 to v3. Most parts work very similar. You might want to
browse through:

e Video tutorials to be available shortly. In the meantime, refer to v2 video tutorials
[https://www.youtube.com/playlist?list=PLIXdA4EZjZiWSIC4R_ChwH_UIcWXWIJ8Te]

e A user manual will be available. In the meantime, refer to the User Manual for v2
[http://www.servicerobotik-ulm.de/toolchain-manual/html/]

[https://www.youtube.com/watch?v=JTYPJXmop3U]. Please note: this screencast shows an outdated
technology preview. The current v3 stable release works “similar” as shown in the technology preview.

RobMoSys Support

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:staR18-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/
http://web2.servicerobotik-ulm.de/files/virtual-machine/
https://www.virtualbox.org/
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/v3.4/Readme.pdf
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://github.com/Servicerobotics-Ulm/AceSmartSoftFramework
https://www.youtube.com/playlist?list=PLJxdA4EZjZiWSlC4R_ChwH_UIcWXWJ8Te
http://www.servicerobotik-ulm.de/toolchain-manual/html/
https://www.youtube.com/watch?v=JIYPJXmop3U

This section contains specific examples (non-complete list) of how the SmartMDSD Toolchain supports the
RobMoSys composition structures:

e Support for the RobMoSys Ecosystem Organization

e Support for Managing Cause-Effect Chains in Component Composition

e Support for Coordinating Activities and Life Cycle of Software Components
e Support for the Flexible Navigation Stack

e Support for Service-based Composition

Available Building Blocks

The following previously developed/modeled building blocks and scenarios are available for immediate use:

e Domain Models Repositories [https://github.com/Servicerobotics-Ulm/DomainModelsRepositories]: These
are examples of RobMoSys Composition Tier 2

e Component Repository [https://github.com/Servicerobotics-Ulm/ComponentRepository]: These are
examples of previously developed building blocks for Tier 3

e System Repository [https://github.com/Servicerobotics-Ulm/SystemRepository]: These are examples of
systems and applications on RobMoSys Composition Tier 3 that are composed from the building blocks

e The SmartMDSD Toolchain features the Gazebo/TIAGo/SmartSoft Scenario, another example of a
robot application on Tier 3

Eclipse Modeling Tools

The SmartMDSD Toolchain has been using various Eclipse Modeling technologies. It started in 2009 with the
Itemis Open-Architecture Ware (OAW), then between 2013 and 2016 used Xtext, Xtend and UML Papyrus
and is currently moving towards using the latest Eclipse Modeling technologies based on latest Xtext, Xtend
and Sirius plugins. The figure below provides a schematic overview of the Eclipse technologies used for
version 2.x and the transformation with the recent Eclipse technologies for version 3.x.

- use UML's graphical notation
UML / MOF - extend UML class-, component- EMF Ecore-based
2 and deployment diagrams simple transformation SmartMARS eemf
'S 7 4 T extend due to clear meta-model Meta-Models
- concepts
; _ Java- Eclipse Xtext-based [, 4= o
bsgggsgr::s:;.:iis based_| textual model-editors ||| ¢ — > 05\,'4 odel &y
UML Profile sync. | (persistent model view _8 — Q’@’,' synchronization @%
and checks at run-time) > bt at run-time ‘.%
7 T g Eclipse Sirius-based Eclipse Xtext-based 4+
¢ trigger | execute ‘= |graphical model-editors| | [serialization/ | - textual model-editors : C
o Eclipse‘)'(iend based)Z'] (graphical model view | ||persistance” | (persistent model view g
i 3 L=l 3 at run-time and checks at run-time
Eclipse MWEZ execute| code generators c ~()) x
transformations | [|----- > (model-to-code Q — 1 generator
mapping)] | C++ Skeletons)
——————————— | A SmartSoft extension
o .|| |(eg SmartSoft oints
oo m2t NS (| |generation gap p)| Tl _ \ﬁQp
4 transformation ™ |————— ~-.| Eclipse Xtend-based ©
C++ Skeletons Ini files Aimifles L model—to—tgxt code generators 5
#=>, |||(e.9. smariSoft (component start- (component start- transformsittop_ (model-to-code ol
L2 generation gap p.) up configuration) up configuration) [< -~~~ - mapping) P-4
' T ——

Overall, the SmartMDSD Toolchain provides various textual and graphical model editors as well as code
generators to generate glue-logic for the SmartSoft framework and to generate configuration files.

baseline:environment_tools:smartsoft:smartmdsd-toolchain:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:staR18-06-29

https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://github.com/Servicerobotics-Ulm/SystemRepository
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:smartsoft:modelingtools.png

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Papyrus4Robotics

If you already know what Papyrus4Robotics is and you just want to get started with it, see Getting Started With
Papyrus4Robotics.

Otherwise, read the sections below to learn more Papyrus4Robotics.

Presentation

Papyrus is an industrial-grade open source Model-Based Engineering tool. It is based on standards and
supports Model-Based Design in UML, SysML, MARTE, fUML, PSCS/SM, FMI 2.0 and many more. Papyrus
has been used successfuly in industrial projects and is the base platform for several industrial modeling tools
—read more about Papyrus Use Case Stories[https://eclipse.org/papyrus/testimonials.html].

To address the robotics domain according to the RobMoSys methodology and structures, a set of Papyrus-
based DSLs and tools are being collected under the Papyrus4Robotics umbrella.

It is important to emphasize that RobMoSys-compliant software baselines are not in competition. Indeed,
RobMoSys aims, as one of its primary goals, at the realization of a virtual integration platform built upon
existing tools and standards for the development of robotic systems.

Concretely, this means that the RobMoSys approach and structures can enable model exchange and
collaborative development between, e.g., safety engineers and system integrators who use different
RobMoSys-compliant software baselines. As an example, SmartSoft and its large set of software components
can be used to define the system's functional architecture. Then, a safety module in Papyrus4Robotics can be
used to perform dysfunctional analysis on the architecture's key components, including Hazard Analysis and
Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA).
Model-based safety analysis would be enabled by the following components. A dedicated modeling view; a
DSL with the main safety concepts for robotics, e.g., various hazards and safety requirements as specified by
ISO standards 10218-1/2 (industrial robots), 15066 (collaborative industrial robots) and 13482 (personal care
robots); a set of analysis and report generation modules. Read the Aldebaran's use case story
[https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf] to find out more on this subject.

AT T - CRRC LR T-0 AN LN e AR iELTeeh - e ¥
&

4 Representation of critical paths L

and fault tree ']

B o e o e E e e e e L-_’ d = ‘-_] = =

Annotation of functional model 0 0 Q O O
with failure expressions
Realization and tools

Papyrus4Robotics uses UML/SysML as underlying realization technology. The platform uses the UML profile

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrusdrobotics 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4robotics
https://eclipse.org/papyrus/testimonials.html
https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:safety_example.png

mechanism to enable the implementation of Domain-Specific Languages (DSLs) that assist RobMoSys's
ecosystem users in designing robotics systems.

RobotML is a DSL specifically oriented to modeling and design of mobile manipulation robotic systems.
RobotML conforms to RobMoSys's foundational principles of separation of roles and concerns. It provides
several view points, including (but not limited to) those for the definition of State Machines, Hardware and
Software components , Controllers and Environment. RobotML domain models allow for the representation of
the system's architecture, control and communication aspects and span across all 5C concerns of Computation,
Coordination, Coordination, Configuration and Composition.

T tdnﬁgyrau?n - - e ‘Communication
e = o = e i | [Coordination —= e
e l ‘_ N = = Composition
e e = | i || o= i) &
| e - e Computation
! L — e . e — T
v R masmes | || B0 v L "
85 L [T I ﬁ =]
5 : [I:;-.-_.-- |- l .| - | [
i S " | B | |-
' | - —
 [—p— [& o . -
EHEEET ==—
= fp P Configuration
3 e e oo ,-";

Further modeling views are provided by additional components of Papyrus4Robotics. For example, the
performance view is featured by Papyrus Architect, a Papyrus4Robotics module dedicated to explore quality
attributes of architectures, with a focus on timing properties in real-time applications of embedded (robotic)
systems. It leverages the MARTE (Modeling and Analysis of Real-Time Embedded systems) DSL for the
specification of system architecture (functional/physical) and of timing properties. The performance view
addresses the problem of evaluating the performance of candidate architectures with respect to attributes like
hardware resource utilization.

_— = ~ Performance view:
= A | __ | resource consumption

S;pééificatinn of operating modes | (network buses, CPUs)
and timing requirements — - -

Designer [https://wiki.eclipse.org/Papyrus_Software_Designer] supports code generation from models of SW
including embedded and real-time and DDS-based distributed systems as potential targets. In Designer, the
generation starts from a model that includes the definition of software components, hardware nodes and
deployment information. The latter consists of a definition of the instances of components and nodes and an
allocation between these. Code generation is done by a sequence of transformations steps. The model
transformation takes care of some platform specific aspects (e.g. communication mechanisms or thread
allocation), based on non-functional properties.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrusdrobotics

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:robotml_example.png
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:performance_view.png
https://wiki.eclipse.org/Papyrus_Software_Designer

Component model |

| Application components § | | Platform components & 1| | Deployments e |

Application behaviors 5% | Component interactions ' |
[Port and senice library 2] [Interaction component library 81|
Object-oriented model | [Model transformation
[Application classes [=] [Interaction classes [=]

| Fragramming language annotations «n| | Method bodies in programming language ('_‘,-|

Code | Code generation l IF-!L-vers*r_-
: , «. _
{ce} {} = Ada™

RobotML includes generators that transform RobotML-compliant models into code for robotic middlewares

[https://www.openrobots.org/wiki/morse/]).

Conformance to the RobMoSys structures

Some modeling concepts in Papyrus4Robotics are already aligned with the RobMoSys definitions. However,
further refinement and alignment of meta-models is in process and scheduled to be released and productively
used by the end of 2017.

Separation of Levels and tool coverage

Papyrus4Robotics provides implementations for the individual levels listed in Separation of Levels and
Separation of Concerns

Level Corresponding DSL or Tool in Papyrus4Robotics

Task Plot RobotML State Machine

Skill RobotML Inteface

Service RobotML operation (defined in the Skill interface)
Software Component representation in Papyrus Designer

Function C++ library (e.g., libOpenRave, etc.)

Execution Task and resource representation in Papyrus Designer

Container

OS/Middleware DRM::SRM in UML. MARTE

Hardware DRM::HRM in UML MARTE, RobotML’s sensors and
actuators

Platform workbenches in the context of RobMoSys

One major project's focus is on models, software and tools that are generically useful for all possible robotic
systems and applications. This includes systems and applications that can, e.g., pass certification, monitor their
resource usage at runtime, or form systems-of-systems with just a reconfiguration of the available models.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrusdrobotics

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:papyrusdesignercodegen.png
http://www.orocos.org/rtt
https://www.openrobots.org/wiki/morse/

Building such systems and applications require multi-disciplinary competences (beyond robotics) and sets of
platform tools that support best-practices established in near and mature engineering-centric domains, such as
automotive or aerospace.

Possible modeling workbenches enabled by the RobMoSys's software baselines are for example SmartMDSD
Toolchain, the Papyrus4Robotics set of modeling tools. There are many more existing modeling tools that can
be made conformal to the RobMoSys's baseline. In a robotics ecosystem multiple users provide models by
using these workbenches and these models are interfaced over the RobMoSys's baseline.

Some workbenches allow for many different kinds of analysis that are strongly related to good practices to
employ during the development process—as recommended by experts in the complex and critical systems
design domain (read Annex 1 of D5.1 to find out more). This includes (and is not limited to):

e verification and co-simulation activities (e.g., based on the FMI 2.0 standard) during early stage of
design, thanks to the definition of a model of computation (MoC) on system level;

¢ handling safety and security aspects as soon as possible and not as an afterthought;

e checking whether the amount of reserved resources (hardware/software) is adequate to meet given
performance criteria (e.g., respect of time constraints on end-to-end latencies)

It is unrewarding to define one single modeling workbench that covers all aspects of design, analysis and
synthesis (i.e. code-generation). Instead, because platform tools conform to the RobMoSys structures, models
can be exchanged from one modleing workbench to another to cover all the design needs of the ecosystem
users at all the phases of development.

Resources

Installation procedure
e Papyrus [https://eclipse.org/papyrus/]
e Papyrus RobotML [https://eclipse.org/papyrus/components/robotml/1.2.0/]
e Papyrus Software Designer [https://wiki.eclipse.org/Papyrus/Designer/getting-started]
e Documentation and tutorials
e Papyrus Documentation [http://www.eclipse.org/papyrus/documentation.html]
e Papyrus RobotML Documentation [https://eclipse.org/papyrus/components/robotml1/1.2.0/]
e Papyrus Software Designer User Guide[https://wiki.eclipse.org/index.php?

title=Papyrus_Software_Designer&redirect=no]
Videos
e Model driven safety assessment for robotics[https://www.youtube.com/watch?v=CnklgQ7tWns]
e Modeling and safety assessment for Nao[https://www.youtube.com/watch?v=-k1xWIrdwg0]
e More videos on Papyrus Companions
[https://www.youtube.com/channel/UCxyPoB1Zc_rKLS7_K2dtwYA]
Selected publications
e Selma Kchir, Saadia Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes,
RobotML for industrial robots: Design and simulation of manipulation scenarios. ETFA 2016: 1-
8
e Nataliya Yakymets, S. Dhouib, Hadi Jaber, Agnes Lanusse, Model-driven safety assessment of
robotic systems. IROS 2013: 1137-1142
e Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, Mikal Ziane, RobotML, a
Domain-Specific Language to Design, Simulate and Deploy Robotic Applications. SIMPAR
2012: 149-160

baseline:environment_tools:papyrus4robotics - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrus4robotics

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrusdrobotics 2018-06-29

https://eclipse.org/papyrus/
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/Papyrus/Designer/getting-started
http://www.eclipse.org/papyrus/documentation.html
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/index.php?title=Papyrus_Software_Designer&redirect=no
https://www.youtube.com/watch?v=CnklgQ7tWns
https://www.youtube.com/watch?v=-k1xWJr4wg0
https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Getting Started With Papyrus4Robotics

Installation

Papyrus4Robotics is distributed as a self-contained Eclipse RCP [https://wiki.eclipse.org/Rich_Client_Platform].

The RCP for your OS (64bits) is available from the links below:

e Windows [ftp:/ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-win32.win32.x86_64.zip]

e Linux [ftp:/ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-linux.gtk.x86_64.zip]
e MacOS [ftp://ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-macosx.cocoa.x86_64.tar.gz|

To install it, just unpack the RCP archive in a directory of choice.

To run it, make sure that you have a Java 8 or newer JRE/JDK. Then just launch the papyrus - robmosys
executable.

Running an Example

Papyrus4Robotics comes with an installed example to get you started. To run the example, just click
New-Example and accept the default propositions in the wizard.

Wi - IR AR R - [QuickAccess ||| & 73
=) P%)jectExplorer = = g = 7
& Model Explorer &2 = B

£ E ué} laz + - =

No Model Available

[Properties & | J Model Validation @ Documentation 7 References 4 ¥ =0

Properties are not available.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://wiki.eclipse.org/Rich_Client_Platform
ftp://ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-win32.win32.x86_64.zip
ftp://ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-linux.gtk.x86_64.zip
ftp://ftp.cea.fr/pub/lise/robmosys/org.eclipse.papyrus.robmosys.product-macosx.cocoa.x86_64.tar.gz
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:diy-runexample.gif

The Example Explained

Introduction

This example shows how Papyrus4Robotics supports the service-based approach for the composition of
software components.

Composition in an Ecosystem organized in tiersis the approach adopted by RobMoSys to system integration.
Next sections discuss how tier 2 and tier 3 participants use Papyrus4Robotics to model a simple service-based
composition of a mapper component and a planner component.

The illustration below corresponds to the role descriptions, as taken from the RobMoSys wiki.

(8.4 niswigation for mhitled rebsaial

Servicel efimition MappingSdef {
L o Ll Service defimitions (Tier 2} [
Properting | covar dala srucbore, Cammu nealion
ok == s i aeemantics aed addisanal properteas
Fer specific ssneioes Such &8
scpcyGrieup “rubet calleutan®
Map ngsdef ' de [StamplerblE]

\ [vamersdes [] Lacaiiz
Cigemain Serwicel elisilen Lacsl malionSdel
Espert u PG BEEUFTAEY . AL
ITier Xi ¥

Service i Ma| % -
(Meatintnol Marmimeier ¢ | Sarvice architecters {Tinr 31
Mapping el = i panyEed M g Cormety of mrearal mrdce wisan
- that inztantiste seneca definkices
\ i :I -_—_ and rfirm their progertie:
4 uj
-.'w{:ar:'rrr % Almmning Helianlanc Tha aervice archEecturs cam be speciic
Suppler b SarwiceW oh Locakzation o & eartan robalics applicatian
Mier 5 “ Lacalzatior - iratancmcf LocalrationSdef { in.p Delvary robot *RESHI%
e i seeurrary = Sem & £inn B intaneiel Per i v ity of
! wish Futllment appheatioes reference archil el ure
Bystem k!

Iy Arthiet 1
Iy Tier 31 W

2] gl

Plesner B
SrmartEF 5P e ner S PG

R=f eguestor LY

1
1 PeProider
1
1
| Sywtwm canfiguration model (Tier 3
g vt 1 Iréagrabar zalects comzcmanis
detimition madel | and vt ke
[Ther W 1 Builder mftmary componants
Supgliss compoesnts ssunk of | 1 Mer 31 e |Stampfarddle|

compostian tat provide ar
regeine mrviceE scoomling
tn senvice definitices

|Stampfaridl] Dannis Rampfer, A Lotr, Matthias Luts and Chrigisn Schisgel, "The SmartH DED Teaichain
An Intagrated MOSD Werkflow and |Integrated 0 evel cpmant Emvirenmant (IDE) for Rohaotice Saftware™ Specisl
Immua o Domain-Spacific Langquages and Madsls in Rohotics, Joural of Szftwars Enginasring far Aobstics
OSEA]. 701}, 3-1% ISSN: 30353326, july 2216

Domain Expert (Tier 2)

Tier 2 are robotics experts who define a complete characterization of services in robotics domains, e.g.,
mapping, planning, localization, etc. Tier 2 structures each robotics domain by creating domain-models that
cover a number of aspects, including data structures and communication semantics. Service designers are the
domain experts on Tier 2 that design individual service definitions for use by Tier 3.

The picture below shows a portion of data structures defined for the mapping domain in this example.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/_media/composition:service-based-composition:service-based-composition-approach.png
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer

“F simpleservicebasediomposition.di 12

R | - Palette
[E | MapGridizelinitiind MFF_Integes WFP_Real =) BerupancyGridMap | (E5)| Map ==

7 i
=i call walue: Integer vabse: Real Pl i ik RabMoSys Data Representation
tuplaattrit=[width, hesght, resclution] chalceattrib={ogm, fm] o T B .
defaultattribmogm = Valig type with medsurement unit (NFP Type)
Enureraticn
- =z _a= it WFP_MapGridd Sine. ogrm: DeCUpAnCyGidMap # TupleType
Pazight: NFF ManGridSize tm: Faaturablag
3 [resohution: NFF_MapGridReschution = ChaiceType
DT MNFP_MapGridSize |07 | NFP_MapGridResed...
L ¥ CollectionType
e =i p Ty =MipType-
| & |MapGridRasslutionln. . valugAttrib=valie valueAttrib=value = Enumeration Literal
T wrikAttrib=unit unitattrib=unit Attribute
rat: MapGndSielinitKind unie: MapGridResshution. Sls_a

¥ welcome B data (map) =

Papyrus4Robotics leverages concepts from OMG's MARTE [https://www.omg.org/spec/MARTE/] NFP and VSL
profiles to comply with RobMoSys' specifications on digital data representation. Built-in type definitions can
be imported from the BasicNFP_Types MARTE library and specialized for a specific domain by using a
dedicated palette (right side of the picture). Leveraging on MARTE, Papyrus4Robotics supports physical
units descriptions to formally define unambiguous semantics of units of measurements in data types.

Once the communicated data structures (Communication Objects, identified with the co icon on the top left
corner) are defined, the communication pattern usage can be formalized. The next picture shows the model that
describes the Mappingsdef service. In this example,MappingSdef uses the Push pattern and selects theMap
data type as communicated data structure.

“¥ simpleservicebasedcomposition.di & = M
« Palette]
RERED W
= RobMaoSys Service Definition
Ef Service Definition
I Service Property

50] Mappingsdef @ Push {Comm pattern)

¥ Bvent (Comm pattern)
N &5 Query (Comm pattern)
5 send (Comm pattern)

A USRS

abinds !
=Mossage .= Map=

% Push

o Welcome B data (map) | B servicedel {map) &
Component Suppliers (Tier 3)
Component suppliers at Tier 3 provide models of software component definitions.
AcmeMapper

The model below shows a mapper component developed by a company called AcmeCorp (hence
AcmeMapper), which provides a fully compliant implementation of theMappingsdef service definition above.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier2-data_map.png
https://www.omg.org/spec/MARTE/
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier2-servicedef_map.png

“¥ simpleservicebasedcomposition.di 2
- Palette [+
@ ell-B-

* RobMoSys Component Definition
s:‘ AcTmeMapper £1 Ccomponent Definition
o Component Port

5 Activityl £l Component Service
ik Parameter
—. + pMap: AcmeMapCs (1] E Parameter Entry

77

B Activity Port

¢ realizes

s USES

— # connects

AcmeMapCs 150

............. MappingSdel

oa Welcome | B9 data (map) |86 servicedef (map) Cg componentdef (map) &

The example focuses on the modeling of a single component port (pMap) providing the mapping service.
Aligned with the standard UML rules of interface realization, this is achieved by assigning the port a
ComponentService item as a type (AcmeMapCs) that realizes MappingSdef.

AcmeMapper contains one Parameter structure, that represents a set of parameters that make the component
configurable for reuse in different scenarios by the system builder or even at run-time. The Parameter
structure content is visualized in the model editor by selecting the paramter icon and the Parameters
Settings tab in the property view (see below).

T properties &£ | J Model validation € Documentation % References = 0O

- -

H ParameterSet
Parameters (default values)
o

RobMoSys

Parameters Settings
Style noOfScans @ Integer 5

value

indoor : Boolean brue

Appearance
Rulers Aand Grid
Advanced

In this simple example, AcmeMapper has 2 configurable parameters with built-in types. However composite
value specifications (collection, tuple, choice, etc.) can be specified as well, using the MARTE VSL syntax.

AcmeMapper defines one activity (it could define more), which is £DS-agnostic representation of a thread.
Activities provide wrappers for functions (algorithms). Activities do have set of parameters for configuration

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier3-acmemapper.png
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier3-acmemapper-parameters.png

(e.g., interarrival range, that is max and min activation frequencies). Similarly to component parameters,
activity paramters can be viewed and set through the Parameters Settings tab in the property view.

EmcaPlanner

The model below shows a planner component developed by a company called Emcalnc (hence EmcaPlanner).

“# simpleservicebasedcomposition.di _—
“ Palette [
Esl-M-
- »* RobMoSys Component Definition
E R £ component Definition
: Component Port
E Activityl fl Component Service
+ rMap: EmcaMapCs [1] + pPlan: EmcaManCs (1] 1§ Parameter
E:[+‘!’? .‘ i Paramekter Entry

£ Activity
B Activity Port
o realizes
s USES
connects

3_5; EmcaMapCs [s0] 2

MappingSdef
_____________________________) pping
7
@ EmcaPlancs D) 9
Planning5def
____________________________ P 9
s«Pealiress

o8 welcome | B¢ data (map) |[B6 servicedef (map) Cg componentdef (map) Tp componentdef (plan) &

The example focuses on the definition of two component ports. pplan provides a implementation of
Planningsdef (a planning service definition model not discussed in this document).rMap requires a fully
compliant implementation of Mappingsdef. To model the service requirement, in agreement with the standard
UML rules, the usage item is used to create a dependency between theEmcaMapCs and MappingSdef.

System Builder (Tier 3)

System builders instantiate component definitions to provide a platform-independent specification of a
software system. The model below shows the instantiation and connection of one instance of AcmeMapper and

one instance of EmcaPlanner.

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier3-emcaplanner.png

“¥ simpleservicebasedcompositiondi & = n
= Palette [
pEaell-8-

B SystemComponentirchitecture = RobMoSys System Component Assembly ... <

=l Component Instance

/" connects

m: AcmeMappar
PMap

Map

.pF’ian

p: EmcaPlanner
rMap

5 welcome | B data (map) |[B servicedef (map) | %o componentdef (map) 2o componentdef (plan) | B} componentassembly =2

It is now assumed that the mapper component instance must work outdoor. The default configuration of
AcmeMapper component definition was indoor, so the component instancem must be re-configured by the
system builder.

For a component instance the parameter set is accessible by clicking on the instance itself and selecting the
Parameters Settings tab in the property view. The next picture shows the value ofindoor parameter is set
to false. Yellow highlighting visually enforces the message that the parameter value is now different from the
default one.

[Properties 2 J Model validation € Documentation 5 References ™ = = O

iwcmeMappe

Parameters (instance level)
o

RobMoSys
Parameters Settings
Style noOfScans © Integer 5

Appearance
Rulers and Grid
Advanced

Conclusions

This example shows a structural model in the context of composition of software components. It shows how
different tiers contribute models to achieve composition of software components, using service-definitions as
central architectural element for it. Then it focuses on one instance of the mapper component and shows a
simple reconfiguration of one of its parameters.

Do It Yourself

This section is in progress. More content will be added shortly.
http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4roboidd$-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier3-system.png
https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:tier3-system-mreconfig.png

Connect ComponentInstance Items

Connections between component instances can be drawn by using the connects item from the system
component architecture palette.

First, select connects from the palette. Then point and click the source and target component ports to be
connected. Note that the connection is only possible if
e both source and target elements are component ports

e Dboth ports provide/require compatible services. In other words, for 2 connected (component) ports, the
type represented by a component service must be instance-of the same service definition.

- @~ A~ e I SN — . B

o BB -BrSrWrH o~ # - [100% it Q-in P
G B I = 7
~¥ simpleservicebasedcomposition.di & = O

= ¥ Palette b

FRar-®-
E SystemComponentArchitecture & RobMoSys System Component Assemblyand Confi... « i
= component Instance ‘}'

connects
O p
e
¥
m: AcmeMapper

pMap

2] rMap p: EmcaPlanner

@& welcome data (map) servicedef (map) |E servicedef (plan) | 2o componentdef (map) | 8o componentdef (plan) componentassembly 2

baseline:environment_tools:getting_started_with_papyrus4robotics - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4robotics

http://robmosys.eu/wiki-sn-02/baseline:environment_tools:getting_started_with_papyrus4robotdds8-06-29

https://robmosys.eu/wiki-sn-02/_media/baseline:environment_tools:diy-connectcomponentinstances.gif

K' RobMoSys Wiki

RobMoSys http://www.robmosys.eu

SmartSoft Components

A collection of SmartSoft components is readily available under Open Source Licenses. They have been
developed using the SmartMDSD Toolchain and are available for immediate reuse.

e For use with the SmartMDSD Toolchain v2: List of available components [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html]

e For use with the SmartMDSD Toolchain v3: List of available components
[https://github.com/Servicerobotics-Ulm/ComponentRepository]

baseline:components:smartsoft - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/baseline:components:smartsoft

http://robmosys.eu/wiki-sn-02/baseline:components:smartsoft 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html
https://github.com/Servicerobotics-Ulm/ComponentRepository

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing []
approaches should be used wherever possible. The following
list provides some common approaches that are considered ittt i ==
relevant within the RobMoSys context.

e General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.)

e Robotics Approaches (ROS, YARP, RTC, etc.)

e Middlewares (DDS)

e Industry 4.0 domain: OPC UA

other_approaches:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/other_approaches:start

http://robmosys.eu/wiki-sn-02/other_approaches:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=other_approaches%3Astart
https://robmosys.eu/wiki-sn-02/other_approaches:modeling_languages
https://robmosys.eu/wiki-sn-02/other_approaches:opc-ua

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

OPC Unified Architecture (OPC UA)

The organization of an ecosystem in three tiers can also be found in other domains. For example, a significant
part of the industry 4.0 domain is shifting towards the OPC Unified Architecture (OPC UA)
[https://opcfoundation.org/]. OPC UA is a standard for machine-to-machine communication comprising
communication infrastructure and information models for semantic data exchange. OPC UA is standardizing
connectivity of industrial devices and enables the interoperability among products of different vendors. It does
not yet address the next level of interoperability which we call “composability”.

The OPC UA ecosystem is in its structures exactly conformant to the explicated tiers of the RobMoSys
ecosystem approach. The OPC foundation is the driver in tier 1, the companion specifications belong to tier 2
and finally there are the users at tier 3. The strong point about OPC UA is that it is driven by industry in a joint
effort and that they successfully manage the ramp up of an ecosystem along these tiers.

A direct comparison of the RobMoSys Ecosystem with OPC UA is given in the figure below.

RobMoSys Ecosystem Tiers RobMoSys ? OPC UA World % u A
and groups of roles Tier Elements
RobMasys
™ .g. ice-oriented software
Tier 1 CompOSItlon €.g. service-orien : . .
Structure | {oiCaek, communication OPC UA models, variables
Ecosystem patterns Standard methods
l Drivers conforms AN

to T

Tier 2 e.g. vision, robotics,
Domain %3 Domain- e.g. vision, flexible navigation _OPC UA_ 3 . devices, kitchen
s ‘ E " Lo--- stack, motion-perception-world Companion Specifications equipment
----- PPERE i '". Models model stack, manipulation. AN

""" conforms T

UL £ I':l to e.g. vision, flexible navigation OPC UA ;2(3?;59, \:S&:;:zrs

= e = A Content for | steck Toxenberentin | Building Blocks and Systems |t
Sers Exchange ' P (Clients/Servers)

As prominent example for domain models (companion specifications), VDMA is working on companion
specifications for vision and robotics. Companion specifications sometimes contain additional concepts that
have evolved in a particular domain, but that are generally applicable. For example, the companion
specification for vision foresees a generic state automaton for components with component-specific sub-states
—a very similar concept to the RobMoSys component life-cycle and communication pattern "state pattern". In
the long-run, they may be adopted by OPC UA itself, thus move from Tier 2 to Tier 3. This movement of
structures describes the evolvement of an ecosystem and also has been identified for RobMoSys (see wiki page
on ,, Tier 1 in detail”). OPC UA is actively postulating the creation of companion specifications by providing
support and guidance.

OPC UA eases device integration thanks to an overall methodology (Tier 1) and domain-specific standards
(composition Tier 2). Device suppliers now can adopt the Tier 2 standards and gain compatibility with users
that expect these standards. OPC UA, however, does not specifically aim for composition and is, in fact, less
suitable for composition of software components. It misses adequate abstractions and concepts (e.g. such as
RobMoSys communication patterns). However, composability starts being addressed in OPC UA as it can be
observed in recent developments that are on the way to introduce the concept of skills.

OPC UA can also be used as an underlying communication infrastructure below the RobMoSys structures. In
the context of composition, the challenge with OPC UA is to introduce additional structures that enable
composition. This is done by, for example, the RobMoSys communication patterns. This is where the German
national BMWi/PAiCE Project “Service Robot Network™ (SeRoNet) is adopting parts of the RobMoSys
composition structures and provides a mapping to OPC UA. Thereby, SeRoNet can fully benefit from
composition as introduced by RobMoSys but also manages the seamless integration with the traditional OPC

http://robmosys.eu/wiki-sn-02/other_approaches:opc-ua

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://opcfoundation.org/
https://robmosys.eu/wiki-sn-02/_detail/other_approaches:composition-tiers-opcua.png?id=other_approaches%3Aopc-ua
https://robmosys.eu/wiki-sn-02/composition:component-activities:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

UA world, for example to use OPC UA powered devices.

In general, the industry 4.0 world based on OPC UA has a fully conformant way of thinking with respect to the
overall RobMoSys world. Thus, there is a very good chance to communicate the RobMoSys contributions to
that domain and thereby link the robotics domain with the automation domain. While OPC UA and its
companion specifications at the moment are at the level of integration with a roadmap towards the next levels
which we call composability, RobMoSys already now proposes solutions to address composability. Due to the
very same ecosystem structures, there is a very good chance to enable adoption of the RobMoSys outcomes
within the industry driven OPC UA automation domain. For RobMoSys, the strength of OPC UA is that it
provides standardized and uniform ways to access all kinds of devices like sensors, actuators, machineries,
cloud services etc. RobMoSys puts its focus on the software composition for most complex sensori-motor
systems which then can get networked with industry 4.0 environments via OPC UA.

See also

e Ecosystem Organization
e Tier 1 in Detail

e OPC UA Vision Companion Specification https://opcfoundation.org/markets-collaboration/vdma-
machine-vision [https://opcfoundation.org/markets-collaboration/vdma-machine-vision]
e OPC UA Robotics Companion Specification: https://opcfoundation.org/markets-collaboration/vdma-

robotics [https://opcfoundation.org/markets-collaboration/vdma-robotics]

e BMW:i/PAIiCE Project “Service Robot Network™: https://www.seronet-projekt.de [https://www.seronet-
projekt.de]

e Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified Architecture. 1st ed.
Springer-Verlag Berlin Heidelberg, 2009. ISBN: 978-3-540-68898-3. DOI: 10.1007/978-3-540-68899-

0.

Acknowledgement

This document contains material from:

e [Stampfer2018] Dennis Stampfer, "Contributions to System Composition using a System Design
Process driven by Service Definitions for Service Robotics". Dissertation, Technische Universitit
Miinchen, Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl ?urn:nbn:de:bvb:91-diss-
20180425-1399658-1-2], especially Section “2.5.3 Industrial Automation and Industry 4.0”

other_approaches:opc-ua - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/other_approaches:opc-ua

http://robmosys.eu/wiki-sn-02/other_approaches:opc-ua 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://opcfoundation.org/markets-collaboration/vdma-machine-vision
https://opcfoundation.org/markets-collaboration/vdma-robotics
https://www.seronet-projekt.de
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

General Purpose Modeling Languages and
Dynamic-Realtime-Embedded domains

SysML, SoaML, AADL, MARTE and others are flexible general purpose modeling approaches for systems.
They favor freedom of choice. While they often provide different modeling views, these views are not
connected such that overall system consistency can be ensured throughout all potential development phases.
This hinders separation of roles that is required for successful system composition and therefore is in contrast
with the overall needs for modeling in RobMoSys.

The focus of RobMoSys is on composability and consistency of the different views such that the different roles
contribute in a consistent and composable way to the system under specification and development. This
requires more elaborate structures to connect the different views in a consistent way. This can be achieved via
superordinated meta-model structures and via model-to-model transformations.

Of course, the structures of RobMoSys will be inspired by, for example, the above approaches wherever
appropriate. The RobMoSys structures might enable linking the different modeling views of the mentioned
modeling approaches.

For example, AADL requires more abstract, yet consistent, modeling views on top, while other approaches
such as SysML might be subprofiled, thus providing more detailed, yet again consistent, robotic-specific views
underneath. Many of the (meta-model) structures and abstractions in RobMoSys focus on transformations (and
exchange of knowledge) between well known and widely accepted modeling views.

Within the context of UML the term “semantic variation point” has been coined to express the purposeful
semantic ambiguity for certain UML elements. Because UML is a general purpose modeling language, this
semantic ambiguity makes sense and can be narrowed within the derived domain-specific models using e.g. the
UML profile mechanism. Moreover, even the domain-specific models can still expose some semantic
variability that is closed within concrete realizations (e.g. through code generation or reference
implementations). In this sense, RobMoSys as well offers different levels of abstraction for modeling where the
higher levels (such as e.g. the block-port-connector) are more general purpose (leaving open some semantic
variability) and lower (i.e. domain-specific) abstraction levels (such as e.g. the RobMoSys composition
structures) that narrow this semantic variability.

other_approaches:modeling_languages - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/other_approaches:modeling_languages

http://robmosys.eu/wiki-sn-02/other_approaches:modeling_languages 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start

® RobMoSys Wiki

LG

RobMoSys http://www.robmosys.eu

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

e Roadmap of MetaModeling
e Modeling Principles y‘ b o
® Modeling Twin o e sracas

e Realization Alternatives
* Tier 1 Stmcture
Scientific Grounding: Hypergraph and Entity-Relation model
Block-Port-Connector

RobMoSys Composition Structures (and metamodels)

°
i<
—
a
£
2]
£
=
=.
o
=
g
=1
»n
[¢]
(=N
o
<
)
=]
=
(9]
i

modeling:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:start

http://robmosys.eu/wiki-sn-02/modeling:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-02/modeling:roadmap
https://robmosys.eu/wiki-sn-02/modeling:principles
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Basic Modeling Principles

There is a subtle relationship between the (meta-)models, the actual modeling languages and the concrete
models. This relationship is depicted in the figure below.

Modeling Tools

meta-model represented-by imodeling language
(eg.Ecore) [B (e.g. Xtext/Sirius)
A A
Econfu rms-to : conforms-to
model
representpd-by model
(abstract syntax | .-------- it £
e.q. XMI) (concrete syntax)

A X

E &
. rep resented-by &

system
(i.e. software and
hardware)

modeller

A modeller (i.e. a modeling-tool user who creates models) always works with a concrete syntax. This syntax
can be textual, graphical, tabular or any combination thereof. The concrete syntax (sometimes also called
notation) is defined by (i.e. it conforms to) the modeling language. The concrete syntax of a modeling
language is independent of the abstract syntax of an actual meta-model. However, the structure of the
modeling language must adhere to the structures defined in ameta-model. In most cases, it makes sense to
first specify the meta-model, then to generate a modeling language out of the meta-model and then to adjust
only the syntax of the modeling language (without affecting the structure). A model created by the modeller is
typically only a representation for the in-memory model that uses the abstract syntax. The abstract syntax is
also used to serialize the models in order to make them persistent.

Finally, the model itself is an abstract representation of the actual system (which can be either software,
hardware or any combination thereof). Often, it makes sense to package the model with the related

Are you new to model-driven engineering? Find introduction literature in the FAQ.

Ecore-OWL language-bridge

There is a relation between meta-models and ontologies that can be bridged as described here

[http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html].

http://robmosys.eu/wiki-sn-02/modeling:principles 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_media/modeling:modeling-syntax.png
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/faq
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html

Language Bridge |

oVl A il Ecore
IWMetametamodel
F 3
---------- instanca fremmmmmmmmm e e e = S AN LR O fm e

Raasom'n&—’\
Senvice [‘I/

&1

Comain Comain
g Model hodeal
i & 4

repras f.‘ht ationO=reprasentationCf

é\ Real World Systems 3

MO

The strength of ontologies is the representation of knowledge with extensible structures. Moreover, ontologies
allow reasoning on knowledge and the inference of further knowledge. The strength of meta-models is the
definition of clear and unambiguous structures. This is particularly useful to represent physical entities and
physical properties of the real-world. There are robotics use-cases where in some cases ontologies and in other
cases meta-models can be preferred. Therefore it is reasonable to allow using both of them in combination,
rather than restricting the usage of only one of them in isolation.

http://robmosys.eu/wiki-sn-02/modeling:principles

modeling:principles - Last modified: 2018/06/29 17:55

http://www.robmosys.eu/wiki-sn-02/modeling:principles

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:ecoreowlbridge.jpg
https://robmosys.eu/wiki-sn-02/_media/modeling:ecoreowlbridge.jpg
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Tier 1 in Detail

Tier 1 provides the general structures for composition. The figure below shows the details of the structure of
Tier-1 that refines into three levels. All the elements in Tier-1 are summarized as meta-meta-models. Moreover,
the meta-meta-models within Tier-1 are organized themselves in a hierarchical manner in order to best serve
the realization of the RobMoSys objectives. The lowest level within Tier 1 contains the RobMoSys
composition structures. Tier-2 then conforms to these composition structures.

Scientific
grounding:
Hypergraphs conforms-to
Block-Part-Connector,

MPC4, Constraints,

Relations, etc.
t\ canforms-to

RobMoSys composition

structure:
Blocks: Relations: Views:
- Service - Middleware - Component
- Compaoanent Bimding Developer V. formalize .
- Activity - Wish - Performance V. Architectural
- Task Fulfillment - Service W Patterns
J-' ‘\ conforms-to
" :
J{\é apply & generalize . N
P Via architectural patterns:
= Human translates best practices and lessons
Via applying structures: learned as described in architectural patterns
Applying compaosition structures in damain- into formal models using the RobMoSys Block-
modeling may reguire adding additional Port-Connector meta-models to result in the
structures, Many of these structures prove to RobMoSys composition-structure.,

be general or may be generalized to become
domain-independent. These structures then
can become part of Tier 1 structures.

The levels of Tier 1

Hierarchical Hypergraphs and Entity-Relation Model

Hierarchical Hypergraphs can be considered as the topmost abstraction level within Tier 1. It allows definition
of a sound scientific grounding and a formalization in a most flexible model. Any modeling structure can be
represented by a Hypergraph. The specific structures on the levels below are always specializations (i.e.
refinements) of a Hypergraph.

The Hypergraph and Entity-Relation Model page provides additional details.

Block-Port-Connector

The next level on Tier 1 is the definition of blocks, ports and connectors as a general meta-level that allows
definition of any domain-specific meta-model such as e.g. the RobMoSys composition structure (see below).
http://robmosys.eu/wiki-sn-02/modeling:tierl 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/modeling:composition-tier1-detail.png?id=modeling%3Atier1
https://robmosys.eu/wiki-sn-02/modeling:hypergraph-er

The Block-Port-Connector page provides a more detailed description.

RobMoSys Composition Structure

RobMoSys composition structures provide domain-specific meta-structures that are used on the lower Tier 2
and Tier 3 to design robotics models in specific robotics subdomains.

The RobMoSys Composition Structures page provides further details.

The RobMoSys views are a complementary technique to the RobMoSys composition structures. This technique
supports definition of role-specific modeling views that allow modification and refinement of specific
primitives without breaking the overall structures. This is a useful technique that directly supports separation of
roles and at the same time allows realization of model-driven tooling that ensures overall system consistency.

The RobMoSys Views page provides further details.

Initial Structures and Evolvement of Tier 1

There are two approaches on how to come up with the composition structures in Tier 1. RobMoSys is a
community effort and will guide contributors in one of these approaches such that their knowledge and
methodology becomes accessible through the composition structures. For example, the following two
approaches have already proven to be successful with respect to the integrated technical projects (ITPs) of
RobMoSys.

The first and initial approach to come up with composition structures is to formalize architectural patterns.

The second approach is to evolve the composition structures over time by generalizing existing domain-
specific structures. In some cases, the composition structures of Tier 1 may not be sufficient or not complete for
modeling in a particular robotics domain. This situation requires additional structures to be added on Tier 2.
However, many of these structures tend to be generally applicable or may be generalized such that they

become domain-independent and finally part of the composition structures. This is illustrated in the figure
below.

* Step 1: Identify

» Step 2: Transfer

« Step 3: Work on Consistency
and Integrate

» Result (4): Harmonized
Composition Structures

\c onforms-to
Relations, etc.
/ \E\mmnrms-m

RobMoSys composition
structure:

Blacks Re&iatians:

S Miclile-war \ Additsonal Structures
i;' Structures Integrated Generic to Robotics
Tad to RobMoSys ,

\ conforms-to
q, X)

g \
L2 Additional Structures
ek Required for this Domain
Maotion Stack (WP3) re: Mation Stack)

.. Stack

The first step (step 1, figure above) is to identify the additional structures that are independent of an application

http://robmosys.eu/wiki-sn-02/modeling:tierl 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/_detail/modeling:composition-tier1-detail-involvement-explained.png?id=modeling%3Atier1

but general to a domain. The second step is to transfer these structures to Tier 1, thereby making them domain
independent (step 2, figure above). The final step is to work on the consistency of the newly identified
structures with the existing composition structures with the aim to integrate them (step 3, figure above).

For example, it is necessary to shape them to the overall RobMoSys approach, taking separation of roles,
composability, etc. into account. This results in the next generation of harmonized composition structures (step

4, figure above).

Scientific
grounding:
Hypergraphs

!'\ conforms-fo

conforms-to

Block-Port-Connector,
NPCA4, Constraints,
Relations, etc.

RobMoSys composition
structure:
Blocks: Relations
Service
- Component
- Activity

Views:
- Component

Midcleware
Binging

- Wiish
Fufilment

Hypergraph

Block-Fort-

cenferms to

conform:

Connector

conformsto

FiobMaSys
composition-structure:
(Meta-Models) |,

Domain-specific
to robatics.

é....

repreg
{_ phahs &y

Block-Port-Connector (BPC) Model
- Block, port, connector
- Has-a E]
- Contains M conforms to
- Connection %

. b MOF
- Collection
- conforms to conforms to

Ecore UML/SysML

conformsto extends

RobM oSys Ecore
MetaModels

RobMoSys Profile

Variant 1:
SmartMDSD Toolchain

Variant 2:
Papyrus4Robotics

Composition Structures

Realization in RobMoSys Toolin

p

Z SmartPinneernasec]

Y

| ~ComponentDefinition:
[AcmeCorpMapper

i

& SmartMapperGridiap

ird
nitionvi;
nitiont
er
nDisgrd
igation

& eclipse

http://robmosys.eu/wiki-sn-02/modeling:tierl

modeling:tier] - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:tier1

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:tier-1-in-detail-again.png

http://robmosys.

RobMoSys

RobMoSys Wiki

http://www.robmosys.eu

Preliminary Ecore implementation of ER and BPC
meta-models

Entity-Relation (ER) meta-model

The concepts provided by the ER meta-model comply with the definitions in Scientific Grounding

[0..*] properties

@ Property

 entity
[1..1] metadata

[1..1] metadata
Q MetaDataType

T instance_uid : EString

T metamodel_uid : EString
= description : EString

[1..1] metadata

@ Relation

[1..*] relatedEntities

[0..*] properties

| H instance_ot |

| H conforms_to |

| H constraints |

Block-Port-Connector (BPC) meta-model

The following meta-model includes concepts that are defined in Block-Port-Connector

EQ Relation

[0.*] relations

°)

[0."Trelations 5* metadata : MetaDataType
—_——

E contains

E Connects

[1..1] dock

E Dock

1..1] internal_dock

[1..1] connector,

E Connector

[1..1] external_dock|

[0.* port

[1..1] parent

| Q has_a

\ [0.*] connectors

[0.*] blocks

) entity

E Block

[1..1] parent

5* metadata : MetaDataType

[0..*] entities

H collection

eu/wiki-sn-02/modeling

[0.*] collections

[0.*] properties
0.*] contained_properties

‘ EQ Property

7

=1

1+ metadata : MetaDataType

:realization_alternatives:ecore_implem

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-02/_media/modeling:realization_alternatives:er.png
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/_media/modeling:realization_alternatives:bpc.png

Eclipse/Ecore implementation of ER and BPC meta-models

Eclipse/Ecore implementation of the above meta-models can be downloaded here

To access these meta-models you will need to:

1. Install Eclipse Neon Modeling [http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3].

2. Import the plugins in your workspace.

modeling:realization_alternatives:ecore_implem - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:realization_alternatives:ecore_implem

http://robmosys.eu/wiki-sn-02/modeling:realization_alternatives:ecore_implem 2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:realization_alternatives:robmosys_ecore_metamodels_plugins.zip
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3

G RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Roadmap of MetaModeling

The RobMoSys project makes available a baseline of already existing metamodels. They sufficiently conform

to the RobMoSys composition structures. For example, the SmartMARS metamodel form theThe S

World and also metamodels in the Papyrus4Robotics World.

Soft

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures. RobMoSys Structures: Realization Alternatives describes this in more detail and also lists

alternatives.
RobMoSys Realization in Atthe beginning of the project and the first openB
Composition Structures MetaModels and .~ | call, the RobMoSys consortium provides an initial
Teoling e set of composition structures. At the same time,
i Cpen RobMoSys provides software baseline and tooling
- Call 1 |(based onthe SmartSoft W orld, Papyrus4Robotics
EziftzMa‘::eslzglit:: Word, and others) that sufficiently conforms to
sufficiently the RobMoSys composition structures. This
'{_ Conformsto eg.: baseline will enable to work with and to build on
RobMoSys = ~"|the concepts of the RobMoSys composition
MetaModels SmartSoft Wc\'{d, 4 structures at a wery early stage.
Papyrus4Robotics R
Human Readable “ open |During the course of the project, the baszline will
Meta-Models “=1= call 2 |move towards full conformance and the
RobMoSys -~ RobMaoSys project will provide MetaModels and
conforms-to Ecore MetaModels Tooling that is fully supporting the RobM oSys
{ ——————— and Tooling composition structures
— W Project Refer to the software baseline for information
end about its degree of conformance.
See also

e The given description also holds true for the Roadmap of Tools and Software
e Conformance of SmartMARS Metamodel to RobMoSys composition structures

modeling:roadmap - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:roadmap

http://robmosys.eu/wiki-sn-02/modeling:roadmap 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-02/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-02/_detail/modeling:roadmap.png?id=modeling%3Aroadmap
https://robmosys.eu/wiki-sn-02/baseline:roadmap
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Metamodels

The RobMoSys metamodels are the RobMoSys Composition Structures.

List of metamodels:

e Robotic Behavior Metamodel

e Communication-Object Metamodel

e Communication-Pattern Metamodel

e Component-Definition Metamodel

e Deployment Metamodel

e (Cause-Effect-Chain and its Analysis Metamodels

e Platform Metamodel

e System Service Architecture and Service Fulfillment Metamodels
e Service-Definition Metamodel

e System Component Architecture Metamodel

modeling:metamodels:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:start

http://robmosys.eu/wiki-sn-02/modeling:metamodels:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Robotic Behavior Metamodel

The Robotic Behavior Metamodel is one part of theRobMoSys Composition Structures that is responsible for
specifying the overall run-time behavior of a robot acting in real-world environments.

The Robotic Behavior Metamodel defines structures for modeling task-plots of a robot (see figure below).
Task-plots define sequences of tasks required to achieve certain goals at run-time. Each task itself can contain
another task-plot. This introduces hierarchy into the task-plot modeling where high level tasks (such as e.g.
making-coffee) are refined into lower level tasks (such as e.g. approach the kitchen, operate the coffee machine
and bring the coffee back to the customer). At the lower end of the abstraction hierarchy, tasks eventually
operate (i.e. to coordinate and configure) according software components that do the actual “work” of a task. In
this sense, tasks are passive, they just delegate the work to components in the system and await the results (i.e.
success or failure). The interaction between task-plots and components is over skills. In this sense, a skill
abstracts the technical coordination interface of a component and makes it accessible for task-plots. A skill by
itself might “inject” additional task-plots. This feature is particularly useful for modeling alternative behaviors
in case of contingencies in the overall behavior. For example, a skill commanding a navigation component to
approach a room might get the result that the navigation component failed to do so (e.g. due to a blocked
hallway). In this situation, the according skill might inject an alternative strategy, namely to first go to another
location and to try the current task later (or whatever other strategy might be appropriate here).

TTo LT T I moo oo

| _ System- | contains .| Component-
= Component-[:]' 1..=+=:_:I Instance

| G R -
has-a
. behavior-
slave-
Robotic- has-a Master interface
Behavior 1< Behavior-
1 Interface .
has-a has-a
1 O D..:+:
-
has-a .
Task-Plot |« 5 Task Skill
/T A .
0.1 0.1 contalins
contains

A service robot is a physical entity that needs to cope with the physical constraints of the real-world. For
instance, actions of the robot, once performed, might be irreversible and always can fail. This also means that at
each point in time, the control hierarchy on the robot must be clear. Simply speaking, a robot cannot decide in
parallel to go to left and to right at the same time (for most of the robots, this is physically impossible). In

http://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:behavior-metamodel.png

consequence, there is typically only one entity on each robot that is responsible for executing the robotic
behavior models namely the sequencer (see this page [http://www.servicerobotik-ulm.de/drupal/?q=node/86] for
further details on sequencing).

For the interaction between the behavior model and the software components in a system, the robot behavior
uses the “Master-Behavior-Interface”. Each component in the system by default implements the counter part
“Slave-Behavior-Interface” (not displayed in the figure). Therefore, the robot-behavior depends on the system-
component-architecture for the interaction with the according component-instances.

One existing realization of the robotic behavior meta-model is SmartTCL [http://www.servicerobotik-
ulm.de/drupal/?q=node/84]. SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] conforms to the
above presented meta-model and can be used as an initial software baseline already now.

See next:

e Deployment Metamodel

See also:

e System Component Architecture Metamodel
e Task Composition
e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

modeling:metamodels:behavior - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior 2018-06-29

http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/84
https://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Deployment Metamodel

The Deployment Metamodel (see figure below) is part of the overall RobMoSys Composition Structures. This
meta-model links (i.e. interfaces between) the three meta-models, namely System Component Architecture,
Platform and Robotic Behavior.

| =
I

Component- |
: Instance :

R R —

d5-d

, Component- |
Deployment |« contalqs — Artefact |<>———>x Target :
) |

contains .
Robotic-

Behavior- |<7>
0.1 Artefact

as-a
1

- - — .____|

| Robotic- |

: Behavior !

The main concerns of this meta-model are to define artefacts and to assign them to selected targets. This meta-
model is inspired by the UML deployment model. There are two artefact types namely component-artefacts
and robotic-behavior-artefacts. Component-artefacts represent typically the precompiled binary form of
component-instances (including generated ini-files and start scripts). The robotic-behavior-artefact is the
physical representation of the robotic-behavior model (often this is an interpretable model).

Depending on the used modeling tool, the deployment meta-model could also be connected with the actual
deployment action that copies the component and robotic-behavior artefacts to the according target platforms.
However, this is a matter of tooling and is independent of the deployment meta-model as such.

See also:

e Platform Metamodel
e System Component Architecture Metamodel
e Robotic Behavior Metamodel

modeling:metamodels:deployment - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:deployment
http://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:deployment-metamodel.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment 2018-06-29

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

System Service Architecture and Service
Fulfillment Metamodels

The System Service Architecture Metamodel is a particularly useful meta-model for System Architects. This

component-architecture to this service-based reference architecture. Checking this conformance is one of the
main concerns of the service-fulfillment meta-model (see the following section below).

;_ ______ I ;_ ______ |
. | , I
I Service- | __has-a _! Service-
: Definition | | Property |
o § o |
instance-of instance-of
System- . Service- . Service-
; contains . ontain
Service- |dp—— 0 Wish M Property-
Architecture Refinement
1
Ljas-a has-a
Constraint:

SEV}"iEe' service-link must
Lin <~ —|be between diff-
erent services

The System Service Architecture Metamodel specifies service-wishes which are component-independent
definitions of service-requirements for a set of systems. Moreover, links between service-wishes specify

component-independent inter-service dependencies (i.e. a service-wish might depend on the existence of
another service-wish).

For example, a set of recurring services for a navigation stack (such as localization, mapping, path-planning,
obstacle-avoidance, etc.) can be specified in advance independent of a concrete system and independent of
concrete implementations in software components. In addition, it can be specified that a path-planning service
typically depends on the existence of a localization service which itself depends on a mapping service, etc.

In addition, a service-wish can instantiate several service-properties which allow definition of specific Quality-

Please note, that the definition of service-based reference architectures seldom defines all services of one
concrete system. Instead, a service-based reference architectures typically defines only the recurring services
for (or from) a set of systems.

http://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:system-service-architecture-metamodel.png
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start#exampleservice-based_composition_approach

Service Fulfillment Metamodel

The Service Fulfillment Metamodel maps the service-wishes from a system-service-architecture (see above)
with the provided-service-instances from a system-component-architecture. This mapping of service-wishes to
provided-service-instances is called service-fulfillment. This is a powerful meta-model that allows definition of
domain-specific de-facto standard architecture and thus considerably increases reuse of recurring specifications
and at the same time fosters competition on implementation level (conforming to modeled reference
architectures).

- |

|
, |
I Service-
has- | Wish |
|
| ______ —

Service-

Fulfilment | . _ _ _ _ __ _
gsd : Provided :
1 Service-
| Instance |
L — — — — — — |

While the Service Fulfillment Metamodel directly depends on the two meta-models “System Service
Architecture” (see above) and “System Component Architecture”, the order of usage of these two models is not
strict. For instance, an existing (i.e. fully specified) system-component-architecture can be used to check
whether it conforms to a later (or independently) defined system-service-architecture. Or, a specified system-
service-architecture can be used upfront to select conforming components (from a component repository) for a
current (i.e. new) system-component-architecture under development. Of course, all the intermediate options
are also possible with partial specifications of system-service-architectures and system-component-architectures
with intermediate checking of conformance.

An interesting option for this meta-model is to use constraint solvers to automatically pre-select existing
component-definitions from a component repository according to the specified system-service-architecture.
This is a powerful mechanism that considerably improves efficiency in designing new systems.

See next:

e System Component Architecture Metamodel

See also:

e Service-Definition Metamodel

Acknowledgement

This document contains material from:

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1.2]

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitit Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging

http://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:service-fulfillment-metamodel.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://mediatum.ub.tum.de/?id=1362587

the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:service-architecture - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture

http://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture 2018-06-29

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

System Component Architecture Metamodel

The System Component Architecture Metamodel depends on the Component-Definition Metamodel as part of
the RobMoSys Composition Structures.

The System Component Architecture Metamodel (see figure below) is the platform-independent specification
of a software system consisting of instantiated components. This means that selected component-definitions are
instantiated and initially wired (i.e. connected). Please note, that at this point individual components can still be
distributed over (i.e. deployed to) different target platforms (i.e. PCs) without affecting this model.

reee—_ =
I Component- |
| Service |
________ } . ﬁa 1;\'ST
[I L N
I . Component- | = . ([: I
: Parameter containggl =5 finition | Provided- : Reqguired- |
| : 1 | | | Service | | Service |
L _____ L ___ I | o ____ |
A
s instance-of
instance-of 7 instance-of instance-of
/ Provided
L has- Service-
Parameter- 4 Component- {7,’,@1,9 Instance .
Instance |« SOANggy " nstance Required
17 has-a P Service-
, by <>) Instance
£
‘ ’}//] has-a
A R h provder D~
s contains < as-a ~o
= ~~_ / requestor ~-
Constraint: <> — N
I?” re?ﬁw%d—serwces Connection-Constraint:
rom the base- i i
contains , reguested and provided
component need to System @ — > Connection sv?:s must be frgm diff-
be instantiated erent comp.-instances

An instantiated component also instantiates its (internal) structures such as the definition of parameters and the
component's provided/required services. By instantiating parameters, it is possible to define system-specific
and application-related parameter values (i.e. parameter refinement) that differ from the default parameter
values in the original component-definition. It is important to notice that a component-instance cannot
instantiate any structures that have not been defined in the component-definition (base-model). Moreover, all
the required services of a component-definition also need to be instantiated within the derived component-
instance. This can be easily supported by modeling tools that can pre-generate component-instance models
(using so called proposal-providers) out of selected component-definitions. This is an important functional
constraint that allows checking that each required service also is connected to an according provided service of
another component-instance in the system. Finally, a Connection defines initial wiring between provided and
required services of different components. It is worth mentioning that this initial wiring can be dynamically
changed at run-time (if needed) using the dynamic wiring pattern.

At this point, it is also worth mentioning that at the moment a system is built from components as basic building
blocks. In future versions of this meta-model the hierarchical definition for systems-of-systems (i.e. composite
components) will be introduced. Composite components will be introduced as an extension to the current meta-

http://robmosys.eu/wiki-sn-02/modeling:metamodels:system 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:system-metamodel.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

model that allows building systems out of sub-systems which again can be built out of yet other sub-systems
and so forth.

See next:

e Deployment Metamodel

See also:

e Component-Definition Metamodel

modeling:metamodels:system - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:system

http://robmosys.eu/wiki-sn-02/modeling:metamodels:system 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Service-Definition Metamodel

The Service-Definition Metamodel is one of the core composition structures of RobMoSys.

consists of service-properties (defined in an external metamodel) and a communication-pattern-usage. The
communication-pattern-usage selects a certain Communication Pattern with a pattern-specific selection of
according number of communicated data-structures (i.e.Communication Objects).

- - - - - — - — T T T T T T T T T
[Senvice- | : Communication- :
has: , _ _Property | Object |
Sernvice- %--2
Definition as-a

Communication- :
< 1 §| Pattern |

‘W% CommPattern
1 Usage

Views of a Service

A service can be graphically represented as a port of a component (just like in UML). However, depending on
the current role-specific view with an according level of abstraction, a service “port” can reveal additional
details that are not visible (i.e. hidden/encapsulated) for another role. The more detailed view enrolls additional
internal structures of the port and the port itself might appear as a block for that role (see figure below). This is
a useful pattern to provide different levels of abstraction, each adequate for the according developer role (with
certain responsibilities and concerns).

This pattern can be applied recursively, where the ports of the currently more detailed view can again contain
additional internal structures (not visible for the current role). For instance, a the “external” port of a service
(see orange block on the right in the figure below) provides sufficiently detailed and stable communication
semantics between interacting components (defined through a selected Communication Pattern). Second, the
“internal” port of a service provides a clear API towards implementation within a component (also defined as
part of the Communication Pattern). Third, the “bottom” port of a service provides a generic middleware
abstraction layer that allows using any general purpose communication middleware without affecting the
communication semantics (see Communication Objects).

http://robmosys.eu/wiki-sn-02/modeling:metamodels:service 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:service-definition-metamodel.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start#exampleservice-based_composition_approach
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject

The "Architectural Pattern for Communication”
(see wiki) using block-port-connector. Each port
appears as a block when entering a more
detailed level of abstraction (i.e. aview)

Component A E
A

Component B E

(Colours added for visual erientation.)

Wiew on internal

dock of service.
N e

Detail of a component
service. Each part is

provided by a different
role with the according
view (leftfright hand side).

~
Fixed interface as I
specified for each
communication
pattern. See [CHS].

-

A

View on O5MW dock. Message [N
interface and middleware
abstraction layer.

See [TR], [CHS, p. 150-160].

PN
I \
r 5\
! _ “\ View on external
J wgigwe dock of service.
/ N
7
- - A

4 Unambiguous
communication

semantics. See [CHS].

- A T -
-
| T~ -
- > -
-~ - . ! . - -
- /.— \}\ | W -~
-~ : -
~Eigwe I~ -
-] ~ e
~ Communication state D
_ E ~.| automaton view for each
- communication pattem.
See e.g. [CHS, p.210]
for query client.

[CHS] Schlegel, C. Navigation and Execution for Mobile Robots in Dynamic Environments: Dy
An Integrated Approach Universitat Ulm, Universitat Ulm, 2004

[TR] Christian Schlegel and Alex Lotz, "ACEfSmartSoft - Technical Details and Intemals", in
Technical Repert 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010.

References:

e Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004PDF [http://www.hs-

ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

e Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010.PDF [http://www.zath-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

See next:

e Component-Definition Metamodel

See also:

e Communication-Pattern Metamodel

e Communication-Object Metamodel

e Service-Based Composition (Service Triangle)
e Service Design View

modeling:metamodels:service - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:service

http://robmosys.eu/wiki-sn-02/modeling:metamodels:service

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:principles:ports-become-blocks.png
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/modeling:views:service_design

1\% RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Cause-Effect-Chain and its Analysis Metamodels

The Cause-Effect-Chain meta-model and the according Analysis Metamodel are two parts of the overall
RobMoSys Composition Structures. See also Architectural Pattern for Stepwise Management of Extra-
Functional Properties and Managing Cause-Effect Chains in Component Composition

The main concern in these meta-models is to specify application-specific (often non-functional) system
properties. This is considered as an important aspect in RobMoSys, which is however sparsely addressed in
robotics research. One of the core publications that addresses this issue for a narrowed problem domain,
namely for designing causal dependencies and overall end-to-end delays in a system, can be found here:

e Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170-176. LINK [hitp://dx.doi.org/10.1109/SIMPAR.2016.7862392]

e Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

This publication also provides an initial version of a meta-model that is used as first version in RobMoSys for
addressing the overall problem domain.

o G AR K Ao o D udeaceess) || & (@&
& Model Explorer 52 = B | & systemPerformanceDiagram 5 =g
B8 8 -%- ¢ O -%-[me z JiC

type filter text @

JoystickServer

ot
&

R TaskNode... ©
» £ CommBasicobjects (&2 Joysicktoop] = TaskNode
[Fs Registerin...
[Triggerinput
%7 DataFlow

e trigger
» (& commLocalizationObjects

» (¥ CommNavigationObjects

» & performNavigationscenario register” 375H= ssausﬁia

» & smartamcl

» & smartcdiserver register -gPenod!(Tl...
» & smartJoystickNavigation y :: F,,mgmm"“,,,t,o,“_”, ExecutionT...

Joystk ©iEscheduler
» & SmartJoystickserver =) el 31
» @ SmartLaserL MS200Server 10] LasarLJ SfEFro trigger £ cPUTools

2033 us-
» @ SmartMapperGridMap Dazsous : £ CPUCore
ms

» (¥ SmartPioneerBaseServer SEFIF0 ;:37“‘% < TaskCPUAF...
» & SmartPlannerBreadthFirstSearch = o8 TaskChain..
b (Z SysNavigationScenario O cPUCoret G2 PlannedNavigationLoop Ea TaskChain

@ NodeRref

» (Y E2ESpecs
Mfy Mapper - Velcmd JoystickServer QEZS o
< ; X}oﬂm&
oL Leser nner JoystickNay # Qmm ‘ ‘

register

2= Outline 2 [Properties 2 *! Problems flf Component Parameter Editor View & Console {lf System Parameter Editor View

B

+ Model PerformNavigationScenario
Rulers & Grid Display

Appearance ") show Ruler
Semantic) show Grid

Grid In Front

Measurement

Rulerunits | Inches v

Grid Spacing | 0.125

Grid Line Snap To Grid

Color | & Snap To Shapes

An open-source reference implementation of according model-driven tooling (see above figure) is publicly
available within the sourceforge git repository [https://sourceforge.net/p/smart-robotics/smartmdsd-
v3/01/master/tree/] Further information thereto can be foundhere [http://www.servicerobotik-ulm.de/drupal/?

http://robmosys.eu/wiki-sn-02/modeling:metamodels:performance 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_management_nfp
https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://mediatum.ub.tum.de/?id=1362587
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
http://www.servicerobotik-ulm.de/drupal/?q=node/83

Later versions of the initial meta-model will be extended throughout the run-time of the RobMoSys project to
address a broader problem domain.

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:performance - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:performance

http://robmosys.eu/wiki-sn-02/modeling:metamodels:performance 2018-06-29

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Communication-Pattern Metamodel

The RobMoSys communication patterns define the semantics in which software components exchange data
timelj; Dbasis or based on availability of new data. RobMoSys defines communication patterns to enable
composability of services and components.

The general concept of a communication pattern originates from [Schlegel2004] where it is described in the
context of the SmartSoft Framework in 2004. Since that, the there described communication patterns have been
extended by several activities and have proven to be of generic use (see e.g. [UCM]). RobMoSys adopts a set
of existing communication patterns (see below) that have proven to be relevant. For their definition, the wiki
provides specific pointers to existing external documentation.

It is important to have a fixed set of a few communication patterns that efficiently support composition through
unambiguous communication semantics and clearly defined communication interfaces. In addition, the
mapping to different communication middlewares becomes possible over a generic middleware abstraction
layer that is part of each communication pattern.

The communication pattern metamodel is depicted below. The name of an individual pattern (middle row of
elements in the figure, e.g. send, query, push) refers to its definition in an external document as described in
the remainder of this page.

1-nforking A n-1 joyning At

Communication-
Pattem

Push BEvent Query Send

has-a \as-a has-a |has-a
has-a evert Rapametenrequest \recnonse |has-a
message __N W message
1

IC-::In’1r1'1ur1icati on-1<7
| Object !
I

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:communication-pattern-metamodel.png

Component Communication Patterns

The four communication patterns (see table below) define the basic set of recurring communication semantics

that proved to be sufficient for all robotics use-cases related to inter-component communication at the service

level (for service level, see Separation of Levels and Separation of Concerns).

Pattern Interaction Model | Description Definition

Name

Send Client/Server One way communication [Schlegel2004, pp. 85-88]

Query Client/Server Two way request/response [Schlegel2004, pp. 88-96]

Push Publisher/Subscriber | 1-n distribution [Schlegel2004, pp. 96-99]

Event Publisher/Subscriber | 1-n asynchronous condition [Schlegel2004, pp. 103-
notification 112]

The figure below provides a schematic overview of the communication semantics.

Query Client(s)
(Service Requestor)

Blocking
Query or
Async.

Request/
Answer

Policy:
Request / Response
Mode/Initiative:

Push Client(s)
(Service Requestor)

Configurable
update-
notification
policy

(sync/async)

M=

Policy:
Publish / Subscribe
Mode/Initiative:

Query Server
(Service Provider)

<<active-nandlerss

Send Client(s)
(Service Requestor)

Synchronous
Send

Server Semantics:
Individual handling
for each query request

n Requestors to 1 Provider

Push Server
(Service Provider)

Configurable
push policy
(periodic/sporadic)

Server Semantics:
no buffer on server,
publish only to

B

subscribibed clients

1 Provider to n Requestors

Oneway Request
(Fire and Forget)
Mode/Initiative:

Send Server
(Service Provider)

< <active-handiers>

Policy:
Server Semantics:
No response available

n Requestors to 1 Provider

Event Client(s)
(Service Requestor)

Activate/

receive filtered
events

Coordination and Configuration Patterns

Publish / Subscribe
Mode/Initiative:
1 Provider to n Requestors

Event Server
(Service Provider)

B

Put
Event

Server Semantics:
EventTestHandler filters
out not relevenat events
individually for each
subscribed client

Policy:

The four coordination and configuration patterns (see table below) provide recurring semantics that proved to
be sufficient for robotics use-cases related to behavior coordination (coordination of software components at
the lower / skill level of the robotic behavior by the sequencing layer; for layers in robotic behavior
coordination see Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

Pattern Interaction Description Definition

Name Model

Parameter | Master/Slave | Run-time configuration of components, see see [Lutz2014],
[Stampfer2016] [Lutz2017]

State Master/Slave | Lifecycle management and mode (de-)activation see [Schlegel2011]

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:patternsemmantics.png
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior

Pynepic M@é}géﬁlgﬁe ngépmﬁ gﬂnnection re-wiring ﬁ&{ﬁﬁ%ﬁgdZOO&

o o
B1IRg Madel joR 11]
IIIC SO IviUUTI
U SO Mo ctar/Q) R] P I £ £ M t201-11
IVIOINILOY lllg IVIASTCI/T O1Iave INUIT=UIIICT lllUllJLUlllls dIIdr lllLLUDPCbLIUll Ul SUUTLULZZUTT]

components [Stampfer2016]

Each component in a system should by default implement the slave part of each of the four patterns. In
addition, there is typically one specific component per system that implements the master part of the patterns
and that is responsible to centrally coordinate the robot behavior (the sequencer, see Architectural Pattern for
Task-Plot Coordination (Robotic Behaviors) and for Component Coordinationfor further details).

Parameter

The Parameter pattern allows run-time configuration of components. The following links provide further
details:

e Parameter Definition [http://www.servicerobotik-ulm.de/toolchain-manual/htm1/ch02s02s03.html]
e Parameter Usage in a Component [http://www.servicerobotik-ulm.de/toolchain-

manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameter

State

The state management of a component is one of the central patterns for run-time @
coordination of components. On the one hand, state management is about the

generic lifecycle state-automaton (see figure on the right) that each component m
implements by default and that allows coordinated handling of the component's

start-up and shutdown procedures as well as the component's fatal-error mode. In
addition, component's individual run-time modes can be specified as explained in
the following reference: [alive)

e Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State
Management of a Component”, in Technical Report 2011/01, Hochschule
Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

e Coordinating Activities and Life Cycle of Software Components

e Coordinating Activities and Life Cycle of Software Components o

[https://robmosys.eu/wiki/composition:component-activities:start]

Dynamic Wiring

Dynamic Wiring is used to increase run-time robustness and flexibility by dynamically changing the wiring
between components. Additional details can be found here:

e Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

Monitoring

Run-time Monitoring and Introspection of components is an important aspect in robotics that requires
dedicated interaction mechanisms. The following reference provides details of a concrete realization:

e Alex Lotz, Andreas Steck, and Christian Schlegel. “Runtime Monitoring of Robotics Software
Components: Increasing Robustness of Service Robotic Systems”, in International Conference on
Advanced Robotics (ICAR '11), Tallinn, Estonia, June 2011.IEEE-Link

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordination
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s03.html
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameters
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:lifecycle.png
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-02/composition:component-activities:start
https://robmosys.eu/wiki/composition:component-activities:start
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736

[http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736]

RobMoSys Tooling Support

Tooling Support by the SmartSoft World

e The SmartSoft World is fully conformant to the RobMoSys communication patterns. The mapping of
communication patterns in the SmartSoft World is described in
e Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in
Technical Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010.PDF

e The SmartMDSD Toolchain allows to use RobMoSys compliant communication patterns and also is an
example of how to realize their metamodel with Ecore.

e The SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] language conforms to the
RobMoSys composition structures and can be used for Robot Behavior Coordination
[http://www.servicerobotik-ulm.de/drupal/?q=node/86].

e See also Conformance of SmartSoft to RobMoSys composition structures

See Also

e Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
e Architectural Pattern for Component Coordination

e Communication Pattern View

e Service-Definition Metamodel

e Component Metamodel

References

e [Schlegel2004] Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic
Environments: An Integrated Approach”. Dissertation. University of Ulm, 2004PDF [http://www.hs-

ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

e [Stampfer2016] D. Stampfer, A. Lotz, M. Lutz und C. Schlegel, ,,The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software,*
in Journal of Software Engineering for Robotics (JOSER), 2016, pp. 3-19. Link

[http://joser.unibg.it/index.php/joser/article/view/91]
e [UCM] Object Management Group (OMG). Unified Component Model for Distributed, Real-Time and

[http://www.omg.org/cgi-bin/doc?mars/2013-09-10].
e [Lutz2017] Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:commpattern - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern 2018-06-29

https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start#conformance_to_robmosys_composition_structures
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-02/modeling:views:communication_pattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://joser.unibg.it/index.php/joser/article/view/91
http://www.omg.org/cgi-bin/doc?mars/2013-09-10

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Component-Definition Metamodel

A Component-Definition Metamodel is one of the core composition structures of RobMoSys.

The Component Metamodel (shown in the figure below) combines two complementary concerns namely
structure and interaction. Individual blocks define the main entities of a component (including the component
root element itself, highlighted with the yellow background color). For specifying structure, the blocks are
connected using either the contains or the has-a relation (as defined inblock-port-connector). For specifying
interaction, the blocks are additionally connected using dedicatedports, connectors and connections (as also
defined in block-port-connector). Moreover, two blocks (highlighted with the gray background color and
dashed border-line) represent model elements that are defined in a separate metamodel (described in the next
pages).

has-a
. o o
;) , | : I
Lifecycle | | Parameter | | [| Behavior- I service- | | Service- |
Interface : Definition | : Property |
(S S U
1
contains instance-of instance-of
«Abstract» . Service-
Component- has-a Component- w Property-
. . Definition Service Refinement
contains Provided-
Service
Required-
Execution- | Senvice
| Container |
L ___ J
_______ A
i | .
I
: Hardware | Each Connector
| | belongs to the
_____ Compoment via the
has-a relation (not
Function displayed for
readability reasons)

A component contains one Parameter structure, one Lifecycle state automaton and has-a Behavior
Interface. The Parameter structure can be a Metamodel (or a DSL) by itself and thdBehavior Interface
allows run-time coordination and configuration from a higher robotics behavior coordination layer (see
JOSER2016.) for further details on both elements). TheLifecycle state automaton coordinates the different
operational modes of a component. Some generic modes are for example Init, Shutdown and Fatal-Error (see

TR20112) for more details).

http://robmosys.eu/wiki-sn-02/modeling:metamodels:component 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:componentmetamodel.png

The next core element of a Component is the Activity which is an abstract representation of a thread. A
Component can define several Activities (depending on the component-internal functional needs). An Activity
is independent of a certain thread realization and can be later mapped to a certain implementation by the
selection of an according target platform. Moreover, an Activity provides a wrapper for the Functions. This is
important for gaining control over execution characteristics of a component. This also considerably increases
the flexibility (i.e. adjustability) of the component with respect to adapting the component to the different
needs of various (at this point even unforeseen) systems.

A Function represents a functional block that can be designed using any preferred engineering methodology.
From the component's internal point of view, a Function needs to be integrated into anActivity in order not to
prematurely define any computational models that are not really relevant from the local functional point of
view but might considerably restrict the compositionality of this component in different systems (see

devices (such as e.g. sensors or actuators).

The last element of a Component is a Service. A Component can have severalrequired and/or provided
Services. A Service is the only allowed interaction point of a component to interact with other (not yet known)
components. The definition of a service is described in a separate metamodel. Moreover, aFunction interacts
with the component's services over the surrounding Activity only. Again, this is important to gain control over
execution characteristics as argued above.

See next:

e System Service Architecture Metamodel
e System Component Architecture Metamodel

See also:

e Service-Definition Metamodel

e Communication-Pattern Metamodel
e Component Development View

References

Dennis Stampfer, Alex Lotz, Matthias Lutz, Christian Schlegel. “The SmartMDSD Toolchain: An Integrated
MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”. In Journal of
Software Engineering for Robotics (JOSER 2016), Link [http://joser.unibg.it/index.php/joser/article/view/91]

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State Management of a Component”, in

Technical Report 2011/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2011.PDF [http://www.zath-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-Driven
Development with a Model-Based Performance Analysis”. In IEEE International Conference on Simulation,

[https://doi.org/10.1109/SIMPAR.2016.7862392]

modeling:metamodels:component - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:component

http://robmosys.eu/wiki-sn-02/modeling:metamodels:component 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
http://joser.unibg.it/index.php/joser/article/view/91
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://doi.org/10.1109/SIMPAR.2016.7862392

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Platform Metamodel

The Platform Metamodel (see figure below) is one part of the overall RobMoSys Composition Structures. It
defines the target platforms on the robot where the software components are later deployed to. The here

the current version of the Platform Metamodel is reduced to the most basic elements that are sufficient for
deploying and executing software components. However, further versions of this metamodel might be
extended to reveal additional details.

has-a endpoint-a

has-a endpoint-b -
6 T
Network- Metwork- Constraint:
Connection Interface target on both end-
points must have
the same middleware
D”:+: D“:+
contains has-a
Platform '-—M”taiﬂi Target *Hcontaini CPU
has-a
1 ”:+:
Commurnication- . Maming-
Middleware .&% Service

The two core elements of the platform meta-model are the targets and the network-connections. A target is
basically a PC on the robot. Each target (i.e. a PC) has several CPUs and can have several network-interfaces.
In addition, a target can use a specific communication-middleware (optionally with a middleware-specific
naming-service). A network-connections links two network-interfaces and requires (as a constraint) that both
connected targets use the same communication-interface (otherwise the components from the two targets
would not be able to communicate).

See also:

e Deployment Metamodel

modeling:metamodels:platform - Last modified: 2018/06/29 17:55

http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:platform

http://robmosys.eu/wiki-sn-02/modeling:metamodels:platform

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:platform-metamodel.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment

http://robmosys.eu/wiki-sn-02/modeling:metamodels:platform 2018-06-29

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Communication-Object Metamodel

Communication Objects define data structures that are communicated through services between components.

The definition of communication objects requires primitive data types such as Int, Double, String, etc. and
complex data types (i.e. composed data types). The figure below shows a simple metamodel of communication
objects. A fully fledged communication objects modeling language that conforms to this metamodel is the
SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html].

Communication- contains has—a AbstractType EnumeElement
Object ®— > FEement <——— > cardinality: INT=1
H *
1 / T Sa %b’ntains
has-a <> CommObjRef PrimitiveType EnumType
[5-) is-a
«Enumerations» s-a
DECIMAL . :
Inte/UInte BooleanType| ‘ OctetType ‘ DecimalType ReaJ‘Type StrmgType |
Intls/Uintls by pe:DECIMAL
Int32/UInt32
Inte4/Ulnte4
‘ Float Double ‘

Typically, communication middlewares such as e.g. CORBA or DDS provide an Inferface Definition Language
(IDL) that allows specification of communication structures. RobMoSys requires a middleware-independent
language. The SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s02s02.html] provides a fully fledged Xtext-based language that is compliant to the metamodel
in the figure above and that can be used already now for the definition of services.

At some point the communication object needs to be serialized (i.e. marshalled) into a middleware-specific
representation. The following references provide details for how this can be achieved for a CORBA-based and
a message-based middlewares:

e Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

e Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010.PDF [http://www.zath-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

e Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”.
In Journal of Software Engineering for Robotics Special Issue on Domain-Specific Languages and
Models for Robotic Systems, Vol 7, No 1 (2016). Link [http://joser.unibg.it/index.php/joser/article/view/91]

See next:

e Communication-Pattern Metamodel
e Service-Definition Metamodel

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:comm-object-metamodel.png
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
http://joser.unibg.it/index.php/joser/article/view/91
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service

modeling:metamodels:commobject - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:metamodels:commobject

http://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject 2018-06-29

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Scientific Grounding

The highest abstraction level that is considered in RobMoSys is related to Hierarchical Hypergraphs and

One of the main challenges is to represent context, more in particular, to deal with the combinatorial explosion
in the number of relationships needed to represent — and interconnect — all relevant pieces of information and
knowledge in multi-domain ICT and engineering systems. Such interconnected knowledge forms graph
networks of links and properties. This fact poses difficulties to Lisp, Prolog, or other “programming languages”
for Artificial Intelligence (Al), since they only have representations for relationship trees as first-class citizens.

The same holds for the frame languages [https://en.wikipedia.org/wiki/Frame_language] 4)in AL which
considered “multiple inheritance” as a key feature. This last feature, together with “data encapsulation”, are

two major aspects of strict object oriented languages and models, that make “open world” 2)6) knowledge

representations difficult; the SOLID [https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)] principles of
object orientation better support knowledge representation, especially via its “D” feature, that is, the
Dependency inversion principle, which states that one should “depend upon abstractions, not on concretions”.
However, none of these approaches offers infinitely composable knowledge representations, because they only
partially support the essential features outlined in the sections below.

Hierarchical Hypergraph

The modern, higher-order, version of the Entity-Relationship model is that of a hierarchical (property)
hypergraphz.)_s..).:

e hierarchical : every node and every edge can be a full graph in itself. In other words, any Relation can
be considered an Entity in itself, and can hence be used as an argument in another, higher-order
Relationship.

e hypergraph: every edge can connect more than two nodes; that is, it is an n-ary “hyperedge”

e property meta data: every node and every edge in the graph has a property data structure attached to it;
two (mandatory) parts of those properties are the following meta data:

e unique node/edge identifier : other relationships in the graph can refer to this node or edge.
e meta model identifier : each node or edge has a type, indicated by the unique identifier of the
graph that models that type.

Often used synonyms for the term “Entity” are: object, concept, atom, primitive. “Relationships” are also
called: rules, axioms, constraints, links, expressions. Often used extra meta data is the so-called provenance of
a model: who made it? when? what version is it? Etcetera. State of the art formal meta models to represent such

provenance are W3C provenance?...)., and Dublin Corel9).

Entity-Relation Model

Each “thing” to be modelled will have a number of data structures that represent its properties. That can be

done via (possibly nested) key-value pairs, with each key having, a type, a unique identifier (with which

Relationships can refer to it), and a role to play in the “thing” properties. While efficient implementations of
http://robmosys.eu/wiki-sn-02/modeling:hypergraph-er 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

those properties can be realised with the rich data structure primitives in computer programming langauges, the
meaning of such properties, as just described above, is a hierarchical hypergraph.

A Relationship between Entities is a named directed graph, representing the Role that each Entity plays as an
Argument in the Relationship:

e the top node carries the meta data of the Relationship, of which the two major ones are: (i) its unique
“identifier ” (with which other Relationships can refer to it), and (ii) the context (all the externally
defined Entities and Relationships whose names are being used in the model of this Relationship). Other
meta data in the top node are: type and provenance. In addition to the identifier (which in principle
should only be computer-readable), models often carry human-readbale names and description strings,
possibly in various languages. However, these are not used in linking Entities together into
Relationships.

e from the top node, there are Role edges towards each of the Entity nodes that figure as Arguments in the
relationship. Each Role edge also has similar meta data properties as the top node, but the most
distinguishing one represents the purpose (“role”) of a particular argument in the Relationship. This is
formally represented by a specific Relationship in itself.

Each “value” in an Argument has a domain (or “universe of discourse”): the type and the set(s) of possible
values that the “key” can have. In other words, that domain brings its own property data structure to each
argument. Remark the recurring pattern of “identifiers”, “types” and “contexts”, in the nodes and edges of a
hierarchical hypergraph. And also remark that the graph is directed : pointing from the Relationship to the

Entities, and down to the latters’ proeprties.

Natural modelling levels of abstraction

“Abstraction” is a key concept in modelling, but it is hard to define axiomatically. Below, three core “meta
meta” forms of modelling are described!!):

e mereology — parts: there is already quite some (mature) formalisation available in the state of the art, to
structure “Entities’; for example, the Wikipedia article [https://en.wikipedia.org/wiki/Mereology] in the
subject has a good overview and pointers to the literature. The key Relationship is has-a (also called,
“has-part” or similarly equivalent names), and is-equal.

e topology — structure of interconnections between parts: this kind of structural model is a key property of
any system, and also here the state of the art insights and formalizations are sufficiently mature to have
unambiguous and consistent semantics of formal models, to the extent that it is realistic to develop
“standards” and “tools”.

Concretization (or specialization) can be considered as the opposite of abstraction. In this sense, raising the
level of abstraction means to get more general purpose while lowering the level of abstraction means to get
more specific with respect to e.g. a certain domain. It is only natural that the general purpose (i.e. higher)
abstraction levels tend to leave open some semantic variability. For instance, UML (as one representative for
general-purpose modeling languages) purposefully defines “semantic variation points”. These “‘semantic
variation points” can be fixed by e.g. deriving domain-specific models (in terms of UML by defining UML
profiles). In this sense, RobMoSys as well defines several levels of abstractions, with “Hierarchical
Hypergraphs” and “Entity-Relation” levels on top, over “Block-Port-Connector” and “RobMoSys composition
structures” and down to concrete realizations (sometimes “reference implementations”). Going gown this
abstraction hierarchy also means getting more domain-specific and narrowing semantic variability.

Formalization

This section provides formal specifications for the Hierarchical Hypergraphs and for an Entity-Relation model.

http://robmosys.eu/wiki-sn-02/modeling:hypergraph-er 2018-06-29

https://en.wikipedia.org/wiki/Mereology

Hierarchical Hypergraph

e “ahypergraph H is a pair H = (X,E) where X is a set of elements called nodes or vertices, and E is a set
of non-empty subsets of X called hyperedges or edges” Wiki:Hypergraph

[https://en.wikipedia.org/wiki/Hypergraph]
e hyperedge: each vertex in the graph can connect more than two nodes
e hierarchy: each node or edge in the graph can be a full graph in itself

Entity-Relation Model

Entity-Relation is a specialization of a Hypergraph. Therefore, Entity-Relation conforms-to a Hypergraph.

e entity
e the “things”
e entity instantiates a node of its meta-model
e uniquely referencing an element of its meta-model
e entity has a unique identifier
¢ uniquely referencing this primitive
e relation
e n-ary link between primitives
e relation instantiates a hyper-edge of its meta-model
e uniquely referencing an element of its meta-model
e relation has a unique identifier
e uniquely referencing this relation
e property
e attribute of a primitive or a relation

Basic set of standard relations for linking different levels of
abstraction

We do not introduce a RobMoSys specific definition for these relations. Instead, we just use their “common
sense definition”. The following explanations are just typical “common sense descriptions’:

e is-a
e this is inheritance
e an element of a model derives from an element of a metamodel
instance-of
e this is often just a synonym for “is-a”
e one talks of an instance when it is the final element in an inheritance hierarchy. What is
considered a final element depends on what parts of the inheritance hierarchy you see.
e conforms-to
e ameta-model is a model that defines the language for expressing a model. A model represents an
abstracted representation of an artefact. A model conforms to a meta-model. One model can have
multiple models to which it conforms.
constraints
e this is a particular relation
e it can be applied to primitives, relations and properties

See next:

o Block-Port-Connector

http://robmosys.eu/wiki-sn-02/modeling:hypergraph-er 2018-06-29

https://en.wikipedia.org/wiki/Hypergraph
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector

References

P. P.-S. Chen. The entity-relationship model—Toward a unified view of data. ACM Transactions on Database
Systems, 1(1):9-36, 1976.

At more or less the same time, similar developments took place around knowledge representations via
“programming languages”, such as Lisp or Prolog.

M. L. Minsky. A framework for representing knowledge. In P. H. Winston and B. Horn, editors, The
psychology of computer vision. 1975.

G. Engels and A. Schiirr. Encapsulated hierarchical graphs, graph types, and meta types. Electronic Notes in
Theoretical Computer Science, 2:101-109, 1995.

M. Levene and A. Poulovassilis. An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering, 6:205-224, 1991.

W3C. An overview of the prov family of documents.https://www.w3.org/TR/prov-overview/

[https://www.w3.org/TR/prov-overview/], 2013.

Dublin Core Metadata Initiative. Dublin core metadata element sethttp://dublincore.org/documents/dces/

[http://dublincore.org/documents/dces/].

P. Borst, H. Akkermans, and J. Top. “Engineering ontologies”.International Journal on Human-Computer
Studies, 46:365-406, 1997.

modeling:hypergraph-er - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:hypergraph-er

http://robmosys.eu/wiki-sn-02/modeling:hypergraph-er 2018-06-29

https://www.w3.org/TR/prov-overview/
http://dublincore.org/documents/dces/

K' RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Block-Port-Connector

The Block-Port-Connector model is a specialization of the more abstract Hypergraph and Entity-Relation

The following generic relations have been introduced already:is-a, instance-of, conforms-to and constraints.
There are two additional (i.e. more specific) relations that need to be introduced:

Relation | Explanation Typical graphical Typical textual
representation representation
contains | # can be applied to entities and can be an arrow with a diamond (filled | contains(A,a,b,c)
applied to relations with black color for ownership | contains(B,m,n)
* this realizes hierarchical composition or white color for no
(nested composition); in a hierarchical ownership)

composition elements are enclosed by
another element

* contains is topology

* the contained elements are not
accessible/visible (in contrast to elements in
a collection)

* the contained elements can or cannot exist
without the parent (depending on the
context)

has-a # can be applied to entities and can be an arrow with a diamond (filled | has-a(A,a,b)
applied to relations with black color for ownership
* this realizes aggregation or white color for no

* has-a is mereology ownership)

* in aggregation, elements remain at the
same level

* elements linked with has-a remain
aceesible/visible

* the contained elements can or cannot exist
without the parent (depending on the
context)

The generic entity is refined as follows:

Entity/Relation | Model and Description Typical Typical textual
graphical representation
representation

block Model: block(block-A)

* is-a entity

* possibly has-a property (or many)

* possibly has-a port (or many)

* possibly contains property (or many)

http://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-02/_media/modeling:principles:block.png

Entity/Relation

MU N DUSLRIgEK (or many)

* possibly contains collection (or many)
* possibly contains connector (or many)

PRV TE PAY

Typical
graphical
representation

Typical textual
representation

Description:
the only interaction points of a block are ports

port

Model:

* is-a entity

* has-a internal dock
* has-a external dock

Description:

it is the only interaction point over which a
block can interact with other blocks;

when attached to a block, the internal dock
becomes a private to the block (contains) and
the external dock becomes public (has-a)

Comment:

In textual representation, access to docks can be
represented e.g. like internal-dock(Port-A),
external-dock(Port-A)

port(Port-A)

dock

Model:
* is-a entity

Description:

A dock is used to semantically differentiate
between the “internal” and “external” sides of a
port with respect to the port's parent block.

Comment:

In a graphical representation, the internal dock
and the external dock can be highlighted, for
example by different colors (be careful, not to
start an irrelevant activity in introducing such
graphical notions into existing tools which
cannot handle that).

dock(Dock-A)

connector

Model:
* is-a entity
* connects ports (n-ary relation)

Description:
can connect ports as long as no block boundaries
are crossed

Comment:

In graphical representation, the connector itself
is represented by a dot. With the connects-
relation, star-shaped lines (connects-relations)
originate from the dot in the center.

connector(connector-
A)

collection

Model:

* is-a entity

* possibly has-a entity (or many)

* possibly has-a relation (or many)

http://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector

collection(collection-
C ’k’l ’m’n)

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:principles:port.png
https://robmosys.eu/wiki-sn-02/_media/modeling:principles:dock.png
https://robmosys.eu/wiki-sn-02/_media/modeling:principles:connector.png

Entity/Relation

il i Deseription
A collection can group any combination of
entities and / or relations. The enclosement

formed by a collection is just a virtual one
where the elements are openly accessible (in
contrast to nesting).

A collection can pick any elements out of blocks
ignoring block boundaries = this is particularly

Comment:

In the graphical representation, the dotted box
can enclose entities and / or relations where you
can cross the dotted line to “enter” the collection

Typical-—
gn:aphical i
re;presentatipn

Typical textual
representation

connects

Model:
is-a relation

Description:
links a dock of a port to a connector (binary
relation)

|

connects(connector-
A external-
dock(Port-A))

all the other specifications are used to define the RobMoSys composition structures.

Please note that while blocks and ports are semantically different, depending on the current role-specific view
with according level of abstraction, ports can contain additional structures and thus might appear as blocks on
that detailed abstraction level (see service-definition metamodel).

See next

e RobMoSys composition structures

modeling:principles:block-port-connector - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector

http://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:principles:collection.png
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/_media/modeling:principles:connection.png
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:views:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Modeling Twin

All entities in the market and all entities that are shared in the ecosystem come as twins. Twins consist of a
model (modeling twin) that represents the Software or Hardware artifact (SW/HW twin). Think of the modeling
twin as a bridge between traditional software artifacts and the modeling world. The modeling twin is similar to
data sheets in the PC Analogy.

Twins

Artifact: I Artifact:
Modeling twin | epresents SW/HW twin

The modeling twin is always supplied and handed over between roles in the ecosystem. The SW/HW twin
might be supplied later or might not exist at all. It might not exist, for example, when the artifact is purely
intended for modeling. Entities in the market will never be just HW/SW artifacts without a modeling twin as
then the artifact cannot be used. One can continue building a system independently with only the modeling
twin, then supplying the HW/SW twin later.

r _>I Component

|
| P
:confurms-to lis-a
I I
| |
= LaserComponent {__ripiebier_lte_d_ | Implementation
¥
/N /N
:instance-of :inst.amnc':-:!-lmc
| |
Executed binany
R + config file
Modeling Twin HW/SW Twin

The modeling twin is a representative and abstraction of the artifact it represents. It explicates necessary
properties to work with it. Supplying a modeling twin does not equal to exposing all details: IP can still be
protected as the modeling twin only have to expose the information that is relevant to use it: internal structures
can remain hidden.

The modeling twin is is similar to the “digital twin”!) in 10T and industry 4.0. It, however, is beyond bridging
the physical world to the digital world: it focuses on having a representative of physical entities or software
entities for modeling purposes.

http://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-02/_detail/modeling:principles:modeling-twins-abstract-robmosys.png?id=modeling%3Aprinciples%3Amodeling-twin
https://robmosys.eu/wiki-sn-02/_detail/modeling:principles:modeling-twin-example.png?id=modeling%3Aprinciples%3Amodeling-twin

See also

e PC Analogy

Dr. Michael Grieves and John Vickers. “Digital Twin: Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems (Excerpt)”, Excerpted based on: Trans-Disciplinary Perspectives on System

Complexity. Online

[http://research.fit.edu/camid/documents/doc_mgr/1221/Origin%20and%20Types %200f%20the %20Digital %20Twin.pdf

modeling:principles:modeling-twin - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin

http://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
http://research.fit.edu/camid/documents/doc_mgr/1221/Origin and Types of the Digital Twin.pdf

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

RobMoSys Structures: Realization Alternatives

This page describes alternatives for realizing the RobMoSys Composition Structures. This list of alternatives
shows examples and is not meant to be complete.

Example 1: Using Ecore

A meta-model is an abstract representation of a model. A meta-model in itself can be considered as a model
that may or may not have an even more abstract representation (i.e. a meta-meta-model). There are no
theoretical limits for going up the abstraction hierarchy. However, from a practical point of view, at a certain
abstraction level it simply does not make much sense to go further up the hierarchy. Instead, there often is a
meta-level that is abstract enough to define its own language. Example languages for such a level are: Eclipse
Ecore and Essential MOF (EMOF). Nevertheless, it might make sense to go higher up the abstraction hierarchy
above Ecore in order to define meta-levels that ease interfacing between the different realization technologies.
Such a higher meta-level is for instance the Hypergraph notation. The relation between e.g. the Ecore based
meta-models and the more abstract meta-levels is depicted in the figure below.

conformsto
Hypergraph
A
conformsto col/jnformsta
Block-Port-Connector Ecore
I I
conformsto conforms to
RobMosys |g_[ERresents | pobMosysEcore |- ransformation. AADL
composition-structures Meta-Models [(General Purposze
iMeta-Models) |, N _~Modeling Language)
-
7 5 -
f -
K oo
Domain-specific A mapping table. S
to robotics. Transforming a specific language to a general
purpose language always works, but not

wvicewersa. Since AADL isfreedom of choice,
the mapping is not always 1:1, but might result
in translating not only elements but also
structure. One limitsthe way the general
purpose structures are used.

The left side of the figure shows a meta-level hierarchy starting with a Hypergraph on top, over Blocks-Ports-
Connectors and down to RobMoSys composition structures. This hierarchy allows formal definition of meta-
levels for the required structures independent of a particular realization technology. In the middle of the figure,
a specific realization technology (in this case Ecore) is used to implement the RobMoSys meta-models. This is
only an example and many other technologies can be used instead in a similar fashion. Moreover, other
existing modeling languages (such as AADL) can be easily interlinked with the RobMoSys structures by
defining model-to-model transformations. This is a powerful extension mechanism that allows usage of

http://robmosys.eu/wiki-sn-02/modeling:realization_alternatives 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/_media/modeling:robmosys-vs-general-modeling-variant1.png
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start

matured and powerful tools in robotics.

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures.

A preliminary implementation of Ecore meta-models for the two topmost abstraction levels within Tier 1 (on
the left in the figure above), namely the Entity-Relation and Block-Port-Connector meta-models, is available at
Preliminary Ecore implementation of ER and BPC meta-models

Example 2: Using UML/SysML Profiling

conforms to conforms to
Hypergraph MOF
M AN
conforms to conforms to
Block-Port-Connector UM LSSy sML
™ N /| Profiling allows extension of UML{SysML of AN
conforms to extends rf’r elements. .)
; One must also describe which elements are
3 suitable to adopt and which must be excluded.
RobMoSys represents ;
composition-structures < - RobMoSys Profile See also: Bonnet, S Voirin,] -L.; Exertier, D. &
(Meta-Madels) Normmand, V. Mot (strictly) relying on SysML for
7 MBSE: Language, tooling and development
;; perspectives: The Arcadia/Capella rationale 2016
Domain-specific

Annual |IEEE Systems Conference (SysConl, 2016.
to robotics. IT

The figure above shows another example of using a different realization technology, in this case the
UML/SysML and MOF as base structures. The RobMoSys structures on the left are unaffected by this different
technology choice. It is worth mentioning that while the UML standard also specifies the graphical notation,
the extension mechanism through profiling might be a bit more challenging when it comes to restricting the
already defined modeling structures. These pros and cons need to be traded off when choosing a modeling
technology.

modeling:realization_alternatives - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:realization_alternatives

http://robmosys.eu/wiki-sn-02/modeling:realization_alternatives 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:realization_alternatives:ecore_implem
https://robmosys.eu/wiki-sn-02/_media/modeling:robmosys-vs-general-modeling-variant2.png

RobMoSys Wiki

RobMoSys http://www.robmosys.eu

RobMoSys Composition Structures

defines all the robotics meta-structures that are required to consistently model robotic systems throughout
several development phases and thereby supporting different developer roles. The meta-structures follow a
general composition-oriented approach where systems can be constructed out of reusable building blocks with
explicated properties. In other words, RobMoSys enables the composition of robotics applications with
managed, assured and maintained system-level properties via model-driven techniques. This enables
communication of design intent, analysis of system design before it is being built and understanding of design
change impacts. Therefore, the RobMoSys composition structures adhere to the general block-port-connector
meta-structures and can be considered as a further specialization thereof.

Scientific
grounding:

Hypergraphs conforms-to

l'\ canforms-to

Block-Port-Connector,
NPC4, Constraints,
Relations, etc.

RobMoSys composition

structure: 3
Blacks: Relations: Views:
- Service - Middlaware - Component formalize
- Component Binding Developer V., r :
- Activity - Wish - Performance V. Architectural
- Task Fulfillment Patterns

- Service V.

conforms-to

ﬁ

N

Via architectural patterns:
Human translates best practices and lessons

apply & generalize

-~
=
I"-|.

AN

Via applying structures:

Applying composition structures in domain-
modeling may require adding additional
structures. Many of these structures prove to

learned as described in architectural patterns
into formal models using the RobMoSys Block-
Port-Connector meta-models to result in the
RobMoSys composition-structure.

be general or may be generalized to become
domain-independent. These structures then
can become part of Tier 1 structures.

The figure (above) shows an exemplary list of possible composition structures (highlighted with the yellow
background color), which can be clustered into (a) specializations of blocks and (b) specializations of
relations. One of the central structures defined by RobMoSys is a consistent and rich enougleomponent
model that considers the interaction with related structures around the component model (such as e.g. the
definition of communication services and the binding to different middlewares). These structures are described
below in separate pages. An interesting point is that RobMoSys by purpose does not aim at one huge meta-

that cluster related modeling concerns in dedicated views, while at the same time connecting several views in
order to be able to define model-driven tooling that supports the design of consistent overall models and to

http://robmosys.eu/wiki-sn-02/modeling:composition-structures:start 2018-06-

29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:tier1
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-02/modeling:views:start

communicate the design intents to successive developer roles and successive development phases. In this sense,
composition does not only apply to designing robotics software but is also applied to designing the modeling
tools, thus making them easily extensible and composable.

Are you new to model-driven engineering? Find introduction literature in the FAQ.

Overview of RobMoSys composition structures

The figure below provided an overview of the RobMoSys composition structures (i.e. the RobMoSys
Metamodels). Each block in the figure represents a separate Metamodel that is individually described in a
separate page (see below). There are high-level relations between the metamodels that are depicted with the
uses keyword.

RobMoSys BFC

M

I
I
jconformsto
I
I

RobMoSys Composition Structures

Service- Communication- Communication-
Definition . Pattern —_u=Es - Object
M
:uses
Component- Robotic
r» Definition Behavior
I
I M,
| Cause- :uses
| .
| uses-7 EffectChain <~ _uses |
luses Analysis - T
| e.qg. flow- Deployrment
| latency-analysis| ~ cag Lses -
| S =" |
| =~ System £~ |
i Component juses
Architecture [~ A4
cervice uses- 71 \\ Platform
, - -7 s i.e. Target
Fulfillment N (get)
~ -uses N
=<3 System N
Service _ ses
___________________ Architecture T T T T T T T T

The next pages individually describe the RobMoSys metamodels in a human-readable notation using the
general definitions of block-port-connector. There is a straightforward way to transform this representations

Each metamodel (presented next) addresses two main modeling needs namely structure and interaction.

Structure defines the structural relations (such ashas-a and contains) between the individual model elements.
Structure can often be directly translated into a modeling technology such as Ecore. Interactions define the
important interaction relations (using port, connector and connects) between specific model elements. In
contrast to structure, interactions are often transformed into software APIs (e.g. through code generation) and

http://robmosys.eu/wiki-sn-02/modeling:composition-structures:start

2018-06-29

https://robmosys.eu/wiki-sn-02/faq
https://robmosys.eu/wiki-sn-02/_media/modeling:composition-structures:compositionstructuresoverview.png
https://robmosys.eu/wiki-sn-02/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-02/modeling:realization_alternatives

must not always be visible on model level.

List of Metamodels

e Robotic Behavior Metamodel

e Communication-Object Metamodel

e Communication-Pattern Metamodel

e Component-Definition Metamodel

e Deployment Metamodel

e Cause-Effect-Chain and its Analysis Metamodels

e Platform Metamodel

e System Service Architecture and Service Fulfillment Metamodels
e Service-Definition Metamodel

e System Component Architecture Metamodel

See also:

e RobMoSys Views

modeling:composition-structures:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:composition-structures:start

http://robmosys.eu/wiki-sn-02/modeling:composition-structures:start 2018-06-29

https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:views:start

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

RobMoSys Views

Roles in the Ecosystem come with specific views. The benefit of a view to a role is to present only what is
relevant for the role's responsibility, thereby hiding the complexity that is not relevant for that role, but is still

relevant for the whole system in the end. The system in the end consists of many concrete models based on the
RobMoSys Composition Structures. These elements are contributed by roles that work through views and
interact such that the contributed elements are composable to form a system. As a result, the individual role can
focus on its responsibility and expertise alone, while working decoupled from other roles. This is enabled by
the RobMoSys Composition Structures.

System Builder

Component Behavior . [
Supplier Developer . e ——
o Poinzs e iy -
ISJ".-_:__:_-__. — e e T oL
Ep=— l:.il' Lﬂ B_' BH - — R
» 3
= — Wil L
fii (g "R X
. i Erese Ermsn Obescss
System Performance Designer
Architect i | ohem T Lt [—
- - E_“'i - - T e
o __H*"""_*

==
EEE =

T

Bl Tag) et

g — [—

- ..:ll..nl - . —a ———— . . . ; .
5‘!’1 i P L e &
=u] a Fwd o .

&1

expertise.

The concept of “views” groups basic primitives of the RobMoSys composition strucures. A view is related to a

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A view
is not only in the sense of a perspective where one only sees a part of the system but does not see the rest, even
if it is there. Instead, a view shows an excerpt of the whole system that can be viewed independently of the
other parts. These other parts might even not exist at the time of having the view on the system, because it is
composed to other parts to form the complete system later.

http://robmosys.eu/wiki-sn-02/modeling:views:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-02/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

Ilustration of views e —

—

(RobMoSys Tier 1) - Elements that ~ ~~_
il relate to a component B,
- T,
-~ .
4 etc. e
- I:‘ D Middleware \\ I:I etc.
I:' Hardware R —— B
i . s~ A
Device .F” - “Component Development View™ ~ - T -
e e = -7 \ N
_ =~ ~System Cenfiguration View ~ ~ — _ I:‘ Lifecycle r" Voo N
-7 I ! R N\ I:Ietc | Viewn)
- \ - - 3 I s
f\ I:' DParameter},/’ —] \“'~.. | .J*"/
- 5 ———
-
T H,'/f []ﬂc N ;
T = FAY ;
/ SN s
#
| I:I Activity - "1 //
I:‘ etc. I - _ad
l_ = -
L, MRl T T | - Wenn diagram illustrating how
1 I:‘ Wish -y =" -] collections group primitives of the
v J \ Cause Effect ' RobMoSys Meta-Model to wiews.
\ / A chain ! Each square represents a element
\\ Fullfillment - \\ f" of the RobMoSy s composition
~ _View_ - Performance, structures (non-complete list).

~ Miew -~

Example: Consider a closed book. The view of a front cover is a certain perspective on the book. Even though
only the front cover is visible, the whole book is lying there. The book also consists of its pages and the back
cover which are not visible, even if they are there. It, however, makes perfect sense to only look at the back
cover of a book, its content pages or even the individual chapters separately (an excerpt of the book) as both
the front page and the back page can be designed differently (separation of roles) and then be put together.

List of Views

(alphabetical order)

e Communication Pattern View

e Component Development View
e Execution Container View

e Service Design View

e Deployment View
e Service Architecture View
e Service Fulfillment View

Views in relation to composition structures and roles

http://robmosys.eu/wiki-sn-02/modeling:views:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/modeling:views:views.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-02/modeling:views:communication_pattern
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:views:execution_container
https://robmosys.eu/wiki-sn-02/modeling:views:service_design

Participants ! ll

view to the next. There is no strict order in the sense of a strictly order value chain. Instead, the interactions
form a network of collaborating roles consisting of various bilateral interactions between suppliers and
consumers.

Links between views

1
«modeling twin
(+ SW/HpLwin)»
ManipulatorComponent E <»:creprest:r'lted by wartifacts

1 Defined by service architecture
________ \ Wish |view: services are wisible, but
le.g. 1 component hulls are not.
implementation) \
I: Parameter :I \
-

-~ 1

»‘Modelingtwin% |erswtwin % !

[| actvity |]

| Wish -
i -
i'|, Wish - -
————— Component \ Service ="
___________ «modeling twin D_evelopment 1 A!’chltecture’__.- - N
(+ i . _ _ View) View - Defined by performance wiew:
e P activity is wisible, but
Systemn \ Performance parameter is not.
Configuration | Vview
g g =
Instancel Instance2 i A _
:ManipulatorComponent I: :I: ComponentXY | \‘1 Mj‘nlgullator Activity2
I \ ctivity
! \
Parameter Parameter I \
I v
N «r'lp’odeli 1
IJ /:\«r'e resented by» + twir\l»
Modeling twin It | P | i
wartifacts Defined by system configuration : 1\
| le.g. binary wview: parameter isvisible, but |
HW /SW twin D —— - +ini file) activity is not. [

Each arrow indicates supllying or using a model. all
arrows indicate examples of workflow and handover
between views. Any arrow in any direction between

any view or through a central "market place” is
ossible.

Links Between Views: Example 2

The figure below illustrates an example where two views are connected by a third view. The service
architecture can serve as a blueprint for system configuration.

http://robmosys.eu/wiki-sn-02/modeling:views:start

2018-06-29

https://robmosys.eu/wiki-sn-02/_media/modeling:views:structures-views-roles.png
https://robmosys.eu/wiki-sn-02/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-02/_detail/modeling:views:views-many-connected-views-example.png?id=modeling%3Aviews%3Astart

Two views are linked by a third view

Block "Service Architecture for robot navigation®

LocalizationWish

MotionExecutionWish

A

.lPIanningWish

| A
Service [MappingW ish \ A
Architecture i | 1 ,
View [} 1 \
M
————————— -t - - — = " — " — " —"—"—" 4~ —"—"—"¥—"—"—"——— — — — — — = —— T = — = — ==
i
) Fullfillment Mapper ! Fullfillment . Fulfillment
Fullfillment Wil
View Fullfillment
A) \ \
1 [N Iy I
_________ —t—\——————————l——‘——————————————[—k——————————————————[—'.————————
System N | \‘ Iy [
Configuration \ T T 0 LI
Wiew 1 \\ 1 i [| [\
1 N ! \ [
Mapperdnstance 0,2 i \ i
| ML ca A 4
\ :Mapper | I \
I A [[I
N
! Y Plannerinstance OAVInstance \\
1| \ Planner :ObstacleAvoid. \
] hY
1 N
Localiz.Instance
:Localization =)
connection

Block "System Configuration”

Service architecture and system configuration are supplied independently and become
connected by the fullfillment. The service architecture serves as a "blueprint” for system
configuration. The fullfillment view describes which service wish inthe service architecture is

realized ("fullfilled"] by which compenent instance and its service. Only the combination of
blockjinstance+ port gives the behavior.

See also: Service-based composition workflow

See also

Views in the RobMoSys Glossary

e Views in RobMoSys Composition Structures
e Views in the PC domain analogy
[J

Roles in the Ecosystem

http://robmosys.eu/wiki-sn-02/modeling:views:start

modeling:views:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:views:start

2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/modeling:views:views-link-between-service-architecture-and-sysconfig.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-02/glossary
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles

G RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Component Development View

The component developer view clusters elements of the Component Metamodel that are relevant to the
Component Supplier.

The component development view (shown in the figure below) needs to be rich enough and provide sufficient
structures such that this model can serve as a consistent baseline for all the successive development steps (such
as e.g. system composition/configuration) that rely on proper component models. At the same time, the
component development view should avoid definition of too many low level details that are more related to
internal knowledge that is not required for supporting composition with respect to the surrounding models. In
this way, the component development view always is a trade-off between providing enough structures where
needed and leaving enough design freedom for the internal realization.

Component Supplier
Defines Parameters

Component Development View

Used by the -
component Compoenent =
developer =
-
«Configuration» /. -
Parameter «Config./Coord.»
. . O\ Behavior-Slave-
7 Interface _O
™
\\ Internal hint:
~| Of course, some selected components
«Coordinations posess a behavior-master-interface.
Lifecycle Omitted here for claraty reasons (TBD)
OperatingMode I
| Cperetine I) MG Er DRI
-Instantiates form existing ServiceDefinition
_ k-1 ’_I; 7| - Instantiates fram own ServiceD efinition
== - -’ - Select Endpoint side (providerfrequestor]
| «Communic.» (see service-definition workflow)
Compaonent Supplier Component- (L[
Extends Lifecycle by Service
Operating-Modes
(see TR 2011/01 «Computation»
1SSN 1868-3452) Activity : gfxl‘;:r O
Service-
: Requestor (’
] ‘
I

Component Developer:
Implements Business- /
Glue Logic

The only interaction point of a component with other components is through services. Therefore, a component
can specify several provided and/or required services. A special kind of service is the behavior-interface which
is used by the behavior coordination layer to coordinate this component at run-time (i.e. to set propper

configurations, to activate/deactivate certain component modes, etc.). Therefore, the behavior-interface
interacts with the component's internal parameter structure and the component's lifecycle state automaton
which also defines the component-specific run-time modes.

The component's services interact within a component with Activities and the component's Lifecycle. The
component's Lifecycle affects the lifelines of services and the activation/deactivation of Activities.

Regarding a component's Services, as long as the component is initializing (during start-up) or as long as a

component is in a fatal-error mode, then the provided services might be physically available but not ready to

properly offer a service (i.e. not able to answer query requests).

The next component-internal structural element is an Activity, which is an abstract representation of a task (or
http://robmosys.eu/wiki-sn-02/modeling:views:component_development

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-02/_detail/modeling:views:component-development-view.png?id=modeling%3Aviews%3Acomponent_development

more precisely of a thread). An activity wraps a functional block which by itself is passive and only gets active
by the execution environment of its parent Activity. This is an effective decoupling of the design and
implementation of functional parts within a component and the execution of the functions. This even allows
configuration of the execution characteristics for individual functions even after the component has been fully
implemented and shipped to e.g. a system builder and without affecting the component's internal
implementation.

As mentioned above, it is important that a structural model provides enough details that are required to
communicate the structural knowledge of a component to other developer roles as well as to provide a sound
foundation for the later development steps. In this respect, it is equally important to mention which parts have
been omitted on purpose in order not to intermix the responsibilities and concerns that become relevant in later
development steps. The most important parts that have been omitted on purpose are: (1) the mapping of
services to a particular communication middleware (which is the responsibility of another developer role) (2)
the mapping of Activities to a particular execution container such as Windows/Linux threads, or QNX/RTAI
real-time threads (again a responsibility of another developer role) and (3) the definition of the services by

modeling:views:component_development - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:views:component_development

http://robmosys.eu/wiki-sn-02/modeling:views:component_development 2018-06-29

https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:start

® RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Communication Pattern View

The communication pattern view clusters elements of the communication pattern metamodel that defines a
fixed and stable set of recurring communication semantics.

This set of recurring communication semantics is defined for the robotics domain independent of an underlying
communication middleware which can be flexibly selected in another development phase.

- provider/requestor
- svc. contract

(e.g. update rate)
-nomxn

«Abstracts» - connection oriented
CommunicationPattern - Forkingfjeining svc

Interface description
see PhD C. Schlegel
fig. 5.20 on page 78
(sync/async/handler/...)

-
S
-~
~
~

~ F——————————-
Component- PmTTTTTIIIITS : Component-
interral s I external
Interfa.ce Corggfg’&%ﬁg%naigt;em : Communication- |1 : View.

(Function) I Object | L (service)
L r
/ / is-a is-a
|QueryServer | QueryClient | | SendServer ‘ SendClient | Pushserver | | PushClient ‘ ‘EvemtServer | | EventClient |

The communication patterns consist of an internal and external view of the component interface. The external
view is defined by the behavior of the communication pattern itself. References therefore are provided in
Communication-Pattern Metamodel.

While the API of the internal component view can be implemented manually such that the behavior of the
communication patterns is ensured, this implementation requires a lot of knowledge about the internal behavior
of the communication patterns and the middleware abstraction level. Hence, RobMoSys uses the existing C++
open-source reference specification of the API derived from the SmartSoft framework
[https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPlcpp]. Using the existing API
specification increases independence of the component's internal business logic from the different framework
implementations, each based on a specific middleware solution. Besides, the existing API is well time-tested
over the past 10 years, which saves a lot of efforts of redefining this API.

RobMoSys Tooling Support

e In the SmartSoft World, the component internal interface is defined here

[https://github.com/Servicerobotics- Ulm/SmartSoftCOmponentDeveloperAPIcppJ

See also

e Communication-Pattern Metamodel

http://robmosys.eu/wiki-sn-02/modeling:views:communication_pattern 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/_detail/modeling:views:communication-pattern-view-robmosys.png?id=modeling%3Aviews%3Acommunication_pattern
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp
https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern

modeling:views:communication_pattern - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:views:communication_pattern

http://robmosys.eu/wiki-sn-02/modeling:views:communication_pattern 2018-06-29

¢ RobMoSys Wiki

http://www.robmosys.eu

Itulﬁn&rs

Execution Container View

The Execution Container View shows the mapping from platform independent models (such as components
and services) into concrete platforms (i.e. Operating Systems and Communication Middlewares).

A component (see Component Metamodel) is at first independent of an actual execution environment. The
actual mapping towards a communication middleware and an operating system (OS) is done in a later
development step (such as e.g. the deployment step). For example, during the deployment phase of component
to a specific platform, an accordingly used operating system and communication middleware become known
which can then be mapped to the so far independent component.

Activity Communication-Object Communication-Pattern

e 1’6"- PIM Message Protocol
appropriate marschalling ,|lsee C. Schlegel PhD
according to selded L° | table 5.45/5.46 on
communication middleware # page 155/160)

Middleware
abstraction

i
|

~ |Mediates between

O5/Middleware PIM pretecol and PSM{PSI

s

Expert
: middleware capabilities
® @
MW
Capabillities
- Scheduler e e
- Synchronization -
- Thread
- Timer
- ete,

— =

At this point an Activity becomes a certain implementation of a thread (such as e.g. a Windows thread or an
RTAI real-time thread). Also, the actual marshaling (i.e. the serialization technique for the communicated data
structures) and the used communication environment are selected. This should not affect the possible functional
constraints of a component and different communication middlewares should be usable (as long as there are no
specific constraints such as e.g. a specific real-time requirements for communication, which then should be

http://robmosys.eu/wiki-sn-02/modeling:views:execution_container 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/_detail/modeling:views:executioncontainerstructureview.png?id=modeling%3Aviews%3Aexecution_container

complied with).

modeling:views:execution_container - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:views:execution_container

http://robmosys.eu/wiki-sn-02/modeling:views:execution_container 2018-06-29

G RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Service Design View

The service design view clusters elements of the Service Metamodel that are relevant to theService Designer.

Service Design View

Service-Definition

Communication-Object

Communication- UserInterface
Object

PIM
Data Structure

— \ Componant

Domain T Developer
Expert \
)
\
/

\
\| - generic getter/setter
- middleware agnostic - :ns:t;zzgnad access
Communication- Select one-of - see DSL: http:ffwww.servicerobotik-ulm. de/
Pattemn <l

— = — _ _|predefined
communication
patterns

toolchain-manualhtmlfch02s02s02 html#
UsingToolchain_SystemD esignView_CommObj_Modeling
- SmartMD SD Toolchain CommObject Project

A service definition (shown on the left in the figure) comprises of a selection of a communication pattern and a
selection of a communication object. A communication object is a data structure that is communicated between
a service provider and a service requestor. The exact direction of communication is defined by the
communication pattern (see also Communication Pattern View). The communicated data structure is

independent of the underlying communication middleware that is linked in another development phase as
explained in the preceding section above.

modeling:views:service_design - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/modeling:views:service_design

http://robmosys.eu/wiki-sn-02/modeling:views:service_design 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-02/_detail/modeling:views:service-design-view.png?id=modeling%3Aviews%3Aservice_design
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-02/modeling:views:communication_pattern

® RobMoSys Wiki

LG

RobMoSys http://www.robmosys.eu

Composition in an Ecosystem

RobMoSys adopts a composition-oriented approach to system integration that
manages, maintains and assures system-level properties, while preserving
modularity and independence of existing robotics platforms and code bases, yet
can build on top of them.

e Introduction to Composition in an Ecosystem
e We illustrate composition by:
e Task-Level Composition for Robotic Behavior
e Service-based composition of software components
e Composition of algorithms
e Managing Cause-Effect Chains in Component Composition
e Coordinating Activities and Life Cycle of Software Components

composition:start - Last modified: 2018/06/29 17:55
http://www.robmosys.eu/wiki-sn-02/composition:start

http://robmosys.eu/wiki-sn-02/composition:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/bricks-300.png?id=composition%3Astart
https://robmosys.eu/wiki-sn-02/composition:introduction
https://robmosys.eu/wiki-sn-02/composition:task:start
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/composition:algorithms:start
https://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-02/composition:component-activities:start

® RobMoSys Wiki

G

RobMoSys http://www.robmosys.eu

Introduction to System Composition in an
Ecosystem

RobMoSys adopts a composition-oriented approach to system integration that manages, maintains and assures
system-level properties, while preserving modularity and independence of existing robotics platforms and code
bases, yet can build on top of them. System Composition is the action or activity of putting together a service
robotics system from existing building blocks (e.g. software components) in a meaningful way, flexibly
combining and re-combining them depending on the application's needs.

e Composition is about the management of the interfaces between different roles (participants in an
ecosystem) in an efficient and systematic way.

e Composition is about guiding the roles via superordinate composition-structures.

e Composition is about explicating and managing properties.

e Composition is about the right levels of abstraction.

e Composition is about access restriction and views for roles.

We operationalize architectural patterns and composition such that properties of system-of-systems become
known in order to build trust in the system under development.

(i) <= [systoms]

rule_s howto composition know about
build these rules their properties

knowledge about the properties of the Eomposfﬁon

ensure overall consistency

prog‘erfy select to match requ:’remfnrs

System composition puts a focus on the new whole that is created from existing parts rather than on making
parts work together only by glueing them together: the whole still consists of its parts, they do still exist as
entities and are thus still exchangeable. This is in contrast to integration.

Software components, for example, that are subject to composition shall be taken as-is (and only configured on
model level within predefined configuration boundaries). Software components thus have to be built with this
intention right from the beginning. The context in which they will later be composed is unknown, which puts
special requirements on their composability and the overall workflow.

Composition is about guiding the roles via superordinate composition-structures. It is about adhering to a
composition structure, thus gaining immediate access to all other parts that also adhere to this (same) structure.
In contrast, integration is about building adapters between (all) parts or even modifying the parts themselves.

System Integration

A distinction between integration and composition can be drawn by the effort (see 1)): the ability to readily

http://robmosys.eu/wiki-sn-02/composition:introduction 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-02/_detail/building-blocks-and-systems.png?id=composition%3Aintroduction

combine and recombine composable components distinguishes them from integrated components, which are
modified with high effort to make them work with others, essentially by writing adapters. The integrated part
amalgamates with the whole (i.e. the whole becomes one part, individual parts blend together, as red and green
water will mix), thus making it hard to remove or exchange individual parts from the whole. If they are
removed, it requires new adapters/adjustments.

Acknowledgement
This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

Mikel D. Petty and Eric W. Weisel. “A Composability Lexicon”, in Proc. Spring 2003 Simulation
Interoperability Workshop, March 2003, Orlando, USA.

composition:introduction - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/composition:introduction

http://robmosys.eu/wiki-sn-02/composition:introduction 2018-06-29

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMoSys http://www.robmosys.eu

Coordinating Activities and Life Cycle of Software
Components

The coordination of software components at run-time and the run-time management of the component's
internal resources are fundamentally important for designing robust and efficient systems. Therefore,

RobMoSys specifies a generic component lifecycle that can be extended by component-specificoperation
modes (see the technical report below for further technical details).

The component lifecycle (see figure on the right) is a generic state automaton ®
that every component has by default and that manages the initialization, shutdown

and operation of a component in a uniform way. This lifecycle does not require a

detailed metamodel as it is the same for every component and thus is an implicit “
part of the Component-Definition Metamodel (see the “Lifecycle” element in the

component metamodel). The lifecycle is defined here:

[Alive)

e Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State
Management of a Component”, in Technical Report 2011/01, Hochschule
Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zath-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

Moreover, every component can specify individual operation modes (see
Component Development View) which can be dynamically (de-)activated at run- O
time to manage the component's internal activities and thus the component's

functional resource consumption. There is an interesting relation between the component's operation modes,
services and functions. The component's operation modes interface between the component's internal
functions (implemented within relevant activities) and the component's services. Each operating mode
activates related activities and thusfunctions. As activities are responsible for generating data for related
services, activating a certainoperating mode indirectly activates respective services. Deactivating a certain
operation mode means that one or several relatedactivities are deactivated (i.e., each deactivated activity
stops before its next execution cycle until this activity gets activated again). This is a uniform mechanism to
dynamically manage the component's resources at run-time in a consistent way without violating the
component's internal implementation.

Overall, the management of the component's lifecycle and the management of the component'soperation
modes is an important part of the component'scoordination interface (see Coordination and Configuration
Patterns). Several robotic frameworks such as SmartSoft and RT-Middleware support this component lifecycle

directly and other frameworks such as ROS are currently working on the implementation of a similar
component lifecyle under the term Managed nodes [http://design.ros2.org/articles/node_lifecycle.html].

Example Use-Case

The Gazebo/TIAGo/SmartSoft Scenario consists of several components each implementing at least the generic

component lifecycle as described above. This already allows coordinated startup (i.e., initialization) and
shutdown (i.e., destruction) of these components. During regular operation, each component at least has two
regular opertion modes:

http://robmosys.eu/wiki-sn-02/composition:component-activities:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/_media/modeling:metamodels:lifecycle.png
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:metamodels:commpattern#coordination_and_configuration_patterns
http://design.ros2.org/articles/node_lifecycle.html
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

e Neutral: all the component's internal activities are in a standby state
e Active: all the component's internal activities are activated and operational

At runtime, only one of these modes can be active at a time and switching between them is possible at any
time. The Neutral mode is reserved for the inactive (i.e., passive) state of a component. This means that a
component might by fully started and ready to deliver a service but is within a standby mode and does not
consume its specific resources. Switching into the Active mode means that the component wakes up an
continuously delivers its service(s). These two modes are the default operation modes of a component which
covers the majority of all use-cases.

In some cases, it is reasonable to have a more detailed definition of the Active mode (i.e., if a component can
have several partial activation of its internal functionalities). For example, the component
“SmartMapperGridMap” from the Gazebo/TIAGo/SmartSoft Scenario provides two main functionalities,
namely to build long-term maps and update local grid maps. For coordinating these two functionalities, this
component provides (besides of the default “Neutral” mode) the following three operation modes (instead of
the generic “Active” mode):

e BuildCurrMap: for updating only the current (local) map
e BuildLtmMap: for building the long-term map
e BuildBothMaps: for building and updating both maps (highest resource demands)

These modes enable the robot to dynamically coordinate the amount of resources a component consumes
depending on the current situation and the task a robot is performing. Switching into the Neutral mode is
always possible for each component in situations where this component is not used in a system. In this wayj, it
is not necessary to completely kill a component (if currently not needed) and start it again (if needed again)
which is typically more time-consuming than just switching between respective component's operation modes.

Concrete models for these component examples are presented and discussed in the Example for Coordinating
Activities and Life Cycle of Software Components using the SmartMDSD Toolchain.

RobMoSys Modeling Support

e Component Development View
e Component-Definition Metamodel

The operation mode in the component-definition metamodel is modeled via the lifecycle metamodel which is

yet to be described.
RobMoSys Tooling Support

The following page demonstrates how concrete operating modes are modeled in existing navigation
components using the SmartMDSD Toolchain: Example for Coordinating Activities and Life Cycle of
Software Components using the SmartMDSD Toolchain

composition:component-activities:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/composition:component-activities:start

http://robmosys.eu/wiki-sn-02/composition:component-activities:start 2018-06-29

https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start
https://robmosys.eu/wiki-sn-02/modeling:views:component_development
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start

G RobMoSys Wiki

http://www.robmosys.eu

RobMoSys

Service-based Composition

The service-based composition approach is an example to illustrate the use of the composition tiers. Below is
the illustration that corresponds to the role descriptions. The service-based composition approach uses service-
definitions as central architectural element for composition of software components. We call the links between
service definition, service wish, and service with fulfillment the “service triangle”.

ServiceD efinition MappingSdef {
g:mmgry_ceacttl::‘P:ttem=Push Service definitions (Tier 2)
Pro Ert\ejs{ P cover data structure, communication
K‘\,nd = enumi semantics and additional properties
occupancyGridM a for specific services such as
e | feafurehrapl P "robot localization"
. MappingSdef } see: [Stampfer2016]
D Lasersdef D LocalizationSdef
Domain R ServiceD efinition LocalizationSdef
Expert |:| GPssdef T, | accurracy: int
(Tier 2) ce of ¥
: | ServiceWish Mapping - - .
instanceof MappingSdef { Service architecture (Tier 3)
I kind = occupancyGridMap Consists of several service wishes
! } that instantiate service definitions
inlpta use D and refine their properties.
Component ! Planning MotionExec The service architecture can be specific
Supplier : e Sarvicew ish Localization to & certain robotics application
(Tier 3) Localizatiar: .| ingtanceof LocalizationSdef { le.g. Delivery robot "RX500")
! \ accurracy = 5cm or can be intended for a variety of
wish qu’leent T applications reference architecture
System N {e.g. navigation for wheeled robots).
Architect \
(Tier 3) \
________________ N -

ol

Base:
:SmartPBase

equestor
P=Provider

Planner
:SmartBFSPlanner

Mapper:
SmartMapper

Component |

selection | o

through | Localization:

component |

market |

: System configuration model (Tier 3
5“;'_‘2:_“3“ del | system Integrator selects components
efinition mode| d instanciat

(Tier 3) ! Builder :ftv:lr;reaz;npe:nents
Supplies components as unit of | | (Tier 3) see: [Stampfer2016]
compostion that provide or

require services according
to service definitions.

[Stampfer2016] Dennis Stampfer, Alex Lotz, Matthias Lutz and Christian Schlegel. "The SmartMD3D Toolchain:
An Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robetics Software”. Special
Issue on Domain-Specific Languages and Models in Robotics, Journal of Software Engineering for Robotics
(JOSER), 7(1), 3-19 ISSN: 2035-3928, July 2016

RobMoSys Modeling Support

e Composition Structures
e Component Definition Metamodel
e Service Definition Metamodel

RobMoSys Tooling Support

e Support for Service-based Composition by the SmartMDSD Toolchain

See also

e Architectural Pattern for Service Definitions

http://robmosys.eu/wiki-sn-02/composition:service-based-composition:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/_detail/composition:service-based-composition:service-based-composition-approach.png?id=composition%3Aservice-based-composition%3Astart
https://robmosys.eu/wiki-sn-02/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:service
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:service_definitions

Acknowledgement

This document contains material from:

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

composition:service-based-composition:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/composition:service-based-composition:start

http://robmosys.eu/wiki-sn-02/composition:service-based-composition:start 2018-06-29

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

® RobMoSys Wiki

RobMaoSys http://www.robmosys.eu

Managing Cause-Effect Chains in Component
Composition

Composition can be found everywhere in a system and consider different aspects of that system. There is a
general distinction between vertical composition (as e.g. demonstrated by theService-based Composition)

and horizontal composition. This wiki page describes an example ofhorizontal composition using “Cause-
Effect Chains”.

While vertical composition addresses the combination of parts atdifferent levels of abstraction (see
Separation of Levels and Separation of Concerns), horizontal composition focuses on the combination of parts

at the same level of abstraction. One example for the latter kind of composition is the definition of the so
called Cause-Effect Chains for the purpose of refining specific system-level, performance-related, and non-
functional properties. The following reference provides further details of this topic:

e Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170-176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

In brief, the management of “Cause-Effect Chains” addresses the problem of combining different models of
computation such as e.g. Synchronous Data-Flow (SDF)

[https://ptolemy.berkeley.edu/publications/papers/87/synchdataflow/], and Petri Net
[https://en.wikipedia.org/wiki/Petri_net]. That is, individual components typically specify parts of the overall,

system-level models of computation by the definition ofactivities (i.e., the threads of that component). As the
component should be used in different systems and different systems often require different models of
computation, this component needs to be configured differently for each individual system so that a required
model of computation is realized. Therefore, theactivities of individual components are configured in a
system so that the interaction of activities from different components are either directly linked (i.e., in a trigger
relation) or loosely coupled (i.e., registers semantics). The constraint of a direct link is then mapped onto a
related scheduling strategy (which depends on the capabilities of the used operating system).

http://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start 2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-02/general_principles:separation_of_levels_and_separation_of_concerns
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://ptolemy.berkeley.edu/publications/papers/87/synchdataflow/
https://en.wikipedia.org/wiki/Petri_net

ComponentC
InCA
ComponentA]\ TaskC1
InA1 ComponentB
TaskA1 _[
InA2 TaskB1 _KOuB1 [GomponentD
i :I\ TaskD1
InD1
TaskNodeA1
InA1 inB1| TaskNodeB1 InC1| TaskNodeC1
InAZ
InB
TaskNodeA2 sl
InA2 InDT

There is a relation between the System Component Architecture Metamodel (see also the System Builder Role
and the System Configuration View) and the Cause-Effect Chain and its Analysis Metamodels(see also the
Performance Designer Roleand the Performance View). The figure above shows an illustration of models that
demonstrate this relation. In particular, the Cause-Effect Chain metamodel (an example model is sketched in
the lower half of the figure) removes component-boundaries by purpose to hide model-details that are not
relevant for that modeling view. This results in a directed graph consisting of activity nodes (the orange blocks
in the lower half of the figure) and abstract communication links. Consequently, an existing System
Component Architecture model can be transformed into a Cause-Effect Chain model which again is enriched
by further details related to refining the links between the activity nodes (i.e., specifying whether the links are
loosely coupled or directly linked).

Moreover, the Component Definition meta-model enables the modeling of components with activities so that a
component can be fully implemented and supplied to different system builders. The selected level of details of
a Component Definition meta-model leaves the relevant aspects related to the specification ofmodels of
computation open for later configuration in different systems. As a result, existing components can be flexibly
instantiated in different systems (conforming to the System Component Architecture Metamodel) and the
configuration of components can be adjusted (conforming to the Cause-Effect-Chain and its Analysis
Metamodels) without violating the component's internal implementation so that overall system-level
requlrements such as end-to-end delay demands, and CPU load requirements are satisfied for the current
system under development. This management of Cause-Effect Chains is one of the leading examples for
horizontal composition, providing a general mechanism that can be applied for other aspects of a system in a

similar way.

Example Use-Case for Managing Cause-Effect Chains

The figure below shows an example system derived from the Gazebo/TTAGo/SmartSoft Scenario consisting of

http://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:componentstotaskchains.svg.png?id=composition%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-02/modeling:views:system-configuration-view
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-02/modeling:views:performance-view
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:component
https://robmosys.eu/wiki-sn-02/modeling:metamodels:system
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/baseline:scenarios:tiago_smartsoft

navigation components altogether providing collision-avoidance and path-planning navigation functionality.
This example is used in the following to discuss different aspects related to managing cause-effect chains
which are again related to managing performance-related system aspects.

hop,™ ~ .
- Laser [::} g G 0!?% v
:"'})@ o P
(¢, "y, Oy, S g~
get laser-scan from HW, g s ©ﬂ _ef(-uf o
attach curr, pase and ":f)a f@a l‘a’g',} G,f@ Géo“ i
publish to ali subscribers 095'3 Fﬁbg Dgy " T
n e to 17 N
e, s, “
—— Mg, Yo .
L D) .
« .
& | | push newest \
b'b \é\ | | (sporadic) \
e ; | laserscan X
mr
o y \
Q 7 N
’ A
- ‘ Y
1
[
!
CDL Planner sh newest | Mapper '
BaseServer E::} push newest fu o ppe |
{sporadic) (sporadic) na;fnr c, :
velocity (wXA/W) calculate speed next-goal, goal-id o g |
publish edometry El}-l.‘— to next goal g - plan intermediate g - update map L
and receive pasition using: points to goal using current !
welocity commands - current laser scan position using laser-scan !
- robot contour newest map £
push timed - kinematic and s
{10 Hz) dynamic properties /
ose L7
* -

The example system in the figure above consists of five navigation components, from which two are related to
hardware devices (i.e., the Pioneer Base and the SICK Laser) and the other three components respectively
implementing collision-avoidance (i.e., the CDL component), mapping and path-planning. As an example, two
performance-related design questions are introduced in the following with the focus on discussing the
architectural choices and the relevant modeling options:

1. How fast can a robot react to sudden obstacles taking the current components into account?

2. How often does the robot need to recalculate the path to its current destination (thus reacting to major
map changes)?

RobMoSys Modeling Support

e Cause-Effect-Chain and its Analysis Metamodels

RobMoSys Tooling Support

e The following page discusses the concrete models of this example using the SmartMDSD Toolchain:
Example Use-Case for Managing Cause-Effect Chains in Component Composition using the
SmartMDSD Toolchain

See also:

e Architectural Pattern for Stepwise Management of Extra-Functional Properties

composition:cause-effect-chain:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start

http://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start 2018-06-29

https://robmosys.eu/wiki-sn-02/_detail/composition:cause-effect-chain:navigationexamplequestion.png?id=composition%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-02/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-02/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:stepwise_management_nfp

http://robmosys.eu/wiki-sn-02/composition:cause-effect-chain:start 2018-06-29

RobMoSys

® RobMoSys Wiki

http://www.robmosys.eu

Task-Level Composition for Robotic Behavior

Below is an example of how tasks can be composed for Robotic Behavior

It shows how tasks and skills can be composed flexibly

Several tasks can be composed to be executed in sequence or in parallel (horizontal composition)

A task can be refined with other tasks (vertical composition): Abstract tasks are refined to more concrete
tasks.

Refinement of tasks may be static or dynamic
e Static: The tasks and eventually the order is known. E.g. making coffee always involves
approaching the machine, putting a cup into the machine, pressing the button, etc.
e Dynamic: The tasks and the order are not known in advance (i.e. to be solved by symbolic
planning): E.g. it is not known what is the best way to clean up the table after customers left
(what order, what to stack into each other, what to carry at once/first/next/last, etc.)
Skills will finally translate to configurations of one or more components (lower right). E.g. moving the
manipulator requires to configure the component for collision-free manipulation-planning in a certain
environment and the manipulator component to move along these collission-free trajectories.
Grasp cup relies on the existence of a task “recognize-object” which is later bound to “recognize-cup”.
There are constraints that have to be maintained during the execution of a task, for example: the robot is
not moving while manipulating.
There are results of a task that effect execution of other tasks, even after the current task was finished.
For example, grasping a cup means that the cup still is in the gripper after the execution is done.

—
;| grasp CM constraints:
N - - __ robot not moving
E configuration coordination
N result:
! cup in gripper
- S i recognize : move mani- |
=} ¥ A (] 1
= TASK ’ 1 objects i 1 pulator to loc, !
- deliver | [omoon g = L aommoe [
= ‘ el = e
i coffee | , I
e K P -
.E Iﬂ"."&%pproach TASK TASK
. rasp cu
E Kitchen grasp cup make coffee
e J(Y
= ;
@ pommmememceedee oo T , :
£ " rive to 1 |™*recognize "hove mani- || b"'LLraS obiect
= location ! cup pulator standby | grasp obj Manipulation Planner
w]
g li ' T | ~ COMPONENT
£ i ' ; ' S configuration
=1 H .
o ‘ ' manipulator xyz L|]
| eyt .
parallel
.
Foan
composition of different tasks and skills

See also

o Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

e Architectural Pattern for Component Coordination

e Robotic Behavior Metamodel

http://robmosys.eu/wiki-sn-02/composition:task:start

2018-06-29

https://robmosys.eu/wiki-sn-02/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/_detail/composition:task:task_composition.png?id=composition%3Atask%3Astart
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-02/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-02/modeling:metamodels:behavior

Acknowledgement

This document contains material from:

e Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universitidt Miinchen, Miinchen
2018. [https://mediatum.ub.tum.de/?id=1362587]

e Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

e Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universitidt Miinchen,
Miinchen, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-

composition:task:start - Last modified: 2018/06/29 17:54
http://www.robmosys.eu/wiki-sn-02/composition:task:start

http://robmosys.eu/wiki-sn-02/composition:task:start 2018-06-29

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

	RobMoSys Wiki
	RobMoSys Wiki
	Glossary and FAQ
	Your Role in the RobMoSys Ecosystem
	General Principles
	Tier 1: Modeling Foundations
	Tier 2: Examples of Domain Models
	Tools and Software Baseline
	Tooling Baseline
	Tier 3: Existing Building Blocks and Scenarios

	Composition in an Ecosystem
	Pilots: Demonstrating the RobMoSys Approach
	Other Approaches in the RobMoSys Context

	RobMoSys Wiki
	RobMoSys Glossary
	General Terms
	Ecosystem
	Digital Platform
	System Composition (Activity)
	System Integration (Activity)
	Composability
	Compositionality
	Component
	Service
	System
	System-of-systems
	Architecture
	Extra-Functional Properties
	Synonyms

	Modeling Twin
	View
	Engineering Model
	Activity (in a RobMoSys software component)
	Mission (Level)
	Task (as in task plot for robotic behavior or as in task level)
	Synonyms

	Skill (Level)
	Service (Level)
	Function (Level)
	Execution Container (Level)
	Operating System and Middleware (Level)
	Hardware (Level)
	SmartSoft / The SmartSoft World
	Communication Pattern

	General Principles
	Separation of Roles
	Separation of Concerns
	Freedom OF choice vs. freedom FROM choice
	Architectural Pattern
	Objectives for Architectural Patterns

	Block, Port and Connector

	Concerns
	Computation (Concern)
	Communication (Concern)
	Coordination (Concern)
	Configuration (Concern)
	Cross-Cutting Concern
	Example

	Roles
	Acknowledgement
	References

	RobMoSys Wiki
	Architectural Patterns
	Introduction
	Template for an Architectural Pattern
	Context
	Problem
	Solution
	Optional: Discussion
	Optional: Example(s)

	List of Architectural Patterns
	Further Candidates for Architectural Patterns

	RobMoSys Wiki
	Architectural Pattern for Stepwise Management of Extra-Functional Properties
	Context
	Problem
	Solution
	Example
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Software Components
	Context
	Problem
	Solution
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Managing Transitions of System States
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Communication
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Service Definitions
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Component Coordination
	Context
	Problem
	Solution
	Discussion
	See also
	Acknowledgement

	RobMoSys Wiki
	Separation of Levels and Separation of Concerns
	About the Levels
	On the number and separation of levels
	Example: Levels
	The individual Levels
	Mission (Level)
	Task (Level)
	Skill (Level)
	Service (Level)
	Function (Level)
	Execution Container (Level)
	Operating System and Middleware (Level)
	Hardware (Level)

	Acknowledgement

	RobMoSys Wiki
	General Principles
	RobMoSys Wiki
	Analogy: The PC Domain
	Configuration, Composition, and Integration
	Configuration
	Composition
	Integration (in contrast to composition)

	Ecosystem Example: Graphics Cards
	What Enables Composition in the PC Domain?
	Views
	Decoupling supply and use
	IP is still flexible
	Flexible composition Combinations and alternatives

	RobMoSys Composition Tiers in the PC Domain
	Data Sheets and The Modeling Twin

	RobMoSys Wiki
	Ecosystem Organization
	Composition Tiers
	Tier 1: Composition-Structure – Meta-Structure
	Elements on this tier
	Examples of roles on this tier
	See also

	Tier 2: Robotics-Domain-Specific Structures – Robotics Domain Models
	Examples of elements on this tier
	Examples of roles on this tier

	Tier 3: Ecosystem Content
	Examples of elements on this tier
	Examples of roles on this tier

	RobMoSys Modeling Support
	RobMoSys Tooling Support
	See also
	Acknowledgement

	RobMoSys Wiki
	Roles in the Ecosystem
	List of Roles
	Roles in Context of Composition Tiers
	See also

	RobMoSys Wiki
	System Builder
	RobMoSys Wiki
	Function Developer
	RobMoSys Wiki
	Service Designer
	Acknowledgement

	RobMoSys Wiki
	Performance Designer
	RobMoSys Wiki
	Component Supplier
	RobMoSys Wiki
	Behavior Developer
	RobMoSys Wiki
	Safety Engineer
	RobMoSys Wiki
	System Architect
	RobMoSys Wiki
	User Stories
	Composable commodities for robot navigation with traceable and assured properties
	Description of building blocks via model-based data sheets
	Replacement of component(s)
	Composition of components
	Quality of Service
	Determinism, e.g. for robot navigation
	Free from hidden interference
	Management of Non-Functional Properties
	Gap between design-time assumptions and run-time situation
	System analysis tools
	Task modeling for task-oriented robot programming
	Safety

	RobMoSys Wiki
	Tier 2: Examples of Domain Models
	RobMoSys Wiki
	Flexible Navigation Stack
	Obstacle Avoidance Level
	Geometrical Path Planning Level
	Topological Path Planning Level
	Flexibility in the Navigation Stack
	The navigation stack components and services
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Pilots: Demonstrating the RobMoSys Approach
	RobMoSys Wiki
	Modular Education Robot Pilot
	RobMoSys Wiki
	Flexible Assembly Cell Pilot
	RobMoSys Wiki
	Assistive Mobile Manipulation Pilot
	RobMoSys Wiki
	Intralogistics Industry 4.0 Robot Fleet Pilot
	Available RobMoSys Software Baseline
	Pilot Roadmap

	RobMoSys Wiki
	Human Robot Collaboration for Assembly Pilot

	RobMoSys Wiki
	Tools and Software Baseline
	Tooling Baseline
	Tier 3: Existing Building Blocks and Scenarios

	RobMoSys Wiki
	Roadmap of Tools and Software
	See also

	RobMoSys Wiki
	Gazebo/TIAGo/SmartSoft Scenario
	Available Baseline: Gazebo/TIAGo with the SmartMDSD Toolchain v3

	RobMoSys Wiki
	IDEs & Toolchains
	RobMoSys Wiki
	The SmartSoft World
	SmartMDSD Toolchain and the SmartSoft Framework
	Productive Releases
	Conformance to RobMoSys Composition Structures
	Licenses: SmartSoft is open source
	Separation of Levels and Concerns in SmartSoft
	Robotics Behavior in SmartSoft
	SmartSoft Terminology
	Communication Object
	Communication Pattern
	Framework
	Quality of Service

	Further Resources
	Selected Publications

	RobMoSys Wiki
	Support for Service-based Composition
	RobMoSys Wiki
	SmartMDSD Toolchain Support for the RobMoSys Ecosystem Organization
	Support for Composition Tier 1
	Support for Composition Tier 2
	Support for Composition Tier 3

	RobMoSys Wiki
	Support for the Flexible Navigation Stack
	Ready-to-run Example: Tiago
	Available Software Components in the SmartSoft World
	The Flexible Navigation Stack with FESTO Robotino3

	RobMoSys Wiki
	Support for Coordinating Activities and Life Cycle of Software Components
	Example Use-Cases for Component Operation Modes

	RobMoSys Wiki
	Support for Managing Cause-Effect Chains in Component Composition
	Example Use-Case for Managing Cause-Effect Chains
	The component development view
	The system-configuration view
	The performance view
	Performance Analysis based on SymTA/S

	Acknowledgement

	RobMoSys Wiki
	The SmartMDSD Toolchain
	Download
	Available documentation
	RobMoSys Support
	Available Building Blocks
	Eclipse Modeling Tools

	RobMoSys Wiki
	Papyrus4Robotics
	Presentation
	Realization and tools
	Conformance to the RobMoSys structures
	Separation of Levels and tool coverage
	Platform workbenches in the context of RobMoSys
	Resources

	RobMoSys Wiki
	Getting Started With Papyrus4Robotics
	Installation
	Running an Example
	The Example Explained
	Introduction
	Domain Expert (Tier 2)
	Component Suppliers (Tier 3)
	AcmeMapper
	EmcaPlanner

	System Builder (Tier 3)
	Conclusions

	Do It Yourself
	Connect ComponentInstance Items

	RobMoSys Wiki
	SmartSoft Components
	RobMoSys Wiki
	Other Approaches in the RobMoSys Context

	RobMoSys Wiki
	OPC Unified Architecture (OPC UA)
	See also
	Acknowledgement

	RobMoSys Wiki
	General Purpose Modeling Languages and Dynamic-Realtime-Embedded domains
	RobMoSys Wiki
	Tier 1: Modeling Foundations

	RobMoSys Wiki
	Basic Modeling Principles
	Ecore-OWL language-bridge

	RobMoSys Wiki
	Tier 1 in Detail
	The levels of Tier 1
	Hierarchical Hypergraphs and Entity-Relation Model
	Block-Port-Connector
	RobMoSys Composition Structure

	Initial Structures and Evolvement of Tier 1

	RobMoSys Wiki
	Preliminary Ecore implementation of ER and BPC meta-models
	Entity-Relation (ER) meta-model
	Block-Port-Connector (BPC) meta-model
	Eclipse/Ecore implementation of ER and BPC meta-models

	RobMoSys Wiki
	Roadmap of MetaModeling
	See also

	RobMoSys Wiki
	Metamodels
	RobMoSys Wiki
	Robotic Behavior Metamodel
	RobMoSys Wiki
	Deployment Metamodel
	RobMoSys Wiki
	System Service Architecture and Service Fulfillment Metamodels
	Service Fulfillment Metamodel
	Acknowledgement

	RobMoSys Wiki
	System Component Architecture Metamodel
	RobMoSys Wiki
	Service-Definition Metamodel
	Views of a Service

	RobMoSys Wiki
	Cause-Effect-Chain and its Analysis Metamodels
	Acknowledgement

	RobMoSys Wiki
	Communication-Pattern Metamodel
	Component Communication Patterns
	Coordination and Configuration Patterns
	Parameter
	State
	Dynamic Wiring
	Monitoring

	RobMoSys Tooling Support
	Tooling Support by the SmartSoft World

	See Also
	References

	RobMoSys Wiki
	Component-Definition Metamodel
	References

	RobMoSys Wiki
	Platform Metamodel
	RobMoSys Wiki
	Communication-Object Metamodel
	RobMoSys Wiki
	Scientific Grounding
	Hierarchical Hypergraph
	Entity-Relation Model
	Natural modelling levels of abstraction

	Formalization
	Hierarchical Hypergraph
	Entity-Relation Model
	Basic set of standard relations for linking different levels of abstraction

	References
	RobMoSys Wiki
	Block-Port-Connector
	See next

	RobMoSys Wiki
	Modeling Twin
	See also

	RobMoSys Wiki
	RobMoSys Structures: Realization Alternatives
	Example 1: Using Ecore
	Example 2: Using UML/SysML Profiling

	RobMoSys Wiki
	RobMoSys Composition Structures
	Overview of RobMoSys composition structures
	List of Metamodels

	RobMoSys Wiki
	RobMoSys Views
	List of Views
	Views in relation to composition structures and roles
	Links Between Views: Example 1
	Links Between Views: Example 2
	See also

	RobMoSys Wiki
	Component Development View
	RobMoSys Wiki
	Communication Pattern View
	RobMoSys Tooling Support
	See also

	RobMoSys Wiki
	Execution Container View
	RobMoSys Wiki
	Service Design View
	RobMoSys Wiki
	Composition in an Ecosystem

	RobMoSys Wiki
	Introduction to System Composition in an Ecosystem
	System Integration

	RobMoSys Wiki
	Coordinating Activities and Life Cycle of Software Components
	Example Use-Case
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Service-based Composition
	RobMoSys Modeling Support
	RobMoSys Tooling Support
	See also
	Acknowledgement

	RobMoSys Wiki
	Managing Cause-Effect Chains in Component Composition
	Example Use-Case for Managing Cause-Effect Chains
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Task-Level Composition for Robotic Behavior
	See also
	Acknowledgement

