

H2020—ICT—732410

ROBMOSYS
COMPOSABLE MODELS AND SOFTWARE

FOR ROBOTICS SYSTEMS

DELIVERABLE D2.3:
IMPROVED (META-)MODELS, PROTOTYPICAL DSLS, TOOLS AND

IMPLEMENTATION

Christian Schlegel (Hochschule Ulm)

Alex Lotz (Hochschule Ulm)

Dennis Stampfer (Hochschule Ulm)

THIS PROJECT HAS RECEIVED FUNDING FROM THE ​EUROPEAN UNION’S HORIZON 2020 RESEARCH AND
INNOVATION PROGRAMME​ UNDER GRANT AGREEMENT NO. 732410

ROBMOSYS D2.3 H2020—ICT—732410

Project acronym​: RobMoSys

Project full title​: Composable Models and Software for Robotics Systems

Work Package​: WP 2

Document number​: D2.3

Document title​: Improved (meta-)models, prototypical DSLs, tools and implementation

Version​: 1.0

Due date: ​March 31th, 2019

Delivery date​: April 12th, 2019

Nature​: Report (R)

Dissemination level​: Public (PU)

Editor: Alex Lotz (HSU), Dennis Stampfer (HSU), Christian Schlegel (HSU)

Author(s)​: Alex Lotz (HSU), Dennis Stampfer (HSU), Christian Schlegel (HSU),
Enea Scioni (KUL), Nico Huebel (KUL), Herman Bruyninckx (KUL),
Matteo Morelli (CEA), Chokri Mraidha (CEA), Sara Tucci (CEA),
Marie-Luise Neitz (TUM),
Daniel Meyer-Delius (SIE)

Reviewer: Alfio Minissale (COMAU)

PAGE 2 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

Executive Summary

This is an accumulative Deliverable for Tasks T2.2 to T2.7. The individual contributions of the
respective Tasks are highlighted in the respective sections in this Deliverable document. This
Deliverable is an ​updated ​version (M27) of the original Deliverable D2.2 for (meta-)models,
prototypical DSLs, tools and implementations. A final updated Deliverable D2.4 will be published in
M48.

This Deliverable is about robotics (software) component (meta-)models for composition-oriented
(software) engineering and their prototypical implementations (exploiting existing background of
the partners as much as possible). It serves as a software baseline for the other WPs and for
preparing the second wave of open calls.

The RobMoSys consortium uses a Wiki as main platform for sharing the information included in this
document. This allows for a living document with a continuous publishing process following the
principles of composition for its content. While the basic principles expressed in this initial version
will remain stable, refinements and extensions as well as improvements will be added continuously.

Thus, this document serves as a guide through that material of the Wiki visible on the RobMoSys
website which is relevant to this Deliverable. A snapshot of the content of the Wiki at the time of
delivery of this document is attached in the appendix.

PAGE 3 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

Summary of Updates to this Document

D2.2 - June 30th, 2017

Initial version of this deliverable

D2.3 - March 31th, 2019

This document is an update of the initial deliverable D2.2. This document serves as an updated guide
to the RobMoSys wiki. Therefore, the following extensions of the RobMoSys Wiki contribute to this
deliverable:

● The “​Open Call 2 reading guide​”
● The “​Models directory​”
● Several new Wiki pages address Robotics Behavior Coordination models and views, as the

following:
○ “​Support of Skills for Robotic Behavior​” provides an entry page and an overview of

Robotics Behavior models implemented within the SmartMDSD Toolchain
○ “​Skills for Robotic Behavior​”: this page conceptually describes the relations

between the several new behavior-related models
○ “​Skill Definition Metamodel​” shows the metamodel for the new skill definition

modeling language
● New “​community corner​” section within the RobMoSys Wiki that clusters new contributions

from the ​Integrated Technical Projects (ITPs) of the first open call round in the dedicated Wiki
pages:

○ “​Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD
Toolchain (MOOD2be ITP)​”

○ “​Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)​”
○ “​Using the YARP Framework and the R1 robot with RobMoSys (CARVE ITP)​”
○ “​Benchmarking in the RobMoSys Ecosystem (Plug&Bench ITP)​”
○ “​Safety Assessment of Robotics Systems Using Fault Injection in RobMoSys

(eITUS ITP)​”
○ “​Guaranteed Stability of Networked Control Systems (EG-IPC ITP)​” (under

review)
● New section in the RobMoSys Wiki with several subpages on “​Composition in an

Ecosystem​” to illustrate composition by several examples that describe how RobMoSys
tooling can be used to apply the specified concepts:

■ “​Task-Level Composition for Robotic Behavior​”
■ “​Service-based composition of software components​”
■ “​Managing Cause-Effect Chains in Component Composition​”
■ “​Coordinating Activities and Life Cycle of Software Components​”

○ Extended Wiki pages that describe how the RobMoSys tooling supports in using the
meta-model structures and modeling foundation guidelines

■ "​Papyrus4Robotics​"
■ "​The SmartMDSD Toolchain​"

○ Examples of Tier 2 domain structures have been extended and its support through
RobMoSys tooling has been described

● Wiki page on “​Flexible Navigation Stack​”

PAGE 4 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

In addition to the wiki, the following extensions to this document have been made:

● Proven suitability to disseminate the RobMoSys concepts and knowledge through the wiki
in a very open and transparent way to engage the robotics community.

● Comparison of the RobMoSys Ecosystem with OPC UA in the industry 4.0 domain
● Description on how the RobMoSys Ecosystem Tier 1 structures evolve over time.
● Description on how RobMoSys realizes the Ecosystem Tiers.
● Description on the Block-Port-Connector realization alternatives.

Overall, compared to the initial Delivery D2.2, this updated Delivery D2.3 reflects the ongoing
implementation efforts of the composition structures within the RobMoSys consortium as well as
the take-up of these structures within the ​Integrated Technical Projects (ITPs) of the first open-call
round. The core modeling structures related to the creation of individual components as well as first
implementations of the system-level models have been realized in the two reference
implementations, the “SmartMDSD Toolchain” and the “Papyrus for Robotics”. These tools have
been used within the ITPs as a baseline and proved to be useful to extend the overall RobMoSys
body of knowledge. This further allows to refine and to improve the overall RobMoSys composition
structures as well as to gradually increase the awareness of the RobMoSys approach within the
general robotics community.

PAGE 5 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

Content

Executive Summary 3

Summary of Updates to this Document 4

Content 6

Introduction 7

Approach 8

Behavioral Modeling (Task T2.2) 9

Composition, Composability, Compositionality (Task T2.3) 9

Separation of Roles and Separation of Concerns (Task T2.4) 10

Non-functional Properties and QoS Management (Task T2.5) 11

Tooling 11

Introduction 11

Integration of Modeling Principles in a Meta-model (Task T2.6) 13

Tooling and Run-time Execution (Task T2.7) 13

Appendix 14

PAGE 6 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

1 Introduction
RobMoSys is about managing the interfaces between different roles (robotics expert, domain
expert, component supplier, system builder, installation, deployment and operation) and separate
concerns in an efficient and systematic way by making the step change to a set of fully model-driven
methods and tools for composition-oriented engineering of robotics systems.

This Deliverable update D2.3 has the focus on the implementation of the RobMoSys composition
structures considering the different roles and adhering to the generic meta-structures defined in the
Deliverable D2.1.

An initial version of a ​Glossary ​provides definitions for the most relevant terms in the context of
RobMoSys. See

● Wiki Page on “​Glossary​”

This document refers to the RobMoSys wiki. A snapshot is attached in the appendix of this
document for simple printing. Additionally, it can be accessed online at

● https://robmosys.eu/wiki-sn-03/

We refer to specific wiki pages like this: ​Wiki Page on “<Title of wiki page>”​. These wiki pages can
be accessed via its title in the appendix and in the RobMoSys Wiki Jump-Page at

● https://robmosys.eu/wiki-sn-03/jumppage

The live version of the wiki at ​http://www.robmosys.eu/wiki ​also reflects updates and ongoing
additions after the submission of this document. An up-to-date jump-page can be found at

● http://www.robmosys.eu/wiki/jumppage

Figure 1: Tiers of an Ecosystem, their elements and the elements in terms of modeling.

Tier 1 distinguishes generic composition structures (Modeling Foundation Guidelines and
Meta-Meta-Model Structures such as scientific grounding and block port connector concepts) and
the RobMoSys composition structures (concepts for robotics building blocks). These structures are
refined for the robotics sub-domains (e.g. manipulation, object recognition) to provide guidance and

PAGE 7 April 12th, 2019

https://robmosys.eu/wiki-sn-03/
https://robmosys.eu/wiki-sn-03/jumppage
http://www.robmosys.eu/wiki
http://www.robmosys.eu/wiki/jumppage

ROBMOSYS D2.3 H2020—ICT—732410

structure for users of the ecosystem at Tier 3 (for example, building blocks suppliers and users).

While Deliverable D2.1 focusses on ​generic composition structures, this Deliverable update
addresses the ​implementation of the RobMoSys composition structures within concrete
model-driven tooling.

2 Approach
The term “meta” in relation to a model refers to the abstraction between a model and its
meta-model where the model conforms to its more abstract representation in a meta-model.
Thereby, the meta-model by itself might be a model that conforms to yet another meta-model.
Therefore, the meta-relation is not absolute but relative. In some cases, it makes sense to add
further meta levels (such as in the term meta-meta-model in figure 1) in order to represent a
hierarchy that is visible at once. However, the relative relation remains. Moreover, each individual
meta-level by itself might be subdivided into further “sub” meta-levels such as e.g. the three
meta-levels on tier 1 (see figure 2). Again, because the meta relation is relative there is no need to
distinguish between a top-level (meta-)model and its “sub” (meta-)models as this distinction would
be purely artificial. In this document the ​RobMoSys composition structures on the lowest level of
composition Tier 1 will be referred to as ​RobMoSys meta-models​.

Figure 2: Details of the structure of Tier-1.

One of the benefits of the RobMoSys composition structures is to support role-specific views for
both other tiers 2 and 3. It is important to notice that while the individual views focus on isolated
aspects of an overall system, the views by themselves are not isolated but are interlinked over the
RobMoSys composition structures. This is important for ensuring the overall system consistency,
composition, composability and compositionality even if the individual roles independently

PAGE 8 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

contribute to the overall system.

The following list of Wiki pages provide further technical details with respect to the RobMoSys
composition structures and views:

● Wiki page on “​RobMoSys Composition Structures​”

● Wiki page on “​Views​”

Another aspect of the RobMoSys composition structures is that they serve as an intermediate
abstraction level between the ​generic​ composition structures (i.e. the blocks-ports-connectors, the
entity-relation model and the hypergraph meta-level) and the models on tiers 2 and 3. This lowest
abstraction level on tier 1 is where the structural, behavioral and workflow knowledge is formalized.
Model-driven tools are realized on composition Tier 1, but they cross all tiers to support creating and
working on models of the respective tiers.

Two complementary reference implementations realize the composition structures in model-driven
tooling that are described in the respective Wiki pages:

● “​The SmartMDSD Toolchain​”
● “​Papyrus for Robotics​”

As of D2.3, the ​SmartMDSD Toolchain​ implements composition structures related to the roles
“Domain Expert” (i.e. “Service Designer”), “Component Supplier”, “System Builder”, and “Behavior
Developer”. A dedicated Wiki page on “​SmartMDSD Toolchain Support for the RobMoSys
Ecosystem Organization​” describes the tooling support for the different roles. The ​Papyrus for
Robotics ​toolchain has the strong focus at composition structures for the “Safety Engineer”.

The following sections 2.2, 2.3, 2.4 and 2.5 accordingly address the Tasks T2.2, T2.3, T2.4 and T2.5
and individually refer to the according Wiki pages that describe the role-based composition
structures in RobMoSys.

2.1 Behavioral Modeling (Task T2.2)

The Task T2.2 refers to robotics behavior models that allow modeling situation-specific and dynamic
behavior of the robot which can be realized through Task coordination, different forms of process
networks or finite state automatons. As an initial baseline in the Deliverable D2.2, this Task T2.2
contributes with the SmartTCL language that can be used for defining robotic behaviors in open
calls and for realizing the pilots in RobMoSys. The following Wiki pages provide further technical
details:

● “​Robotic Behavior Metamodel​”
● “​Gazebo/Tiago/SmartSoft Scenario​” (this page provides examples of working behavior

models)

A first implementation of the “Skill Definition” and the “Skill Realization” modeling languages are
provided since the ​recent release of the SmartMDSD Toolchain version 3.7​, and are described in
the dedicated wiki page on “​Skills for Robotic Behavior​”.

As one of the first early adopters, the “​Mood2Be​” ITP has created a new design tool based on the
“Behavior Tree” approach, and integrated it with the Skill Models of the SmartMDSD Toolchain. See
details in the wiki page on “​Robotic Behavior in RobMoSys using Behavior Trees and the
SmartMDSD Toolchain​”.

PAGE 9 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

2.2 Composition, Composability, Compositionality (Task T2.3)

The Task T2.3 deals with challenges of - and around - software component (meta-)models. This
includes the relationship between functional blocks and behavior models, their configurations and
interplay within a component and the interaction between components on system level.

This Task T2.3 contributes to the initial baseline of this Deliverable with the RobMoSys component
meta-model that also addresses the definition of services that again rely on a clear definition of
communication patterns and communication objects. The following Wiki pages provide additional
technical details with respect to the Task 2.3:

● “​Component Metamodel​”
● “​Service Metamodel​”
● “​Communication-Pattern Metamodel​”
● “​Communication-Object Metamodel​”
● “​System Component Architecture Metamodel​”

It is important to notice, that a component meta-model in isolation is virtually useless as long as it
ignores all the other (meta-)models around it. For instance, the component (meta-)models are used
(i.e. referenced) in system (meta-)models for composing the systems out of flexibly configurable
building blocks. Therefore, the RobMoSys component meta-model allows the definition of
structures with purposefully left open variation points that are used in later development phases
(such as e.g. during system composition) to adjust the components to the application-specific
system needs. This enables a systematic match-making (also referred to as management of
constraints) between required application-specific system constraints and offered variability in
components. This match-making ranges from syntactic matches, over matching intervals, up to
matching constraints in the most generic form. As an initial baseline in D2.2 it is considered already a
great step forward to support the involved developer roles in manually managing the constraints.
Some of these match-makings are also automated using constraint solvers in respective
implementations of the toolings.

The match-makings as described above appear on different levels such as:

● refining task-net and considering their resource constraints
● matching task-nets with services over skills
● selection of components with their services according to an architectural service design
● matching activity constraints of individual components with application-specific end-to-end

requirements of system-level cause-effect-chains
● matching offered and required quality (e.g. accuracy) to minimize resources

Using these composition structures enables traceability of individual design choices and improves
exchangeability and composability of individual building blocks because their properties (i.e.
variability and constraints) are known and thus can be brought together between the original and
exchanged parts.

As one of the first early adopters, the CARVE ITP was able to use the new RobMoSys tools to
demonstrate composability and re-usability within the Yarp context. See dedicated Wiki page on
“​Using the YARP Framework and the R1 robot with RobMoSys​”.

2.3 Separation of Roles and Separation of Concerns (Task T2.4)

This Task T2.4 is about finding meaningful combinations of related concerns considering the needs
of the involved developer roles. These needs and role-specific use-cases are collected in so called
“architectural patterns” which serve as input for the definition of the RobMoSys composition

PAGE 10 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

structures (see also section 2.3).

The following Wiki pages provide additional technical details with respect to Task T2.4:

● “​Architectural Patterns​”
● “​Roles in the Ecosystem​”
● “​Separation of Levels and Separation of Concerns​”

These definitions already provided an initial baseline within the Deliverable D2.2. Moreover, as in
the other Tasks above, these definitions have been iteratively refined in this Deliverables D2.3, and
will further be refined in the upcoming Deliverable D2.4.

Among other ITPs, the Plug&Bench ITP has directly adopted the idea of the role-specific views for
developing representative benchmarks of components. See more details in the Wiki page on
“​Benchmarking in the RobMoSys Ecosystem​”.

2.4 Non-functional Properties and QoS Management (Task T2.5)

In contrast to many other approaches in robotics, RobMoSys considers the management of
non-functional (i.e. QoS) aspects as a first class citizen from the very beginning in the overall
robotics software development. This is reflected by the Task T2.5.

As an initial baseline for the Deliverable D2.2, this Task contributes a novel performance view that
can be used to design and manage performance-related system aspects without violating with the
component-internal implementation constraints. Further technical details for the performance view
can be found in the Wiki page:

● “​Cause-Effect-Chain and its Analysis Metamodels​”

● “​Architectural Pattern for Stepwise Management of Extra-Functional Properties​”

The RoQME ITP specifically extended the RobMoSys body-of-knowledge with respect to measuring
different non-functional aspects of a robotic system at run-time. See dedicated Wiki page on
“​Dealing with Metrics on Non-Functional Properties in RobMoSys​”.

3 Tooling
3.1 Introduction

While the RobMoSys composition structures by themselves are independent of any realization
technology, there are different realization options that can be used. The RobMoSys consortium
provides two complementary reference implementations of model-driven tooling using Eclipse
modeling tools as the underlying technologies (see figure 3).

PAGE 11 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

Figure 3: Realization alternative using Ecore

Moreover, various (graphical and textual) model editors as well as code generators can be
implemented that all conform to the RobMoSys Ecore meta-models (see figure 4). For
implementing the model editors the Sirius, Papyrus and Xtext Eclipse plugins can be used. As an
initial software baseline for other WPs and for the open-calls, the initial modeling tools in RobMoSys
(as part of this Deliverable) provide SmartSoft-based code generators that conform to the so far
specified RobMoSys composition structures. Some existing Papyrus-based modeling tools provide a
rich baseline that are gradually made conformant with the RobMoSys structure over that run-time of
the project. The following Wiki pages provides technical details for the current software baseline for
development-environments and tools including statements on conformance to the RobMoSys
composition structures:

● Wiki page on “​The SmartSoft World​”
● Wiki page on “​Papyrus for Robotics​”

PAGE 12 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

Figure 4: Modeling Tool Implementation Options

The successive Deliverable D2.4 will iteratively refine the RobMoSys composition structures as well
as their realization in the conformant modeling tools. An initial software baseline has been used and
improved by ITPs from the first open call round. These refined tools will be used by the upcoming
open call 2 which will further consolidate and enrich the overall RobMoSys body-of-knowledge and
tools.

3.2 Integration of Modeling Principles in a Meta-model (Task T2.6)

The Task 2.6 is about enabling composition not only for the software aspects but in particular for the
modeling tools and the meta-model realizations themselves. Therefore, as introduced above,
RobMoSys separates the definition of the RobMoSys composition structures from their realizations
using e.g. Eclipse Ecore. Moreover, even the Ecore-based realizations are independent of their
actual implementations using e.g. Xtext/Sirius Eclipse plugins. This clear separation of technologies
enables dedicated contributions from open calls and independent refinement of the MDSE tooling
on different levels as showed in the following Wiki pages:

● “​Realization Alternatives​”
● “​Modeling Principles​”
● “​Modeling Twin​”

These technology-separation-structures proved to be useful and extensible within the ITPs of the
first open call round. More refinements are expected to follow during the second open-call round
and will be summarized in the upcoming Deliverable D2.4.

3.3 Tooling and Run-time Execution (Task T2.7)

The Task T2.7 is about the realization of prototypical tooling that underpins the feasibility of
modeling approaches from the preceding Tasks T2.2 to T2.6. The following Wiki page provides
technical details for the roadmap and current status of the RobMoSys tooling:

● “​Roadmap of Tools and Software​”
● “​The SmartSoft World​”
● “​Papyrus for Robotics​”

PAGE 13 April 12th, 2019

ROBMOSYS D2.3 H2020—ICT—732410

The conformance of these tools and software baseline to the RobMoSys composition structures is
described in the above wiki pages. In order to ensure that the tools themselve are usable considering
the different roles on tier 2 and tier 3, some early system examples are developed using these tools.
The following Wiki page provides details for the TIAGO navigation scenario:

● “​Gazebo/Tiago/SmartSoft Scenario​”

Furthermore, the tools have been used to build several RobMoSys pilots such as:

● “​Intralogistics Industry 4.0 Robot Fleet Pilot​”
● “​Assistive Mobile Manipulation Pilot​”

In addition, the tools and the RobMoSys composition structures have been taken up and enriched
within the ITPs, as can be seen by several new wiki pages within the “​Community Corner​” of the
RobMoSys Wiki. Further uptake is expected to happen in the second open call round whose results
will be summarized as part of the next Deliverable update D2.4.

Moreover, a new Wiki page summarizes the resulted models from both, the RobMoSys Pilots and
from the ITPs, see:

● “​RobMoSys Model Directory​”

4 Appendix
A snapshot as of January 31th, 2019 of the RobMoSys Wiki is attached in the appendix for simple
printing. The snapshot can be accessed online via ​https://robmosys.eu/wiki-sn-03​. The live version of
the wiki can be found at ​http://www.robmosys.eu/wiki​.

PAGE 14 April 12th, 2019

https://robmosys.eu/wiki-sn-03
http://www.robmosys.eu/wiki

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Wiki
RobMoSys enables the composition of robotics applications with managed, assured, and maintained system-
level properties via model-driven techniques. It establishes structures that enable the management of the
interfaces between different robotics-related domains, different roles in the ecosystem, and different levels of
abstractions. Documents that provide an overview and introduction:

“Section 1 / Excellence”: excerpt of RobMoSys Grant Agreement, Annex 1 (part B)

Presentation of the RobMoSys project at European Robotics Forum 2017, Edinburgh

Presentation “Modeling Principles and Modeling Foundations” at the RobMoSys Brokerage Day, July

5th 2017, Leuven

The RobMoSys Wiki provides technical details on the RobMoSys approach including examples realizing the
RobMoSys structures. The main philosophy behind the RobMoSys Wiki is to favour early access, openness,
and transparency over completeness. This is to support communication of RobMoSys being a community
endeavour. For general information about the RobMoSys project or its open calls, please refer to the project
website [http://www.robmosys.eu].

Please note: The RobMoSys consortium is continuously updating this wiki to provide early insights. See the
Changelog. If you came here through a RobMoSys document, please see the RobMoSys Document Jumppage to
find referred pages. This is a live and evolving wiki, stable Snapshots are available.

Technical Material for the Second Open Call

We provide a entry point and reading guide of the technical material for the RobMoSys Second Open
Call which is open from February 2019 till end of April 2019. For information about the open call, refer to
https://robmosys.eu/open-call-2/ [https://robmosys.eu/open-call-2/].

Glossary and FAQ

The RobMoSys Glossary contains descriptions of used terms. The technical FAQ provides answers to
frequently asked questions.

Your Role in the RobMoSys Ecosystem
http://robmosys.eu/wiki-sn-03/start 2019-01-31

http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/composition:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
http://robmosys.eu/download/section-1-excellence-excerpt-of-robmosys-grant-agreement-annex-1-part-b/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
http://robmosys.eu/download/project-overview-modeling-principles-and-foundations-christian-schlegel-hs-ulm/
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/changelog
https://robmosys.eu/wiki-sn-03/jumppage
https://robmosys.eu/wiki-sn-03/snapshots
https://robmosys.eu/wiki-sn-03/open-call-2
https://robmosys.eu/open-call-2/
https://robmosys.eu/wiki-sn-03/_detail/glossary.png?id=start
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/faq
https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:roles-ecosystem.png?id=start

Start reading here to see what your role is in the RobMoSys
ecosystem or learn more about Roles in the Ecosystem. Main
ecosystem users are:

Behavior Developer
Component Supplier
Function Developer
Performance Designer
Safety Engineer
Service Designer
System Architect
System Builder

Besides the ecosystem participants, there are also other roles like the Model-Driven Engineering tool
developers (see RobMoSys Composition Structures) and framework builders (see Software Baseline). Read a
quick introduction to the role of open call applicants in the project-level FAQ
[http://robmosys.eu/faq/#1501224896192-8bac1f66-275f].

General Principles

RobMoSys manages the interfaces between different roles and
separates concerns in an efficient and systematic way by making
the step change to a set of fully model-driven methods and tools
for composition-oriented engineering of robotics systems. The
following list of pages provide some fundamental principles in
RobMoSys.

Separation of Levels and Separation of Concerns
Architectural Patterns
Ecosystem Organization and Tiers
User-Stories
PC Analogy: Explaining RobMoSys by the example of the PC domain

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

Roadmap of MetaModeling
Modeling Principles

Modeling Twin
Realization Alternatives

Tier 1 Structure
Scientific Grounding: Hypergraph and Entity-Relation model
Block-Port-Connector
RobMoSys Composition Structures (and metamodels)
Views which are used by roles

http://robmosys.eu/wiki-sn-03/start 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/baseline:start
http://robmosys.eu/faq/#1501224896192-8bac1f66-275f
https://robmosys.eu/wiki-sn-03/_media/general_principles:ecosystem:composition-tiers.png
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-03/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-03/modeling:roadmap
https://robmosys.eu/wiki-sn-03/modeling:principles
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

Tier 2: Examples of Domain Models

RobMoSys allows the definition of domain-specific models and
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

Flexible Navigation Stack
Mobile Manipulation Stack
Motion, Perception, Worldmodel Stack
Active Object Recognition

See also the RobMoSys Model Directory

Tools and Software Baseline

RobMoSys provides a set of tools and a software baseline that
conform to the RobMoSys approach. This set can serve as a
starting-point for applying the RobMoSys methodology or to
extend it.

Tooling

Development Environments and Tools
The SmartMDSD Toolchain: An Integrated Development Environment (IDE) for robotics
software
Papyrus for Robotics: A set of Papyrus-based DSLs and tools
Groot: an IDE to create, modify and monitor BehaviorTrees
BehaviorTree.CPP: a C++ framework to design, execute, monitor and log robotics behaviors,
using Behavior Trees
RoQME Plugins for the SmartMDSD Toolchain: Tooling to enable modeling and monitoring of
QoS in robotics systems

Roadmap of Tools and Software

Tutorials and Documentation

For the SmartMDSD Toolchain
For Papyrus for Robotics

Usable Domain models, Components, and Systems

Browse the Model Directory to see building blocks available for immediate composition with
RobMoSys tooling.

Composition in an Ecosystem

http://robmosys.eu/wiki-sn-03/start 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/system-examples:intralogistic.jpg
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start
https://robmosys.eu/wiki-sn-03/domain_models:motion-perception-worldmodel:start
https://robmosys.eu/wiki-sn-03/domain_models:active-object-recognition:start
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins
https://robmosys.eu/wiki-sn-03/baseline:roadmap
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/_detail/bricks-300.png?id=start

RobMoSys adopts a composition-oriented approach to system integration that
manages, maintains and assures system-level properties, while preserving
modularity and independence of existing robotics platforms and code bases, yet
can build on top of them.

Introduction to Composition in an Ecosystem
We illustrate composition by:

Skills for Robotic Behavior
Task-Level Composition for Robotic Behavior
Service-based composition of software components
Composition of algorithms
Managing Cause-Effect Chains in Component Composition
Coordinating Activities and Life Cycle of Software Components

Pilot Skeletons: Demonstrating the RobMoSys Approach

RobMoSys uses pilots to demonstrate the use of its approach
through the development of full applications with robots. Pilots
span different domains and different kind of applications. The
pilots can be provided to project contributors to support
designing, developing, testing, benchmarking and demonstrating
their contribution.

Goods Transport in a Company:
Intralogistics Industry 4.0 Robot Fleet Pilot

Mobile Manipulation for manufacturing applications on
a product line:

Flexible Assembly Cell Pilot
Human Robot Collaboration for Assembly Pilot

Mobile manipulation for assistive robotics in a domestic environment or in care institutions:
Assistive Mobile Manipulation Pilot

Modular Educational Robot Pilot

The project is open for constructive suggestions from the community for further pilots or extensions to existing
pilots, as long as “platform”, “composability” and “model-tool-code” are first-class citizens of those
suggestions.

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing
approaches should be used wherever possible. The following
list provides some common approaches that are considered
relevant within the RobMoSys context.

General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.)
Robotics Approaches (ROS, YARP, RTC, etc.)
Middlewares (DDS)
Industry 4.0 domain: OPC UA

http://robmosys.eu/wiki-sn-03/start 2019-01-31

https://robmosys.eu/wiki-sn-03/composition:introduction
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/composition:algorithms:start
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki-sn-03/_detail/pilots:assistive-mobile-manipulation.png?id=start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/pilots:flexible-assembly
https://robmosys.eu/wiki-sn-03/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-03/pilots:education
https://robmosys.eu/wiki-sn-03/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=start
https://robmosys.eu/wiki-sn-03/other_approaches:modeling_languages
https://robmosys.eu/wiki-sn-03/other_approaches:opc-ua

Community Corner

In this section, we feature early adoptors of RobMoSys methodology,
composition structures, or tooling.

Get in touch: Discourse Forum [https://discourse.robmosys.eu/] and Events
[https://robmosys.eu/events/]
Integrated Technical Projects (ITPs) of Open Call I [http://robmosys.eu/itp]
Demonstrations and intermediate results:

Safety Assessment of Robotics Systems Using Fault Injection in
RobMoSys (eITUS ITP)
Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain
(MOOD2BE ITP)
Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)
Using the YARP Framework and the R1 robot with RobMoSys (CARVE ITP)
Benchmarking in the RobMoSys Ecosystem (Plug&Bench ITP)

start · Last modified: 2019/01/29 16:53
http://www.robmosys.eu/wiki-sn-03/start

http://robmosys.eu/wiki-sn-03/start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:community.png?id=start
https://discourse.robmosys.eu/
https://robmosys.eu/events/
http://robmosys.eu/itp
https://robmosys.eu/wiki-sn-03/community:safety-analysis:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start
https://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start
https://robmosys.eu/wiki-sn-03/community:benchmarking:start

RobMoSys Wiki
http://www.robmosys.eu

Changelog
The RobMoSys consortium is continuously updating this wiki to provide early insights. This changelog will
help you to track major changes.

January 30th
Added a reading guide for open call 2 technical material
RobMoSys Model Directory
Mobile Manipulation Stack
Updating RobMoSys Tooling with ITP contributions
Several updates accross the wiki to prepare for open call 2

January 25th

Community Corner:
Benchmarking in the RobMoSys Ecosystem

January 18th, 2019

Information on robot skill modeling:
Skills for Robotic Behavior
Skill Definition Metamodel
Skill Realization Metamodel

Examples of how the SmartMDSD Toolchain supports skills:
Support of Skills for Robotic Behavior

Community Corner:
Safety Assessment of Robotics Systems Using Fault Injection in RobMoSys

Refactored The SmartSoft World and The SmartMDSD Toolchain to match restructuring of upstream
page.

December 13, 2018

Community Corner: Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD
Toolchain (MOOD2BE ITP)

November 30, 2018

Community Corner: Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)

October 5, 2018

More information about what “modeling” is in RobMoSys: Modeling Principles - What is "Modeling"?

http://robmosys.eu/wiki-sn-03/changelog 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/open-call-2
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:start
https://robmosys.eu/wiki-sn-03/community:benchmarking:start
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start
https://robmosys.eu/wiki-sn-03/community:safety-analysis:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start
https://robmosys.eu/wiki-sn-03/modeling:principles

July 5, 2018

Started a Community Corner with a demonstration of Robotic Behavior in RobMoSys using Behavior
Trees and SmartSoft.

June 29, 2018

Updated Ecosystem Organization
Added description on how the SmartMDSD Toolchain supports the RobMoSys Ecosystem Organization
in three composition tiers.
Added a description of the relation between industry 4.0/OPC UA and RobMoSys: OPC UA
Updated or added roles:

Performance Designer
Component Supplier
Behavior Developer

Updated Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Added Architectural Pattern for Component Coordination
Updated Separation of Levels and Separation of Concerns
Taking snapshot of the wiki to https://robmosys.eu/wiki-sn-02 [https://robmosys.eu/wiki-sn-02]

June 8, 2018

Update of the Flexible Navigation Stack
The Flexible Navigation Stack is an example of domain models / RobMoSys Composition Tier 2
contents.
The page now illustrates more details of the service definitions that are defined in this stack.
Description of support for the Flexible Navigation Stack in the SmartSoft World was added:
Support for the Flexible Navigation Stack

Update of the Communication-Pattern Metamodel and view.
It now points to specific external documents for the definition of the communication patterns.

Some areas of the wiki cited unpublished Work [Lotz2017] and [Stampfer2017]. These are two doctoral
thesis that are very closely related to RobMoSys. They recently appeared online and the links and
references have been updated:

Dennis Stampfer. "Contributions to System Composition using a System Design Process driven
by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]
Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München,
München, Germany, 2018. [https://mediatum.ub.tum.de/?id=1362587]

May 30, 2018

Added two new wiki pages to illustrate composition
Managing Cause-Effect Chains in Component Composition
Coordinating Activities and Life Cycle of Software Components

And according description how this is supported by RobMoSys Tooling (here the SmartMDSD
Toolchain):

Support for Managing Cause-Effect Chains in Component Composition
Support for Coordinating Activities and Life Cycle of Software Components

http://robmosys.eu/wiki-sn-03/changelog 2019-01-31

https://robmosys.eu/wiki-sn-03/community:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start
https://robmosys.eu/wiki-sn-03/other_approaches:opc-ua
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-02
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://mediatum.ub.tum.de/?id=1362587
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start

May 2nd, 2018

Information on Getting Started With Papyrus4Robotics available.

March 2nd, 2018

Release of the SmartMDSD Toolchain v3 generation. Updated initial documentation, more to follow.

August 21st, 2017

More Pilot descriptions added

August 1st, 2017

Started a technical Frequently Asked Questions
Composition in an Ecosystem now describes composition and provides examples where RobMoSys
illustrates it.
Pilot descriptions added
Several minor corrections and adjustments.

June 23rd, 2017

Major improvements of the RobMoSys composition structures
Severall corrections and refinements of multiple pages in the Wiki
Wiki snapshot freeze [http://robmosys.eu/wiki-sn-01/]

June 13st, 2017

Improvement of the main page/front page

June 6st, 2017

Several small improvements of pages in the Modeling section
Refined description of architectural pattern for software components

June 1st, 2017

Added Service Metamodel
Added Communication-Pattern Metamodel
Added Communication-Object Metamodel
Updated Component Metamodel

May 29th/31st, 2017

Updated Glossary
Added Roles and Views in the Ecosystem
Added General Principles
Added Modeling details
Added other approaches in context of RobMoSys
Added Tools Tools and Software Baseline

http://robmosys.eu/wiki-sn-03/changelog 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/pilots:start
https://robmosys.eu/wiki-sn-03/faq
https://robmosys.eu/wiki-sn-03/start
https://robmosys.eu/wiki-sn-03/pilots:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
http://robmosys.eu/wiki-sn-01/
https://robmosys.eu/wiki-sn-03/modeling:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component

May 3rd, 2017

Initial public release of
RobMoSys Glossary
Architectural Patterns
Separation of Levels and Separation of Concerns
Service-Based Composition Approach/Ecosystem Organization

changelog · Last modified: 2019/01/31 17:14
http://www.robmosys.eu/wiki-sn-03/changelog

http://robmosys.eu/wiki-sn-03/changelog 2019-01-31

https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Glossary
The glossary contains descriptions of used terms.

General Terms

Ecosystem

A collaboration model (cf. Bosch20101), Iansiti20042)), which describes the many ways and advantages in
which stakeholders (e.g. experts in various fields or companies) network, collaborate, share efforts and costs
around a domain or product.

Robotics is a diverse and interdisciplinary field, and contributors have dedicated experience and can contribute
software building blocks using their expertise for use by others and system composition.

Participants in an ecosystem do not necessarily know each other, thus the challenge is to organize the
contributions without negotiating technical agreements and without adhering to a synchronized development
process to organize the contributions.

See Ecosystem Organization

Digital Platform

There are two different definitions of digital platforms:

Economical Definition: Multi-sided market gateways creating value by enabling interaction between
two or more complementary customer groups.
Innovation Definition: Reference architecture/implementation with an innovation ecosystem triggering
broad value creation.

Platform is not to be confused with the MDA's [http://www.omg.org/mda/] definition. This definition relates to a
concrete technology (in most cases referring to a communication middleware technology such as e.g. CORBA).

The term “Platform” is also used in RobMoSys with respect to the target deployment platform / robot platform.
See Platform Metamodel. This is not to be confused with the “Digital Platform”.

System Composition (Activity)

The action or activity of putting together a service robotics application from existing building blocks (here:
software components) in a meaningful way, flexibly combining and re-combining them depending on the
application's needs.

See also: System Composition in an Ecosystem

System Integration (Activity)

The activity that requires effort to combine components, requiring modification or additional action to make

them work with others (see Petty20133)).

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
http://www.omg.org/mda/
https://robmosys.eu/wiki-sn-03/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-03/composition:introduction

We distinguish integration as an activity and integration as in “integration-centric”.

See also: System Composition in an Ecosystem

Composability

The ability to combine and
recombine building blocks as-
is into different systems for
different purposes in a
meaningful way.

It is the basic prerequisite for
system composition since it is
the property that makes parts
become building blocks.
Composability has aspects
both between components (parts) and the application (whole). Composability comprises syntactic and
semantic aspects.

Composability requires that properties of sub-system are invariant (“remain satisfied”) under
composition

Splittability is “inverse” relationship of composability

Compositionality

The ability to compose different modules in a methodological way in order to meet predictable
functional and extra-functional requirements.
Compositionality is a system-level design concern, that reflects the extent to which system designers are
able to predict the behaviour of their system on the basis of the formally known behaviour of each of the
system’s components.

Component

A component is the unit of composition that provides functionality to the system through formally defined

services at a certain level of abstraction (cf. Szyperski20024)).

A component holds the implementation to bridge between services and functions. A component is defined
through a component model and can realize one or more services and interacts with others through services
only. When speaking of components, we refer to explicit software components as in the SmartSoft World, in
contrast to component as a synonym for an arbitrary piece or element of something (as e.g. in AADL
[http://www.aadl.info/]).

A component comprises several levels. It is the unit of composition that is being exchanged in the ecosystem.

See also:

Architectural Pattern Software Components
Component Metamodel
Component Supplier role
Component Development View

Service

A service can be defined in two different ways:
http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/composition:introduction
https://robmosys.eu/wiki-sn-03/_detail/building-blocks-and-systems.png?id=glossary
http://www.aadl.info/
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/modeling:views:component_development

a service in the sense of service-oriented architectures (SOA) that provides a self-contained business
functionality to a consumer independent of its realization
one concrete form of a service that is targeted at composition of software components for robotics (see
Service Level)

See also:

Communication Pattern

System

A combination of interacting elements organized to achieve one or more stated purposes. 5)

System-of-systems

Any system should, in itself, be usable as a building block in a larger system-of-systems. In other words, being
a component or a system is not an inherent property of any set of software pieces that are composed together in
one way or another.

Architecture

An organizational structure of a system that describes the relationships and interactions between the system's
elements. Architectural aspects can be found at different levels of abstraction.

Extra-Functional Properties

Extra-functional properties (see Sentilles20126)) are system-level requirements that rule the way in which the
system must execute a function, considering physical constraints as time and space. Typical extra-functional
properties specify constraints on progress, frequency of execution, maximum time for the execution, mean time
between failures, etc.

Synonyms

non-functional properties

Modeling Twin

A modeling twin describes the packaging of a software/hardware artefact with its model-based representation in
order to ship it as a whole (i.e. bundle) to other participants in an ecosystem. The model part of the modling
twin is mandatory while the software/hardware part is optional (depending on the current artefact at hand).

See: Modeling Twin

View

RobMoSys foresees the definition of modeling views that cluster related modeling concerns in one view, while
at the same time connecting several views in order to be able to define model-driven tooling that supports in the
design of consistent overall models and in communicating the design intents to successive developer roles and
successive development phases.

In this sense, a view establishes the link between primitives in the RobMoSys composition structures and the
RobMoSys roles. Views enable roles to focus on their responsibility and expertise only. The RobMoSys
composition structures ensure composability of building blocks contributed and used by the role.

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns#service_level
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

See: RobMoSys Views

Engineering Model

In contrast to Scientific Modelling [https://en.wikipedia.org/wiki/Scientific_modelling], engineering models
additionally need to be machine-processable in order to enable composition and usage of this model in other
models. This is a fundamental feature that improves scalability and modularity of models and model-driven
engineering methods. In other words, engineering models always need to provide a benefit and serve a clear
purpose with respect to all the other surrounding models of the overall system where this model is part of.

Activity (in a RobMoSys software component)

The entity that handles the execution of business logic within a component and manages continuous and one-
shot operations. In many operating systems activities are mapped to preemptive threads that can be executed
concurrently on a CPU core. In some contexts threads are also called tasks, however, this term is to be avoided
for this kind of entity within the RobMoSys context as it is reserved for (behavior) tasks (see Task Level).

See Coordinating Activities and Life Cycle of Software Components

Mission (Level)

See Separation of Levels and Separation of Concerns

Task (as in task plot for robotic behavior or as in task level)

Is an abstract action (i.e., a job) that a robot is able to perform (see Task Level). Please note, that this term does
not refer to an operating system thread (which is called activity in RobMoSys).

Synonyms

job

Skill (Level)

See Separation of Levels and Separation of Concerns and Skills for Robotic Behavior

Service (Level)

See Separation of Levels and Separation of Concerns and Service-based Composition

Function (Level)

See Separation of Levels and Separation of Concerns

Execution Container (Level)

See Separation of Levels and Separation of Concerns

Operating System and Middleware (Level)

See Separation of Levels and Separation of Concerns

Hardware (Level)

See Separation of Levels and Separation of Concerns
http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:views:start
https://en.wikipedia.org/wiki/Scientific_modelling
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

SmartSoft / The SmartSoft World

An umbrella term for concepts, tools (e.g. the SmartMDSD Toolchain), and content (e.g. software components)
that are developed at the Service Robotics Research Center Ulm (Service Robotics Ulm). The latest generation
of the SmartSoft world adheres to the RobMoSys structures. See The SmartSoft World.

Communication Pattern

The semantics in which software components exchange data over component services. RobMoSys adopts a set
of few but sufficient communication patterns.

See also:

Service

General Principles

Separation of Roles

A principle that enables and supports different groups of stakeholders in playing their role in an overall
development workflow without being required to become an expert in every field (in what other roles cover).

A role has a specific view on the system at an adequate abstraction level using relevant elements only.

It is closely related to separation of concerns and a necessary prerequisite for system composition towards an
robotics ecosystem.

Separation of Concerns

A principle in computer science and software engineering that identifies and decouples different problem areas

to view and solve them independent from each other (see Dijkstra19827)).

It is the basis for separation of roles and a necessary prerequisite for system composition towards an robotics
ecosystem.

Freedom OF choice vs. freedom FROM choice

System development tools generally follow one of the two following approaches:

One approach is called freedom of choice. One tries to support as many different schemes as possible
and then leaves it to the user to decide which one best fits his needs. However, that requires huge
expertise and discipline at the user side in order to avoid mixing noninteroperable schemes. Typically,
academia tends towards preferring this approach since it seems to be as open and flexible as possible.
However, the price to pay is high since there is no guidance with respect to ensuring composability and
system level conformance.

Freedom from choice (see Lee20108)) gives clear guidance with respect to selected structures and can
ensure composability and system level conformance. However, there is a high responsibility in coming
up with the appropriate structures such that they do not block progress and future designs.

Architectural Pattern

A selection of a (sub)set of concerns and levels to fulfill an objective
An architectural pattern addresses a single level, may connect two related levels or may involve several
levels

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern

See Architectural Patterns
e.g. extra-functional property

Objectives for Architectural Patterns

Facilitate building systems by composition
Support Separation of Roles

Block, Port and Connector

A recurring principle for structuring meta-models at different levels of abstraction. It can be applied on the
same level and between different levels.

See Block-Port-Connector

Concerns

Computation (Concern)

Computation is related to active system parts that consume CPU time

Communication (Concern)

Communication concerns the exchange of information between related entities on the same level and also
between the levels themselves

Coordination (Concern)

Design and modeling of robot behaviors
i.e. what happens when and who is involved

it includes:
execution order, (system) states
error-handling, resp. error propagation
run-time adaptation and (online) reconfiguraiton
contingency handling and adaptation rules and strategies

Configuration (Concern)

Configuration involves several entities (in contrast to parametrization which typically involves one
entity)

for example: a set of components (path planning, localization, motion execution) that is
configured to work together (move to a destination)

includes static/dynamic parameter-settings of individual components
includes static/dynamic wiring between interacting components

Cross-Cutting Concern

A concern that cannot be separated from others or decomposed and influences or affects multiple properties
and areas in a system possibly at different levels of abstraction. For example, security cannot be considered in
isolation and cannot be added to a given application by introducing a security-module; it rather has to be
considered in all areas of the system.

Example

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector

Non-Functional Properties involve several concerns

Roles

A certain task or activity with associated concerns that someone (individual, group or organization) takes in the
composition-workflow using a view. For example, the Component Supplier role uses the Component
Development View view to come up with a component model that conforms to the Component Metamodel.

Someone that takes a particular role typically is an expert in a particular field (e.g. object recognition). A role
takes a particular perspective or view on the overall workflow or application. It is associated with certain tasks,
duties, rights, and permissions which do not overlap with other roles.

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A role is
responsible for supplying a part of the system. “Role” in the sense of a participant of the ecosystem.

See also:

Roles in the Ecosystem
RobMoSys Views

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

References

1)

Jan Bosch, Petra Bosch-Sijtsema. “From integration to composition: On the impact of software product lines,
global development and ecosystems”, in Journal of Systems and Software, Volume 83, Issue 1, January 2010,
Pages 67-76, ISSN 0164-1212, DOI: 10.1016/j.jss.2009.06.051 [http://doi.org/10.1016/j.jss.2009.06.051]
2)

Iansiti, Marco, and Roy Levien. “Strategy as Ecology”, in Harvard Business Review 82, no. 3 (March 2004).
3)

Mikel D. Petty and Eric W. Weisel. “A Composability Lexicon”, in Proc. Spring 2003 Simulation
Interoperability Workshop, March 2003, Orlando, USA.
4)

Clemens Szyperski. “Component Software: Beyond Object-Oriented Programming (2nd ed.)”. In Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2002.
5)

ISO/IEC 15288:2008 (IEEE Std 15288-2008
6)

Séverine Sentilles. “Managing Extra-Functional Properties in Component-Based Development of Embedded

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
http://doi.org/10.1016/j.jss.2009.06.051

Systems”. Dissertation. Mälardalen University, Västerås, Sweden, 2012.
7)

E. W. Dijkstra. “On the role of scientific thought”. In Selected Writings on Computing: A Personal Perspective,
pages 60–66. Springer-Verlag, 1982.
8)

Edward A. Lee. “Disciplined Heterogeneous Modeling”. In: MODELS 2010. Invited Keynote Talk. Oslo,
Norway, 2010.

glossary · Last modified: 2018/12/19 11:48
http://www.robmosys.eu/wiki-sn-03/glossary

http://robmosys.eu/wiki-sn-03/glossary 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Technical Material for the Second Open Call
This page serves as an entry point for technical material for the RobMoSys Second Open Call which is open
from February 2019 till end of April 2019. For information about the open call, refer to
https://robmosys.eu/open-call-2/ [https://robmosys.eu/open-call-2/].

This page is structured according to specific keywords and topics that are used in the official call documents.

Quick General Links

Technical User Stories and Non-Technical User Stories [https://robmosys.eu/user-stories/]
Architectural Patterns
RobMoSys Model Directory
RobMoSys Composition Structures

RobMoSys Tooling and Tutorials

Find a list of Tools and Software Baseline. They include links to relevant tutorials.

RobMoSys Building Blocks and Software Components

Browse the Model Directory to see building blocks available for immediate composition with
RobMoSys tooling.

Pilots (industrial case studies) and Pilot Skeletons

Pilot Skeletons
Browse the Model Directory to see building blocks available for immediate composition with
RobMoSys tooling.
Domain Models to kickstart and base your own development on

Domain of Mobile Robot Navigation

Navigation is a focus of the RobMoSys Pilot “Intralogistics Industry 4.0 Robot Fleet Pilot”
Domain Models, for example the Flexible Navigation Stack
A use-case in

Managing Cause-Effect Chains in Component Composition
Skills for Robotic Behavior and Support of Skills for Robotic Behavior

The Flexible Navigation Stack is supported by the SmartMDSD Toolchain:
Support for the Flexible Navigation Stack
A lot of SmartMDSD Toolchain Tutorials focus on examples in navigation
Scenario Gazebo/TIAGo/SmartSoft Scenario
A full stack of software components supporting the Flexible Navigation Stack is available for
immediate composition

http://robmosys.eu/wiki-sn-03/open-call-2 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/open-call-2/
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/user-stories/
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/baseline:start
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/pilots:start
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/domain_models:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/model-directory:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start

Domain of Manipulation

Manipulation is a focus in several Pilots:
Intralogistics Industry 4.0 Robot Fleet Pilot
Flexible Assembly Cell Pilot
Human Robot Collaboration for Assembly Pilot
Assistive Mobile Manipulation Pilot

Domain Models: Mobile Manipulation Stack
Software component models ready for implementation (“empty component hulls”) with the
SmartMDSD Toolchain can be found in the RobMoSys Model Directory

Digital Data Sheet

General statements on the purpose and high-level concept of a digital data sheet: MODELS 2018
RobMoSys Workshop [http://www.servicerobotik-ulm.de/models2018/] Talk “Modeling Principles and
Modeling Foundations in RobMoSys [http://www.servicerobotik-ulm.de/models2018/assets/slides/2018-10-
16-RobMoSys_MODELS_Principles.pdf]”
Digital Data Sheet and Modeling Twins are synonyms.
Digital Data Sheets explained using the PC Domain Analogy
[https://robmosys.eu/wiki/general_principles:pc_analogy:start]

RobMoSys Tooling Support of the Digital Data Sheet via the SmartMDSD Toolchain:
A digital data sheet contains different sections; at least a technical section and annotations
section for humans.
The SmartMDSD Toolchain supports the technical digital data sheet via its models. It support
via annotations is currently distributed over several places as this technology is currently in
migration.

The concept of annotations via a component documentation model to enrich a software
component with descriptions for humans is described in: Stampfer2016
[http://joser.unibg.it/index.php/joser/article/view/91] and Stampfer2018 [http://nbn-
resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2].
It currently supports generation of README.md files and RDF/TTL file for import in
semantic triple-stores.
Find a HowTo at https://wiki.servicerobotik-ulm.de/how-tos:documentation-
datasheet:start [https://wiki.servicerobotik-ulm.de/how-tos:documentation-datasheet:start]

Use-Case Example: The SmartMDSD Toolchain supports the digital data sheet to interact with
Groot, a behavior tree editor

Mixed-Port Component

ROS-1 Mixed-Port Components in the SmartMDSD Toolchain [https://wiki.servicerobotik-
ulm.de/tutorials:ros:mixed-port-component-ros]
Mixed-Port Components explained using the example of YARP
Support of OPC UA Mixed-Port Components in the SmartMDSD Toolchain [https://wiki.servicerobotik-
ulm.de/tutorials:start]
RobMoSys Talk at ROS-Industrial Conference: Slide 10 [https://robmosys.eu/download/ros-industrial-
conference-2018/?wpdmdl=17378]
Possible application in the RobMoSys Pilot “Intralogistics Industry 4.0 Robot Fleet Pilot”

Cause-Effect-Chains

General Concept: Managing Cause-Effect Chains in Component Composition

http://robmosys.eu/wiki-sn-03/open-call-2 2019-01-31

https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/pilots:flexible-assembly
https://robmosys.eu/wiki-sn-03/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start
https://robmosys.eu/wiki-sn-03/model-directory:start
http://www.servicerobotik-ulm.de/models2018/
http://www.servicerobotik-ulm.de/models2018/assets/slides/2018-10-16-RobMoSys_MODELS_Principles.pdf
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki/general_principles:pc_analogy:start
http://joser.unibg.it/index.php/joser/article/view/91
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://wiki.servicerobotik-ulm.de/how-tos:documentation-datasheet:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://wiki.servicerobotik-ulm.de/tutorials:ros:mixed-port-component-ros
https://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start
https://wiki.servicerobotik-ulm.de/tutorials:start
https://robmosys.eu/download/ros-industrial-conference-2018/?wpdmdl=17378
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start

Tooling support via the SmartMDSD Toolchain: Example Use-Case for Managing Cause-Effect Chains
in Component Composition using the SmartMDSD Toolchain
Possible application in the RobMoSys Pilot “Intralogistics Industry 4.0 Robot Fleet Pilot”

OPC UA

RobMoSys in context of OPC UA: OPC Unified Architecture (OPC UA)
Mixed-Port Components in the SmartMDSD Toolchain allow to bridge between OPC UA and
RobMoSys software components:

Accessing an OPC UA Device [https://wiki.servicerobotik-ulm.de/tutorials:opcua-client:start]
Composing a System with OPC UA Mixed-Port Components [https://wiki.servicerobotik-
ulm.de/tutorials:opcua-client-system:start]
Developing an OPC UA Server [https://wiki.servicerobotik-ulm.de/tutorials:opcua-server:start]

The German National BMWi/PAiCE SeRoNet Project is specifically addressing OPC UA using
RobMoSys structures:

RobMoSys Talk at ROS-Industrial Conference: Slide 11 [https://robmosys.eu/download/ros-
industrial-conference-2018/?wpdmdl=17378]
SeRoNet: http://seronet-projekt.de [http://seronet-projekt.de] and Introduction to SeRoNet
[https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/5c408b61cd8366946e761ca9/1547733879872/2018.12.11_Bjoern_Kahl.pdf]

Possible application in the RobMoSys Pilot “Intralogistics Industry 4.0 Robot Fleet Pilot”
A repository of OPC UA Devices can be found at https://github.com/Servicerobotics-
Ulm/OpcUaDeviceRepository [https://github.com/Servicerobotics-Ulm/OpcUaDeviceRepository]

Model-Based Safety Analysis

http://www.servicerobotik-
ulm.de/models2018/assets/slides/RobMoSys_MODELS_Papyrus4Robotics.pdf
[http://www.servicerobotik-ulm.de/models2018/assets/slides/RobMoSys_MODELS_Papyrus4Robotics.pdf]
Tooling support via Papyrus4Robotics
Possible application in the context of the RobMoSys Pilot Human Robot Collaboration for Assembly
Pilot

Tasks, Coordination, Skills: Robotic Behavior

Skills for Robotic Behavior
Task-Level Composition for Robotic Behavior
Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain (MOOD2be ITP)
Architectural Patterns

Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Component Coordination

Metamodels:
Robotic Behavior Metamodel
Skill Definition Metamodel
Skill Realization Metamodel

Tool support:
Support of Skills for Robotic Behavior in the SmartMDSD Toolchain
Groot and BehaviorTree.CPP: IDE and Engine to develop and execute behavior trees

Robotic Behavior can be demonstrated using the Intralogistics Industry 4.0 Robot Fleet Pilot. For
example, see Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain
(MOOD2be ITP)

Need Help?
http://robmosys.eu/wiki-sn-03/open-call-2 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/other_approaches:opc-ua
https://wiki.servicerobotik-ulm.de/tutorials:opcua-client:start
https://wiki.servicerobotik-ulm.de/tutorials:opcua-client-system:start
https://wiki.servicerobotik-ulm.de/tutorials:opcua-server:start
https://robmosys.eu/download/ros-industrial-conference-2018/?wpdmdl=17378
http://seronet-projekt.de
https://static1.squarespace.com/static/51df34b1e4b08840dcfd2841/t/5c408b61cd8366946e761ca9/1547733879872/2018.12.11_Bjoern_Kahl.pdf
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://github.com/Servicerobotics-Ulm/OpcUaDeviceRepository
http://www.servicerobotik-ulm.de/models2018/assets/slides/RobMoSys_MODELS_Papyrus4Robotics.pdf
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start

Please contact us in the Discourse Forum [https://discourse.robmosys.eu/].

open-call-2 · Last modified: 2019/01/29 17:24
http://www.robmosys.eu/wiki-sn-03/open-call-2

http://robmosys.eu/wiki-sn-03/open-call-2 2019-01-31

https://discourse.robmosys.eu/

RobMoSys Wiki
http://www.robmosys.eu

Community Corner
In this section, we feature early adoptors of RobMoSys methodology,
composition structures, or tooling.

Get in touch: Discourse Forum [https://discourse.robmosys.eu/] and Events
[https://robmosys.eu/events/]
Integrated Technical Projects (ITPs) of Open Call I [http://robmosys.eu/itp]
Demonstrations and intermediate results:

Safety Assessment of Robotics Systems Using Fault Injection in
RobMoSys (eITUS ITP)
Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain
(MOOD2BE ITP)
Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)
Using the YARP Framework and the R1 robot with RobMoSys (CARVE ITP)
Benchmarking in the RobMoSys Ecosystem (Plug&Bench ITP)

community:start · Last modified: 2019/01/16 11:35
http://www.robmosys.eu/wiki-sn-03/community:start

http://robmosys.eu/wiki-sn-03/community:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/community:community.png?id=community%3Astart
https://discourse.robmosys.eu/
https://robmosys.eu/events/
http://robmosys.eu/itp
https://robmosys.eu/wiki-sn-03/community:safety-analysis:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start
https://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start
https://robmosys.eu/wiki-sn-03/community:benchmarking:start

RobMoSys Wiki
http://www.robmosys.eu

Using the YARP Framework and the R1 robot with
RobMoSys
This demonstration shows an example and proof-of-concept how to use software building blocks based on the
YARP Framework [http://www.yarp.it] via RobMoSys tooling (here with the SmartMDSD Toolchain).

Introduction

This demonstration is a proof-of-concept, early development result, and test-bed in the effort to develop a
general model-driven methodology to enable the use of any robotics Framework with the RobMoSys approach
by utilizing a so-called “Mixed-Port Component”. These components have “one leg” in RobMoSys and another
leg in the specific world. More precisely, these components bridge RobMoSys with other frameworks. See the

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
http://www.yarp.it
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:r1.png?id=community%3Ayarp-with-robmosys%3Astart

below illustration for YARP:

The specific technical demonstration featured here shows:

The R1 robot running with RobMoSys components and YARP components in the Gazebo simulator.
The example realizes the Flexible Navigation Stack [https://robmosys.eu/wiki/domain_models:navigation-
stack:start] using software components from the Intralogistics Industry 4.0 Robot Fleet Pilot with the R1
robot by IIT.
The scenario is realized using the SmartMDSD Toolchain, a RobMoSys-conformant tooling: The
SmartMDSD Toolchain is used to compose software components that a) encapsulate a YARP system
via specific mixed-port components and b) connect to native SmartSoft components modeled and
generated via the RobMoSys tool SmartMDSD Toolchain. Prior to this step, these mixed-port
components have been developed themselves using the RobMoSys approach via the SmartMDSD
Toolchain.

The use of YARP and RobMoSys development artifacts in one system illustrates how the structures of
RobMoSys can connect two worlds that previously were divided. The immediate benefit of both communities
is that they can collaborate and share development efforts more easily. This is ongoing work and further
improvements and more native support are planned.

In the Context of RobMoSys User-Stories

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:yarp-mixed-port.png?id=community%3Ayarp-with-robmosys%3Astart
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:screenshot.png?id=community%3Ayarp-with-robmosys%3Astart

In context of the RobMoSys technical user stories [https://robmosys.eu/user-stories/], the demonstration shows:

Composable components: use the provided software components and compose the application from
scratch.
Replaceable components: Taking the Gazebo/TIAGo/SmartSoft Scenario as a start and modify it to
replace the TIAGo robot with the R1 robot
Re-usable: Use this system as a basis for navigation and build on-top any application that uses a mobile
base. This demo shows how to re-use the R1 robot in Gazebo.
Standardization of models and interfaces: it's support via RobMoSys and its benefit is demonstrated
by the use of RobMoSys Tier 2 Domain Models: The interfaces (service definitions) of the Flexible
Navigation Stack [https://robmosys.eu/wiki/domain_models:navigation-stack:start] have been modeled and
are re-used here. It is an example of how general domain models can be mapped to a variety of concrete
applications (R1 robot as described here, Gazebo/TIAGo/SmartSoft Scenario, Intralogistics Industry 4.0
Robot Fleet Pilot, etc.)
Ease-of-use and Simplifying usability & integration: Bridging between the SmartSoft Framework (it
is conform to RobMoSys) and the YARP Framework thanks to RobMoSys composition structures. This
support is at the moment very basic and will improve in the near future (see section “Current State and
Roadmap” below)

Disclaimer: This demonstration is a proof-of-concept of the technical feasibility. Please look at the roadmap to
see how it is planned to advance this demonstration and to make it generally accessible via tooling.

Technical Details

To realize the demonstration, several mixed-port components have been developed using the RobMoSys way
of component development via the SmartMDSD Toolchain. The mixed-port components are hybrid
components (a RobMoSys component that has „one leg“ in the SmartSoft World and „another leg“ in the
YARP world) and realize the communication between YARP and components of the SmartSoft Framework.

Beneath each mixed-port component lies a whole system of YARP components that become accessible through
the RobMoSys services of the mixed-port component. The way these services are designed follows the
principle of the Flexible Navigation Stack [https://robmosys.eu/wiki/domain_models:navigation-stack:start], an
example of RobMoSys Tier 2 domain models [https://robmosys.eu/wiki/general_principles:ecosystem:start].

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/user-stories/
https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:user-stories.png?id=community%3Ayarp-with-robmosys%3Astart
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki/general_principles:ecosystem:start

For the moment, the mixed-port components are manually implemented. In general, glue logic can convert
between RobMoSys and other frameworks. The effort to do so and the reuse of such a mixed-port component
heavily depends on the structures of the target framework. In case of YARP, it was possible to map the
RobMoSys communication patterns to YARP. At the moment, the RobMoSys Send, Query and Push patterns
have been mapped to YARP already. In some cases this required to extend YARP (i.e. to support asynchronous
Query). See the roadmap on how RobMoSys and CARVE plan to extend the native support.

Components in the System

Below figure shows a screenshot of the system component architecture diagram as modeled in the SmartMDSD
Toolchain (see GitHub Repository [https://github.com/CARVE-ROBMOSYS] for SmartMDSD Toolchain
project).

The scenario features the following software components:

SmartMapperGridMap This component receives a current laser-scan and accumulates the
information from this scan into a locally maintained grid-map.
SmartPlannerBreadthFirstSearch This component takes a current grid-map and the current
destination location as input and calculates a path (consisting of intermediate way-points) to reach that
destination

SmartCdlServer: This component implements an obstacle-avoidance algorithm, such as e.g. the Curvature
Distance Lookup (CDL) approach. This components takes two inputs, namely the current laser-scan and the
next way-point to approach and calculates a navigation command that approaches the next way-point on the as
direct curvature as possible avoiding any collisions.

SmartRobotConsole A very simple if-then-else sequencer component to coordinate all components via
the software component's coordination interface
BridgeV3_FromYarp_BaseStateService accessing R1 odometry from YARP via RobMoSys domain

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:diagram.png?id=community%3Ayarp-with-robmosys%3Astart
https://github.com/CARVE-ROBMOSYS
https://robmosys.eu/wiki-sn-03/_detail/community:yarp-with-robmosys:system.png?id=community%3Ayarp-with-robmosys%3Astart

models
BridgeV3_FromYarp_LaserService accessing YARP laser ranger components via RobMoSys domain
models
BridgeV3_ToYarp_CommNavigationVelocity accessing the R1 robot base via RobMoSys domain
models of the Flexible Navigation Stack [https://robmosys.eu/wiki/domain_models:navigation-stack:start] in
the Gazebo simulator

Further Information

Fur further information, see also the following RobMoSys wiki resources to learn more about the RobMoSys
concepts used here:

Component Supplier Role [https://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier]
Component-Definition Metamodel [https://robmosys.eu/wiki/modeling:metamodels:component] (software
component (meta-)model)
Architectural Pattern for Communication
[https://robmosys.eu/wiki/general_principles:architectural_patterns:communication] and Communication
patterns [https://robmosys.eu/wiki/modeling:metamodels:commpattern]
Flexible Navigation Stack [https://robmosys.eu/wiki/domain_models:navigation-stack:start]
Gazebo/TIAGo/SmartSoft Scenario
The SmartSoft World and the The SmartMDSD Toolchain
This scenario uses software components in context of the Intralogistics Industry 4.0 Robot Fleet Pilot

Current State and Roadmap

As of September 2018, you can:

Use the R1 robot driven by the YARP framework from RobMoSys via the provided mixed-port
components in the SmartMDSD Toolchain
Build your own bridges to the YARP framework by following the example components provided

Please note that this demonstration is work in progress. The following future work is is under preparation:

The general concept of “Mixed-Port-Components” to bridge between RobMoSys and any world.

Documentation how to reproduce the here described example in order to use the R1 robot in Gazebo via
RobMoSys methodology.

Integrating RobMoSys and YARP Framework more natively according to the RobMoSys composition
structures. A focus will be set on YARP conforming to the RobMoSys communication patterns. This
will heavily reduce the manual effort in mixed-port components. Mixed-Port-Concept comes with
adequate model-driven tooling support to make the benefits accessible by users.
For this purpose, the RobMoSys Communication Patterns Send, Query, and Push patterns have been
mapped to YARP already. More mappings are to follow.

Discussion

To discuss this demonstration, join the discussion at Discourse [https://discourse.robmosys.eu/t/first-yarp-
smartsoft-integration-carve/131]

Acknowledgements

This technical demonstration has been realized by the CARVE project. The methodology to generalize the
approach and integrate YARP access with the RobMoSys structures is a joint effort of the CARVE project and

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki/modeling:metamodels:component
https://robmosys.eu/wiki/general_principles:architectural_patterns:communication
https://robmosys.eu/wiki/modeling:metamodels:commpattern
https://robmosys.eu/wiki/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://discourse.robmosys.eu/t/first-yarp-smartsoft-integration-carve/131

the Ulm University of Applied Sciences. The general methodology behind “Mixed Port Components” is driven
by Ulm University of Applied Sciences.

CARVE is an Integrated Technical Project (ITP) of EU H2020 RobMoSys (robmosys.eu). Ulm University of
Applied Sciences is a RobMoSys core partner.

This activity has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 732410.

Picture of the R1 robot by D.Farina-A.Abrusci © 2016 IIT.

See Also

CARVE Integrated Technical Project [https://robmosys.eu/carve]
The CARVE Github repository that contains the code presented here [https://github.com/CARVE-
ROBMOSYS/Yarp-SmartSoft-Integration]
YARP Framework [http://www.yarp.it]
R1 Robot [https://www.youtube.com/watch?v=aninEl1GVns]
Source code for the R1 robot [https://github.com/robotology/cer]
Robot model for gazebo [https://github.com/robotology/cer-sim]
The The SmartMDSD Toolchain, the tool that was used to develop the software components and to
compose the application

community:yarp-with-robmosys:start · Last modified: 2018/10/17 17:54
http://www.robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start

http://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start 2019-01-31

https://robmosys.eu/carve
https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration
http://www.yarp.it
https://www.youtube.com/watch?v=aninEl1GVns
https://github.com/robotology/cer
https://github.com/robotology/cer-sim
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

RobMoSys Wiki
http://www.robmosys.eu

Benchmarking in the RobMoSys Ecosystem

What is benchmarking?

Benchmarking is increasingly important to autonomous robotics. To go out of the laboratories and become real
products, robots need benchmarks: standardised, objective ways to characterise, measure and compare their
performance in a modular and composable way.

Users -from system integrators to consumers- need objective evaluation of components to choose products that
meet their needs; industry needs composable benchmarks to predict the performance of component-based
solutions at design time; research needs benchmarks to compare novel approaches with established references.

What is Plug&Bench ?

Plug&Bench logo

Plug&Bench expands the RobMoSys Ecosystem with new elements for the definition of standardized and easy ​‐
to ​use performance benchmarks. Plug&Bench's models let experimenters define, implement and run
benchmark by building on a formalised framework. This eases their work, avoids ad hoc solutions and opens
the way to a modular and composable evaluation of systems.

How to benchmark an autonomous robot?

Execution of a proper benchmark is a scientific experiment: a benchmarking experiment. The reproducibility
and repeatability of the benchmark make different executions (possibly by different people, at different times,
on different systems) comparable. Shared metamodels and models are important to achieve this result.

The methodological foundations of Plug&Bench are described in this document
[https://www.dropbox.com/s/kirlrvb90pxgs8e/foundations_benchmark.pdf?dl=0]. They inherit from a successful line
of European projects about robot benchmarking comprising RAWSEEDS (FP6), RoCKIn (FP7), RockEU2
(H2020) and SciRoc (H2020).

What does Plug&Bench add to RobMoSys?

The Plug&Bench Benchmark Metamodel (Figure 1) is a new element in the set of RobMoSys Composition
Structures. It defines the Benchmarking Component, i.e. an extension of the Component-Definition Metamodel
providing all the elements needed to describe and execute a benchmark in a standardised manner.

You can download the Plug&Bench Benchmark Metamodel from this repository
[https://www.dropbox.com/sh/ql42y28qdvhzxdj/AACVLxpjP58DNjTrMxliguK_a?dl=0]. This note
[https://www.dropbox.com/sh/ql42y28qdvhzxdj/AACVLxpjP58DNjTrMxliguK_a?dl=0] explains its contents, while
the accompanying document
[https://www.dropbox.com/sh/ql42y28qdvhzxdj/AAD3QuXvIbmYfqHdfjf_de7fa/documentation_metamodel.pdf?dl=0]
describes the metamodel.

http://robmosys.eu/wiki-sn-03/community:benchmarking:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:plugbenchlogo.jpg?id=community%3Abenchmarking%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:plugbenchlogo.jpg?id=community%3Abenchmarking%3Astart
https://www.dropbox.com/s/kirlrvb90pxgs8e/foundations_benchmark.pdf?dl=0
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://www.dropbox.com/sh/ql42y28qdvhzxdj/AACVLxpjP58DNjTrMxliguK_a?dl=0
https://www.dropbox.com/sh/ql42y28qdvhzxdj/AACVLxpjP58DNjTrMxliguK_a?dl=0
https://www.dropbox.com/sh/ql42y28qdvhzxdj/AAD3QuXvIbmYfqHdfjf_de7fa/documentation_metamodel.pdf?dl=0

Figure 1: ecore class diagram of the Plug&Bench benchmark metamodel

Plug&Bench also adds a new element to the set of RobMoSys Roles in the Ecosystem: the Benchmark
Developer. A description of all the connections between Plug&Bench and the RobMoSys Ecosystem is
provided by a specific document [https://www.dropbox.com/s/ymgqld896xocj6p/benchmark_in_robmosys.pdf?dl=0].

Plug&Bench provides a Benchmark Engineering Tool
[https://www.dropbox.com/sh/a98kqjwmbe6zoxz/AAAqIwT-0hCQeR5oI5c60UA3a?dl=0] supporting the
Benchmark Developer in building benchmark models based on the Plug&Bench Benchmark Metamodel.

Are there any example benchmark models?

Yes. By using the Benchmark Engineering Tool, three benchmark models have been defined:

Screw-hole Localizer benchmark

Trajectory Planner benchmark

Trajectory Follower benchmark (see Figure 2)

http://robmosys.eu/wiki-sn-03/community:benchmarking:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:benchmarkmetamodel.png?id=community%3Abenchmarking%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:benchmarkmetamodel.png?id=community%3Abenchmarking%3Astart
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://www.dropbox.com/s/ymgqld896xocj6p/benchmark_in_robmosys.pdf?dl=0
https://www.dropbox.com/sh/a98kqjwmbe6zoxz/AAAqIwT-0hCQeR5oI5c60UA3a?dl=0
https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:follower_benchmark.png?id=community%3Abenchmarking%3Astart

Figure 2: structure of the Trajectory Follower benchmark

Plug&Bench benchmark models can be downloaded from this repository
[https://www.dropbox.com/sh/4gx7vb0eimg5l7j/AAAM0qVQfyFOVPoycUaODxq1a?dl=0].

Acknowledgements

Plug&Bench is an Integrated Technical Project (ITP) of EU H2020 project RobMoSys robmosys.eu
[http://www.robmosys.eu/]. The Consortium of Plug&Bench comprises Politecnico di Milano
https://www.polimi.it/en/ [https://www.polimi.it/en/] and Fraunhofer IPA https://www.ipa.fraunhofer.de/en.html
[https://www.polimi.it/en/].

This activity has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 732410.

community:benchmarking:start · Last modified: 2019/01/25 12:01
http://www.robmosys.eu/wiki-sn-03/community:benchmarking:start

http://robmosys.eu/wiki-sn-03/community:benchmarking:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:benchmarking:follower_benchmark.png?id=community%3Abenchmarking%3Astart
https://www.dropbox.com/sh/4gx7vb0eimg5l7j/AAAM0qVQfyFOVPoycUaODxq1a?dl=0
http://www.robmosys.eu/
https://www.polimi.it/en/
https://www.polimi.it/en/

RobMoSys Wiki
http://www.robmosys.eu

Safety Assessment of Robotics Systems Using Fault
Injection in RobMoSys
This demonstrator explains how to use the safety related functionalities developed as part of the eITUS Project
via a safety analysis use case scenario. A video is also presented, which goes through a demonstration of
showing how to perform safety analysis in the context of RobMoSys by using and extending the
Papyrus4Robotics toolchain and Gazebo.

eITUS Demonstrator in the context of RobMoSys User Stories

Figure 1. eITUS Evaluation Scenario

eITUS [https://robmosys.eu/e-itus/] stands for Experimental Infrastructure Towards Ubiquitously Safe Robotics
Systems using RobMoSys. Nowadays, safety is a becoming a crucial property of robotic systems. ISO 12100,
ISO 13849 and IEC 62061 are some of the most accepted safety standards in robotics, covering aspects such as
functional safety. Functional safety is the aspect of safety that aims to avoid unacceptable risks. The system
should be designed to properly handle likely human errors, hardware failures and operational/environmental
stress.

The safety analysis and validation steps are fundamental aspects to perform the safety assessment. Some of the
commonly used risk assessment methods are Preliminary Hazard Analysis, Hazard Operability Analysis,
Failure Modes and Effects Analysis and Fault Tree Analysis. Furthermore, fault injection simulations complete
these analyses by finding unexpected hazards (fault forecasting) and verifying the implemented safety
mechanisms. Figure 2 illustrates how safety analysis is related to RobMoSys’ views.

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:1.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:1.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/e-itus/

Figure 2. Safety Analysis with RobMoSys

The RobMoSys project defines structures which enable the management of the interfaces between different
robotics-related domains, levels of abstraction and roles. eITUS will broaden the ecosystem by considering
safety aspects such as the development of a safety view and the introduction of a new role called safety
engineer (cf. Figure 3).

Figure 3. eITUS in terms of RobMoSys Composition Structures

The eITUS approach is explained by using a Cartesian Mode Control System as a use case scenario, whose

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:2.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:2.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:3.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:3.png?id=community%3Asafety-analysis%3Astart

model in Papyrus is depicted in Figure 4.

Figure 4. Cartesian Mode Control System modelled in Papyrus4Robotics

Afterwards, the safety engineers created and completes its associated FMEA.

Figure 5. Safety Analysis: FMEA view

Once the component failure modes are determined, fault injection simulations can be executed. The eITUS
framework sets up, configures, executes and analyses the simulation results. Model-based design combined
with a simulation-based fault injection technique and a virtual robot poses as a promising solution for an early
safety assessment of robotics systems. The added value of including robots and environment models is that the
maximum time before the robot dynamics are unsafely affected can be identified. In other words, it allows
quantitatively estimating the relationship of an individual failure to the degree of misbehaviour on robot level.

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:4.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:4.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:5.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:5.png?id=community%3Asafety-analysis%3Astart

Figure 6.Workflow of Fault Injection Simulations

Before starting the fault injection experiments, the Golden system model, which represents a model without
any faults in place, and its corresponding simulations must exist.

Figure 7. Fault Injection View: Creation of the Fault List

Once the Golden results have been executed, the safety engineer starts by selecting the system model and the
robotics scenario, which includes the operational situation and the robot.

After that, it is important to define the fault injection policy which is referred to as the fault list. This
configuration process includes the definition of fault locations (where to inject the fault?), fault injection times
(When to trigger the fault?), fault durations (For how long the fault present in the system is?) and the fault
model (How does the component fail?).

The original system model is modified though the fault injector script according to the fault list. Out of these
faulty models the deployed code is generated, and the simulations are run.

Finally, the obtained simulation traces are compared with respect to the Golden ones. This allows determining
if a sufficient level of safety has been reached.

The following video shows:

A use case scenario based on Papyrus4Robotics and extended with safety concepts (e.g. failure mode)
and safety analysis (FMEA and Fault Injection Views).
A safety analysis for a real time cartesian impedance controller.

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:61.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:61.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:6.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:6.png?id=community%3Asafety-analysis%3Astart

A real time cartesian impedance controller designed by with RobMoSys Golden and faulty components
in the Gazebo simulator.

It is important to highlight how this is an ongoing work and further improvements are planned to be released
by the end of the project.

From a technical perspective, the benefits of the eITUS methodology and tools will lead to:

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:7.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:7.png?id=community%3Asafety-analysis%3Astart

Figure 8. Benefits of the eITUS methodology from a technical perspective

Composable Components:
The already defined software components can be used to compose a certain application such as
the real-time Cartesian Impedance Controller. The same applies to safety artefacts.

Replaceable Components:
eITUS uses a robot arm for the use case, however, replacing it with a different robot would be
possible.

Re-Usable:
eITUS supports the modeling of reusable domain- and application-specific safety analyses.

Ease of Use:
eITUS provides an easy way to model safety related aspects and integrate them in the
development Flow.
eITUS supports the separation of roles and views by defining a safety engineer responsable for
the FMEA view completion.

Reliable Quality of Service:
eITUS addresses Safety aspects considered an integral part of quality

Standardisation of models and interfaces:
eITUS standardises safety nomenclature such as the definition of FMEAs or failure modes.

Certifyable Systems:
eITUS helps on developing and delivering safety analyses in a formal way, by creating FMEA
and Fault Injection tests. Safety artefacts such as FMEA are totally required to proceed to the
certification of safe robotics system.

Symplifying Usability and Integration:
eITUS integrates safety analysis views with fault injection simulations in a simple and trasparent
way.

The main incentives from commercial point-of-view are described in Figure 9.

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:8.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:8.png?id=community%3Asafety-analysis%3Astart

Figure 9. eITUS main incentives from commercial point-of-view

Acknowledgements

This demonstration has been performed by the eITUS consortium as a RobMoSys (robmosys.eu) Integrated
Technical Project (ITP). This project is a joint effort between AKEO Plus, Tecnalia Research and Innovation
and CEA, which is a RobMoSys core partner.

community:safety-analysis:start · Last modified: 2019/01/17 13:11
http://www.robmosys.eu/wiki-sn-03/community:safety-analysis:start

http://robmosys.eu/wiki-sn-03/community:safety-analysis:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:9.png?id=community%3Asafety-analysis%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:safety-analysis:9.png?id=community%3Asafety-analysis%3Astart

RobMoSys Wiki
http://www.robmosys.eu

Dealing with Metrics on Non-Functional Properties
in RobMoSys (RoQME ITP)
The purpose of this demonstration is to realize a proof-of-concept of the RoQME approach in a real-world
example. It is a test-bed for current developments and provides valuable foundation for further developments.

Introduction

The demonstration focuses on the run-time aspects of RoQME as you will see RoQME in action. The design-
time part of RoQME and how RoQME will be presented to the user through tooling will be covered in an
update to this demonstration (see roadmap).

The video below illustrates a typical intralogistics scenario. In this scenario the robot receives boxes from
given stations and delivers them to different stations. The setting is equipped with a sensor detecting when a
person enters or exits the robot working area. The video illustrates how the RoQME approach can provide
metrics on non-functional properties such as safety or performance.

Disclaimer: This demonstration is a proof-of-concept of the technical feasibility. Please look at the roadmap to
see how it is planned to advance this demonstration and to make it generally accessible via tooling.

Goal of RoQME in the context of RobMoSys

The RoQME project aims to provide a comprehensive set of model-based tools enabling:

1. The specification of global robot Quality of Service (QoS) metrics defined on Non-Functional Properties
(NFP). These metrics are defined in terms of the (internal and external) contextual information available
to the robot; and

2. The generation (from the previous specification) of an actual RobMoSys-compliant component
providing information to other components (either continuously or on demand) about the runtime
evolution of the metrics previously specified.

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu

It is worth noting that RoQME enables modeling all kinds of system-level (rather than component-level) NFP,
such as, safety, performance, reliability, resource consumption, user comfort, etc. It is also worth mentioning
that RoQME does not prescribe how the computed metrics are used by other components, probably in a
distributed manner, as the intrinsic cross-cutting nature of NFP may scatter and have impact both in the robot
behaviour and architecture.

What RoQME provides

A new QoS Engineer role (see section Technical Details), associated with a RoQME view, specifically
dedicated to the modeling of QoS metrics defined on NFPs. The RoQME View builds on:

The RoQME meta-model, which provides QoS Engineers with the modeling concepts needed to
specify:

What are the relevant NFPs in a particular robotic application;
Which contextual information is available to the robot; and
How the different contexts impact the selected NFPs. These impacts will then be used to
compute the QoS metrics defined on the different NFP.

A RoQME-to-RobMoSys mapping meta-model enabling the seamless integration of the
RoQME models into the RobMoSys Ecosystem.
RoQME plugins for the SmartMDSD Toolchain providing:
A textual model editor enabling the creation and validation of QoS models by Domain Experts
and QoS Engineers.
A model-to-code transformation enabling the generation of a metrics provider component that
conforms-to the RobMoSys structures. This tool is intended to be used by QoS Engineers.
A QoS Metrics Service Definition enabling the use of the RoQME QoS Metrics Provider by
any component in a RobMoSys conformant architecture, willing to use the computed metrics.

This demonstration is in the Context of RobMoSys User-Stories

In the context of the RobMoSys technical user stories [https://robmosys.eu/user-stories/], this demonstration
shows:

Composable components
The RoQME QoS Metric provider is a composable software component generated from a
RoQME model, i.e., it can be seamlessly composed into a RobMoSys-compliant system
The scenario was composed out of previously developed software components (e.g., components
for hardware access, mapping, path planning, collision avoidance, machine-to-machine

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/user-stories/
https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image2.png?id=community%3Aroqme-intralog-scenario%3Astart

communication, box pickup/drop-off) and the newly generated RoQME QoS Metric provider
component

Traceable properties
RoQME supports traceable NFP, i.e., it is possible to trace which contexts are being responsible
for the evolution of the metrics defined on the selected NFP. In other words, it is possible to trace
back what causes the improvement or degradation of each NFP.

Ease of use
RoQME provides an easy way to model QoS metrics defined on NFP
RoQME supports separation of roles and views (e.g. QoS Engineer focusing on NFP vs. System
Architect focusing on functional aspects)

Re-usable models
RoQME supports the modeling of reusable domain- and application-specific metrics on NFP

Reliable QoS
RoQME enables the use of QoS metrics on NFP (e.g., for adaptation, benchmarking, etc.)

Standardization
RoQME domain-models defined at tier-2 can be (re-)used in a variety of concrete tier-3
applications (e.g., standard metrics on safety defined in the context of mobile robotics can be
reused/refined as standard metrics in the context of intralogistics, and these, in turn,
reused/refined in different particular intralogistics applications).

Technical Details

The following figure outlines the role, the models and the software artifacts contributed by RoQME and how
they relate to those of RobMoSys. These contributions and the links to RobMoSys are briefly described next.
Further details can be found at [Vicente2018a].

Domain Experts (Tier-2) identify and agree the specification of relevant domain-specific non-functional
properties. The resulting Domain-Specific RoQME Models are made available in a RobMoSys repository for
being reused by other roles at Tier-3.

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image6.png?id=community%3Aroqme-intralog-scenario%3Astart

QoS Engineers create Application-Specific RoQME Models that gather the non-functional aspects to be
measured in the robotics system under development while, in parallel, the System Architect describes its
functionality. The QoS Engineer may create application-specific RoQME models from scratch or by reusing
and extending some of the domain-specific RoQME models already available in the RobMoSys repository. The
models developed by the QoS Engineer specify (1) the non-functional properties considered relevant for the
application being developed; (2) the contextual information available to the robot; and (3) a number of
observations describing how (2) impacts (1). These observations will enable the estimation of the QoS metrics
defined on the selected non-functional properties.

The QoS Engineer uses the RoQME Generator to create a QoS Metrics Provider component from the
previous model. The resulting component is made available to the System Builder, who integrates it into the
RobMoSys application architecture by (1) connecting it to the corresponding context providers, and (2) to any
other component willing to use the computed metrics (if any).

System Component Architecture

The figure included below shows a screenshot of the system component architecture diagram, as modeled in
the SmartMDSD Toolchain. The system was composed from previously developed software components.

Metrics Component

The following picture shows the QoS Metrics Provider component used in the demonstration. The hull of this
component was developed using the SmartMDSD Toolchain, while its internals were manually implemented
using the support software libraries developed in RoQME for context monitoring, complex event processing,
and metrics estimation. Further developments in RoQME will realize the full generation of this component
based on the RoQME models (see roadmap). As illustrated in the picture, the component receives contexts
from other components in the system (context providers) and processes them according to the RoQME
approach (lower left). It then provides the estimated QoS metrics to other components for further processing or
adaptation (e.g., by the Sequencer).

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image3.png?id=community%3Aroqme-intralog-scenario%3Astart

The RoQME Model for the Experiment

The RoQME model detailed next specifies: (1) the non-functional properties identified as relevant for the
experiment and for which the RoQME runtime infrastructure will provide estimations (metrics) in the range [0,
1]; (2) the context data provided by the robot; and (3) the observations which, based on the specified context
patterns, will more or less impact (reinforcing or undermining) the previous non-functional properties. This
model uses a preliminary syntax, which is subject to improvement in the final textual model editor that is
currently being developed in Rome.

Non-Functional Properties:

[SAFETY]: degree to which the robot is successful in producing the following desired results:
The robot does not bump
The velocity of the robot is bounded (lower than V) when there is a person in the scenario area.

It is worth mentioning that the reference value for SAFETY is 1, that is, a priori, the system is considered safe
and, only if there is evidence against this belief, the value of the safety metric is reduced accordingly. The
reference value of a property is its a-priori probability of being optimal, and is the value the property tends to
when there is no evidence making it improve (reinforcing evidence) or worsen (undermining evidence). Note
that most properties use a reference value equal to 0,5.

[PERFORMANCE]: degree to which the robot is successful in producing the following desired
results:

The robot completes the tasks successfully (i.e., tasks are not aborted and the robot does not enter
into an ERROR state).
The robot completes each task within a given time-slot (MAX_JOB_TIME)

Contexts:

Contexts:

Bump : Event
Velocity: number (unit: m/s)
Robot_State : Enum {

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image4.png?id=community%3Aroqme-intralog-scenario%3Astart

IDLE_NOT_CHARGING,
IDLE_CHARGING,
BUSY_DRIVING_WITH_LOAD,
BUSY_DRIVING_EMPTY,
ERROR
}
Job_State : Enum {
NOT_STARTED,
STARTED,
FINISHED,
ABORTED
}

Derived context (from Job_State):

time_jobDone: Number > 0 (unit: s)

This derived context is calculated as the time passed since a job starts (Job_State::STARTED) until it finishes
(Job_State::FINISHED).

Person_State: Enum {
IN,
OUT
}

Observations:

O1. Bump undermines [SAFETY] VERY_HIGH
O2. Velocity > V && Person_State::PERSON_IN undermines [SAFETY] VERY_HIGH
O3. Job_State:: JOB_FINISHED && time_jobDone < MAX_JOB_TIME =⇒ reinforces
[PERFORMANCE] HIGH
O4. Robot_State::ERROR undermines [PERFORMANCE]
O5. Job_State::ABORTED undermines [PERFORMANCE]

Description of the Story

The story starts with the robot in an IDLE state and placed in its initial position. There is an operator ready to
handover boxes to the robot.

1. The robot is ordered a new task (Job_State::STARTED) so it moves to the handover position
(Robot_State::BUSY_DRIVING_EMPTY). When it is ready, the operator places a box on top of it. The
robot moves to the delivery position (Robot_State::BUSY_DRIVING_WITH_LOAD) and puts the box
on the belt. The task is completed successfully (Job_State::FINISHED) and within the required time-
slot ⇒ Observation O3 is fired and PERFORMANCE improves.

2. A visitor enters the room and meets the operator (Person_State::IN). Simultaneously, the robot is
ordered a new task (Job_State::STARTED) so it starts moving again to the handover position
(Robot_State::BUSY_DRIVING_EMPTY). On its way, the robot moves faster than allowed when a
person is in the robot working area ⇒ Observation O2 is fired and SAFETY is significantly worsen.

3. The visitor, not being aware of the robot, bumps into it (Bump) when turning around for leaving the
room ⇒ Observation O1 is fired and SAFETY is significantly worsen.

4. Immediately after the bumping, the robot enters into the ERROR state (Robot_State::ERROR) ⇒
Observation O4 is fired and PERFORMANCE is worsen.

5. After the error, the task is aborted (Job_State::ABORTED) ⇒ Observation O5 is fired and
PERFORMANCE is worsen.

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

6. The robot is ordered a new task (Job_State::STARTED) which is successfully completed
(Job_State::FINISHED) ⇒ Observation O3 is fired and PERFORMANCE improves.

Visualization

RoQME provides a visualization tool that displays at run-time: (1) the contextual information obtained from
the robot; (2) the observations fired when the context patterns identified in the RoQME model are detected;
and (3) the estimation of the metrics defined on the non-functional properties, as they vary according to the
previous observations. The following screenshots show the graphics produced by the visualization tool during
the experiment for the SAFETY (top) and the PERFORMANCE (bottom) non-functional properties, together
with the observations with impact on their estimations. Labels (numbered circles) referring to the different
story steps described in the previous section have been manually added to make the experiment timeline
clearer.

Simulation and benchmarking

RoQME also provides a module for recording the data generated while running real-world experiments (i.e.,
experiments that involve real robots). It records: a) the context data generated by the robot/s; b) the identified
observations, and c) the QoS metric estimations. The recorded data can then be used for simulating the
experiment as many times as needed without the need of using the real robot/s again. Besides, this information
can also be used, for instance, for benchmarking purposes.

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image1.png?id=community%3Aroqme-intralog-scenario%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:roqme-intralog-scenario:image5.png?id=community%3Aroqme-intralog-scenario%3Astart

Current State and Roadmap

The core functionality of collecting contexts and processing metrics on non-functional properties is already
operational in RoQME although, at the moment, the QoS metrics provider component is implemented
manually.

The following items are currently being developed and are expected to be available and usable in the form of
RoQME plugins for the SmartMDSD Toolchain. Its expected release date is March 2019. It will cover:

Modeling support for the Domain Expert to model QoS Domain Models (Tier 2)
Modeling support for the QoS Engineer to model QoS Models (Tier 3)
A number of code generators for automatically deriving all the RoQME software artifacts, in particular,
the hull and the internals of the QoS Metrics Provider Component. In case the complex event processor
or the reasoner (or both), need to be executed out of the QoS Metrics Provider Component, i.e., out of
the robot (in different computers), they will be also generated as independent artifacts.

All the RoQME partners are pledged to making the knowledge generated in the course of the Project as widely
and freely available as possible for subsequent research and development. For this reason, the RoQME partners
are fully committed to open-access and open-source policies.

Discussion

To discuss this demonstration, see: https://discourse.robmosys.eu/t/demonstration-dealing-with-metrics-on-
non-functional-properties-in-robmosys-roqme-itp [https://discourse.robmosys.eu/t/demonstration-dealing-with-
metrics-on-non-functional-properties-in-robmosys-roqme-itp]

Acknowledgements

This technical demonstration has been realized by the RoQME project team and the Ulm University of Applied
Sciences. The methods and tools behind the estimation of the non-functional properties are being developed by
the RoQME ITP (University of Extremadura, University of Málaga and Biometric Vox). The SmartMDSD
Toolchain and the intralogistics use-case/pilot application are being developed by the Ulm University of
Applied Sciences.

RoQME is an Integrated Technical Project (ITP) of EU H2020 RobMoSys (robmosys.eu). Ulm University of
Applied Sciences is a RobMoSys core partner.

This activity has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 732410.

See also

Fur further information and to learn more about the concepts used here, see:

The SmartSoft World and the The SmartMDSD Toolchain, the tool that was used to develop the
software components and to compose the application.
This scenario uses software components from the Intralogistics Industry 4.0 Robot Fleet Pilot
RoQME Integrated Technical Project [https://robmosys.eu/roqme].

You can follow the RoQME Project updates at:

The ReasearchGate RoQME Project [https://www.researchgate.net/project/RoQME-Dealing-with-non-
functional-properties-through-global-Robot-Quality-of-Service-Metrics]
The Linked RoQME Group [https://www.linkedin.com/groups/12096769/]

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://discourse.robmosys.eu/t/demonstration-dealing-with-metrics-on-non-functional-properties-in-robmosys-roqme-itp
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/roqme
https://www.researchgate.net/project/RoQME-Dealing-with-non-functional-properties-through-global-Robot-Quality-of-Service-Metrics
https://www.linkedin.com/groups/12096769/

The RoQME Twitter account [https://twitter.com/roqme_itp]
The RoQME section in the RobMoSys website [https://robmosys.eu/roqme/]
The Community Corner section in the RobMoSys wiki [https://robmosys.eu/wiki/community:start]

Related Publications

[Espin2018] Espín, J. M., Font, R., Ingles-Romero, J. F. & Vicente-Chicote, C. Towards the Application of
Global Quality-of-Service Metrics in Biometric Systems. IberSPEECH 2018, 21-23 November 2018, Barcelona
(Spain). Download. Download [https://www.researchgate.net/publication/328890945]

[Ingles2018a] Inglés-Romero, J. F., Spín, J. M., Jiménez, R., Font, R. & Vicente-Chicote, C. Towards the Use
of Quality of Service Metrics in Reinforcement Learning: A Robotics Example. 5th International Workshop on
MOdel-driven Robot Software Engineering (MORSE 2018), in conjunction with MODELS 2018, 15 October
2018, Copenhagen (Denmark). Download. Download [https://www.researchgate.net/publication/327243001]

[Ingles2018] Inglés-Romero, J. F. How well does my robot work? RoQME: A project aimed at measuring
quality of service in robotics. April 2018. Available at Medium.com. Download [https://medium.com/biometric-
vox/how-well-does-my-robot-work-ca98ecc1ab79]

[Lutz2019] Lutz, M., Inglés-Romero, J. F., Stampfer, D., Lotz, A., Vicente-Chicote, C., & Schlegel, C. (2019).
Managing Variability as a Means to Promote Composability: A Robotics Perspective. In A. Rosado da Cruz, &
M. Ferreira da Cruz (Eds.), New Perspectives on Information Systems Modeling and Design (pp. 274-295).
Hershey, PA: IGI Global. DOI: 10.4018/978-1-5225-7271-8.ch012 Download [http://doi.org/10.4018/978-1-
5225-7271-8.ch012]

[Vicente2018a] Vicente-Chicote, C., Inglés-Romero, J. F., Martínez, J., Stampfer, D., Lotz, A., Lutz, M. &
Schlegel, C. A Component-Based and Model-Driven Approach to Deal with Non-Functional Properties
through Global QoS Metrics. 5th International Workshop on Interplay of Model-Driven and Component-Based
Software Engineering (ModComp 2018), in conjunction with MODELS 2018, 14 October 2018, Copenhagen
(Denmark). . Download [https://www.researchgate.net/publication/328102310]

[Vicente2018b] Vicente-Chicote, C., Berrocal, J., García-Alonso, J. M., Hernández, J., Bandera, A., Martínez,
J., Romero-Garcés, A., Font, R. & Inglés-Romero, J. F., (2018). RoQME: Dealing with Non-Functional
Properties through Global Robot QoS Metrics. SISTEDES Conference, 17-19 September 2018, Sevilla (Spain).
Download [https://www.researchgate.net/publication/327239527]

community:roqme-intralog-scenario:start · Last modified: 2018/12/03 21:21
http://www.robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start

http://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start 2019-01-31

https://twitter.com/roqme_itp
https://robmosys.eu/roqme/
https://robmosys.eu/wiki/community:start
https://www.researchgate.net/publication/328890945
https://www.researchgate.net/publication/327243001
https://medium.com/biometric-vox/how-well-does-my-robot-work-ca98ecc1ab79
http://doi.org/10.4018/978-1-5225-7271-8.ch012
https://www.researchgate.net/publication/328102310
https://www.researchgate.net/publication/327239527

RobMoSys Wiki
http://www.robmosys.eu

Robotic Behavior in RobMoSys using Behavior
Trees and the SmartMDSD Toolchain (MOOD2be
ITP)
This demonstration shows task-level composition (robotic behavior) in RobMoSys using behavior trees.

Introduction

MOOD2Be provides two pieces of softwares:

BehaviorTree.CPP: a C++ framework and toolset to create, execute and debug Behavior Trees.
Groot: a graphical IDE to create, edit, monitor and analyze Behavior Trees.

BehaviorTree.CPP allows the creation of a Executor where the actual behavior trees are executed, whilst Groot
is a graphical tool to help the Behavior Design to be more productive. The demonstration focuses on the
integration of the SmartMDSD Toolchain, an Integrated Development Environment (IDE) for robotics
software development conform-to RobMoSys, with Groot, a graphical user interface to edit behavior trees. The
development of the behavior tree is based on the skills provided by a system that was modeled using the
SmartMDSD Toolchain.

Demonstration: building task-level coordinators using Behavior
Trees

In the following video we can see the workflow from the perspective of the Behavior Developer:

1. A list of available Skills is provided to the Behavior Developer in the form of a file containing the
model of the skills. These Skills are part of the Digital Datasheet of a system.

2. The Behavior Developer loads this file into Groot and use the generated “palette” of Actions to design a
behavior tree; the outcome of this process is also a file, containing the model of the tree.

3. A specific application (an “Executor” created using BehaviorTree.CPP) loads both these files to create
and execute the behavior tree.

4. The Executor communicates through a the rest of the system using a Skill Server, which provides
access to the components skills.

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu

This process doesn’t require any code-generation nor compilation, since both the nodes and the trees are create
programmatically at run-time. This workflow is shown in the following video.

Demonstration is in the Context of RobMoSys User-Stories

In the context of the RobMoSys technical user stories [https://robmosys.eu/user-stories/], this demonstration
shows:

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image3.png?id=community%3Abehavior-tree-demo%3Astart
https://robmosys.eu/user-stories/

Reusability: Actions, Conditions and Skills, which corresponds to Nodes of a behavior tree, are highly
reusable piece of software that are application independent. Furthermore, SubTrees can also be reusable
as parts of more complex Trees.

Easy to use: Groot is more than a simple GUI. It is an IDE for behavior trees, which supports editing,
logs analysis and real-time debugging. Both software and documentation are meant to provide a fast
learning curve and high productivity.

Composable components: trees are hierarchical and composable. Simple behaviors can be composed
into complex ones.

Standardization of models and interfaces: the skill interfaces are defined as part of RobMoSys Tier 2
Domain Models. These are general descriptions of skills and can be mapped to a specific software
components (Tier 3) providing these skills (such as the robotino base robot provides the “move-to”
skill).

Technical Details

Based on an existing robotics application developed with the SmartMDSD Toolchain and the Skills that are
provided by the application’s components, the Behavior Developer selects and composes actions and
conditions to develop the behavior tree.

The behavior tree is used to do task-level coordination and its actions execute RobMoSys skills. These skills
(e.g. MoveBaseToGoal) use the RobMoSys software component coordination interface to directly coordinate
the components e.g. setting component configurations.

In the next diagram we can see how the different RobMoSys roles interact:

1. The Domain Expert defines a set of domain specific Skill Definitions.
2. These definitions are implemented as Skill Realizations by the Component Developer.
3. The System Builder composes multiple components; as a result, a particular software system provides a

set of Skills in the Digital Datasheet.
4. The Behavior Designer uses this skills to create a Behavior Tree; the model of the tree can be directly

executed.

The picture below illustrates this workflow. Note how the different roles are supported by different tools in the
RobMoSys ecosystem: Domain Expert, Component Supplier and System Builder are supported by the

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image8.png?id=community%3Abehavior-tree-demo%3Astart

SmartMDSD Toolchain. The Behavior Developer is supported by Groot/BehaviorTree.CPP.

The below screenshot shows Groot in action while editing a behavior tree:

Previous demonstration (June 2018)

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image5.png?id=community%3Abehavior-tree-demo%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image2.png?id=community%3Abehavior-tree-demo%3Astart

A previous version of this demonstration as of June 27 2018 focused on the technical feasibility of behavior
trees communicating with components from the SmartMDSD Toolchain. At that time, it was manual effort by
the system builder to “connect” the behavior engine with software components. This manual effort is now
replaced by a full model-driven workflow and interaction between component supplier, system builder and
behavior developer roles.

In the below video, the execution of the behavior tree is first shown in simulation using the
“Gazebo/Tiago/SmartSoft Scenario” as provided by RobMoSys. The behavior tree is then executed on a
FESTO Robotino Robot as part of the RobMoSys “Intralogistics Industry 4.0” Pilot. Finally, the video
demonstrates the visualization of an automatically generate log file, that allow the user to analyze the
execution of the behavior tree offline.

Skill Modeling by the SmartMDSD Toolchain

Skills are modeled by the Domain Expert role on Tier 2. The below screenshot shows the skill definition
model in a Domain Model Project.

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image1.png?id=community%3Abehavior-tree-demo%3Astart

Skills are realized by software components. The below screenshot shows the skill realization as it is created by
the Component Supplier role in a component project (Tier 3).

System Component Architecture

The figure included below shows a screenshot of the system component architecture diagram of the
demonstration. It was modeled using the SmartMDSD Toolchain. The system was composed by the system
builder from previously developed software components.

The modeled system comes with a digital data sheet (see project explorer on lower left). It lists the skills which
come with the components of the system. This datasheet can be imported to Groot for use by the Behavior
Developer.

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image7.png?id=community%3Abehavior-tree-demo%3Astart
https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image4.png?id=community%3Abehavior-tree-demo%3Astart

Current State and Roadmap

Both BehaviorTree.CPP and Groot are currently “feature complete”. These softwares include extensive
documentation and unit tests; they have a good level of maturity and can be already used in real-world
applications. In terms of community and dissemination, the code is available on Github and has an increasing
number of users, which started contributing with bug reports, bug fixes and feature requests.

The additional goals for the rest of the MOOD2Be project (running till Feb. 2019)are:

Further improve tutorials and documentation, particularly in the context of the SmartMDSD Toolchain.
Increase the reliability of the software.
Further promote the tool in the robotic community.
Include new features proposed by the users, for instance the ability to include XML files into each other
(similarly to header files in C++).

Support of the behavior developer by the SmartMDSD Toolchain is ongoing work and available as a prototype
which is expected for release soon:

Modeling of skill definitions for Domain Models / Tier 2: Domain Expert
Realization of skills in software components / Tier 3: Component Supplier / Behavior Developer
Digital data sheet of a system containing a “available skills” section: System Builder and Behavior
Developer

Discussion

To discuss this demonstration, see https://discourse.robmosys.eu/t/demonstration-of-behavior-trees-mood2be-
smartmdsd-toolchain [https://discourse.robmosys.eu/t/demonstration-of-behavior-trees-mood2be-smartmdsd-
toolchain]

Acknowledgements

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/community:behavior-tree-demo:image6.png?id=community%3Abehavior-tree-demo%3Astart
https://discourse.robmosys.eu/t/demonstration-of-behavior-trees-mood2be-smartmdsd-toolchain

This technical demonstration has been realized by the MOOD2Be project and the Ulm University of Applied
Sciences. The behavior tree engine and the GUI are being developed by the MOOD2be ITP. The SmartMDSD
Toolchain and the intralogistics use-case/pilot application are being developed by the Ulm University of
Applied Sciences.

MOOD2be is an Integrated Technical Project (ITP) of EU H2020 RobMoSys (robmosys.eu). Ulm University
of Applied Sciences is a RobMoSys core partner.

This activity has received funding from the European Union's Horizon 2020 research and innovation
programme under grant agreement No 732410.

See also

Fur further information and to learn more about the concepts used here, see:

BehaviorTree.CPP
Groot
The SmartSoft World and the
The SmartMDSD Toolchain, the tool that was used to develop the software components and to compose
the application.
This scenario uses software components from the Intralogistics Industry 4.0 Robot Fleet Pilot
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Task-Level Composition for Robotic Behavior
Behavior Developer role
Gazebo/TIAGo/SmartSoft Scenario
MOOD2be Integrated Technical Project [https://robmosys.eu/mood2be]
Skills for Robotic Behavior
Support of Skills for Robotic Behavior

community:behavior-tree-demo:start · Last modified: 2019/01/29 15:28
http://www.robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start

http://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/mood2be
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start

RobMoSys Wiki
http://www.robmosys.eu

General Principles
RobMoSys manages the interfaces between different roles and
separates concerns in an efficient and systematic way by making
the step change to a set of fully model-driven methods and tools
for composition-oriented engineering of robotics systems. The
following list of pages provide some fundamental principles in
RobMoSys.

Separation of Levels and Separation of Concerns
Architectural Patterns
Ecosystem Organization and Tiers
User-Stories
PC Analogy: Explaining RobMoSys by the example of the PC domain

general_principles:start · Last modified: 2017/07/19 14:51
http://www.robmosys.eu/wiki-sn-03/general_principles:start

http://robmosys.eu/wiki-sn-03/general_principles:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_media/general_principles:ecosystem:composition-tiers.png
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start

RobMoSys Wiki
http://www.robmosys.eu

Analogy: The PC Domain
We use the analogy of hardware in the PC Domain to illustrate concepts of RobMoSys. Using an analogy, we
can describe particular concepts in a given context (the pc domain), which is easier to understand since the
context of the PC domain is widely known. One can then transfer information given to the robotics domain.
The PC domain is only an analogy that helps to illustrate concepts; the PC domain is different than robotics, so
do not read too much into the examples given here.

Configuration, Composition, and Integration

Using the PC Domain, we illustrate the terms Configuration, Composition, and Integration.

Configuration

Configuration is like going to a retail store that is specialized in a certain range of products, e.g. Dell or Apple,
and as for a computer. What you get is a list of possible configurations of a computer where you can select its
components from a list of predefined components. This means going through a product configurator, selecting
the base product and selecting some extra options, e.g. hard drive capacity.

This essentially is a product line approach where parts of the product line and its variants is even visible to the
customer.

Composition

Composition is like going to a computer retail store and buying and assembling the parts in an assisted way: for
example, based on the items in the shopping cart, let the customer know:

that the five PCIe cards will not fit the mainboard with only 4 slots
that the power supply is not sufficient to power the system
that the graphics card has an additional power socket which is not provided by the power supply

There are some online computer retailers that provide this kind of features. All this information is available in
data sheets, but not all customers have the knowledge and experience to understand it. They need the support
described above. Even experts are lost in case there is no data sheet.

In robotics, there is neither a superordinate structure such as PCIe, no data-sheets for components, and no
support for selecting components.

Integration (in contrast to composition)

Integration is like assembling parts with non-standard interfaces that do not allow to separate and exchange
parts afterwards, for example, a battery that is soldered inside a laptop. Even after ripping out the battery, it
cannot be used as there is no knowledge about the battery, no data sheet: How much power? How about
electrical polarity/pin assignments? One starts to reverse-engineer to discover the properties using a voltmeter
and other tools.

Ecosystem Example: Graphics Cards

http://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu

In the PC industry, different ecosystem participants can supply and use building blocks to flexibly compose
systems based on their needs. There are graphics card suppliers that do not know where their product is being
used or for what purpose. They supply their graphics card and adhere to an specified interface (e.g. PCI
express) to make sure it can be used with any mainboard. They can build their graphics card using off-the-shelf
building blocks (e.g. Nvidia graphics chip and standard memory). They provide data sheets for the graphics
card that specifies the properties of the product which are necessary to use it. The data sheet does not need to
expose internal details or layouts (protected IP) of the graphics card.

Suppliers and Users collaborate and exchange building blocks in an ecosystem to flexibly compose systems
based on their need.

What Enables Composition in the PC Domain?

Enablers of composability in the PC domain are:

Building blocks adhere to superordinate structures (e.g. PCIe)
Building blocks explicate properties in data sheets (e.g. power supply, form factor, thermal
information)

Thanks to this enablers, the following is possible in the PC domain and RobMoSys aims at the same for
robotics:

Views

Thanks to explicated properties in data sheets, specific views on a system can be taken. They are independent
and each address concerns of the system. For example:

A form factor view: will everything fit into the case? Are there enough slots in the casing for assembling
the hard discs?
A thermal view: how is heat flowing through the system and is the ventilation sufficient?
A power supply view:

http://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart
https://robmosys.eu/wiki-sn-03/_detail/general_principles:pc_analogy:analogy-graphics-card.png?id=general_principles%3Apc_analogy%3Astart

General layout view: are there enough slots in the casing to access the PCI cards from the outside? Are
there enough slots PCIe slots on the mainboard?

RobMoSys uses Views to group elements of the composition structure which are addressed by one role.

Decoupling supply and use

Thanks to data sheets, one can plan a system and come up with a blueprint for later assembly since data sheets
contain all necessary information. The physical devices do not need to be present at that stage and can be
assembled by someone else based on the blueprint. The blueprint can be used to verify the system: for example
the performance might not be sufficient for the intended application.

IP is still flexible

Exposing properties in a data sheet does not mean to expose intellectual property (IP). It is only about exposing
the information that is relevant to use it (e.g. external view / interface), size of the device, power supply, etc.
Information about the internals of the building block (circuit layout, chipset used, capacitors used, etc.)

Flexible composition Combinations and alternatives

Adhering to superordinate structures means gaining access to all other building blocks that adhere to the same
structure. This gives high flexibility in composing parts.

RobMoSys Composition Tiers in the PC Domain

The below picture illustrated the Ecosystem Organization in composition Tiers using examples of the PC
domain.

The RobMoSys composition Tiers illustrated with examples of the PC domain.

General-purpose standards for the pc domain are located at Tier 1. USB for example can be used to connect
almost any device. Every computer has a need for storage capacity. Within this domain, Universal Mass
Storage (UMS, also known as “USB mass storage”) is based on USB and makes USB devices accessible as a
hard disk to enable file transfer (Tier 2 in this analogy). Hardware vendors and users can offer or use any
particular device with storage capacity that supports UMS on “Tier 3”. With the intention to connect a portable
device for the sake of transfering files, any of these devices that supports UMS may be suitable: a particular
USB stick, portable SSD Harddisk, Digital Camera, or mobile phone. Additional modeled descriptions must
then support the system integrator in choosing the right building block: digital camera might be used to transfer
documents, but the USB stick or SSD harddisk is probably the first choice depending on the file's size and
other factors.

Data Sheets and The Modeling Twin
http://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/_detail/general_principles:pc_analogy:analogy-composition-tiers.png?id=general_principles%3Apc_analogy%3Astart

Data sheets in the PC domain are comparable to the Modeling Twin in RobMoSys. Data sheets represent a
physical building block. See What Enables Composition in the PC Domain to learn about the benefits.

general_principles:pc_analogy:start · Last modified: 2018/11/02 10:59
http://www.robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start

http://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/_detail/general_principles:pc_analogy:modeling-twins-abstract-pcdomain.png?id=general_principles%3Apc_analogy%3Astart

RobMoSys Wiki
http://www.robmosys.eu

Architectural Patterns

Introduction

Buschmann et. al.1) provides the following descriptive definition of a pattern in general:

“A pattern describes a particular recurring design problem that arises in specific design contexts, and
presents a solution to it. The solution scheme is specified by describing its constituent components, their

responsibilities and relationships, and the ways in which they collaborate.” 2)

Moreover, Buschmann et. al.3) lists some common properties of a pattern:

“Patterns document existing, well-proven design experience.”
“Patterns provide a common vocabulary and understanding for design principles.”
“Patterns support the construction of software with defined properties.”
“Patterns help you build complex and heterogeneous software. Patterns help you manage software
complexity.”

The proposed scheme by Buschmann for describing a software pattern consists of a Context, Problem and the
Solution. This triple is used below to also describe individual architectural patterns which analogously address
recurring design problems in robotics software development, each occurring in a specific design context, and
present a well-proven solution to the design problem. There are two fundamental objectives that drive the
design of all presented architectural patterns, namely:

Facilitate building systems by composition
Support Separation of Roles

Each architectural pattern needs to contribute towards these two objectives.

Template for an Architectural Pattern

This is a template for describing an architectural pattern including the required sections that the description
must comprise.

Context

A context describes a situation in which the design problem occurs. Also relate the context to:

the Levels and Concerns
involved Roles

Problem

This part describes a recurring problem that repeatedly arises in a given context. This can start with a general,
open ended problem and get more concrete with driving forces and concrete requirements that the solution
must fulfill. Also, constraints to consider and desired properties of the solution can be expressed here.

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu

Solution

The solution describes how the problem is solved, thereby balancing the driving forces. In some cases,
available technologies can be listed here that solve the given problem.

Optional: Discussion

Any discussion of shortcomings, differences or references to other patterns can be described here.

Optional: Example(s)

Specific scenarios or technologies that help to understand the problem and/or solution can be listed here.

List of Architectural Patterns

(alphabetical order)

Architectural Pattern for Communication
Architectural Pattern for Component Coordination
Architectural Pattern for Software Components
Architectural Pattern for Managing Transitions of System States
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Service Definitions
Architectural Pattern for Stepwise Management of Extra-Functional Properties

Further Candidates for Architectural Patterns

Architectural Pattern for Coordination-Frame Transformation
Transformation tree (e.g. TF in ROS, Time-Stamps, Pose-Stamps, etc.)

Subsidiarity Principle
at any time a clear control hierarchy
delegate decision spaces top-down in the hierarchy

Knowledge Representation
central Knowledge Base
synchronize and conflate distributed system-models over global IDs

Reservation based Resource Management
in KB through Tasks and Skills for coordination of Components

1) , 2) , 3)

Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael Stal. “Pattern-Oriented Software
Architecture, Volume 1, A System of Patterns”. Wiley Press, 1996, ISBN: 978-0-471-95869-7
[http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html]

general_principles:architectural_patterns:start · Last modified: 2018/06/15 11:35
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:communication
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:managing_transitive_system_states
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:service_definitions
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471958697.html

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Stepwise Management of
Extra-Functional Properties

Context

Besides of “pure” functions, realistic systems also need to specify and to manage extra-functional properties
that might involve different system parts at different levels of abstraction. Extra-functional system properties
specify how well a system performs given a certain system configuration.

There are two main developer roles that are involved in the specification of extra-functional properties:

Component Supplier specifies functional constraints of individual building blocks (i.e. components)
System Builder defines extra-functional properties within the predefined boundaries by the involved
components

Extra-functional properties are cross-cutting in nature (i.e. combining communication, computation and
coordination) and relate to several levels of abstraction:

Task Plot (level) provides the run-time context for the extra-functional properties
Service (level) link components and is mainly related to the communication concern of extra-functional
properties
Function (level) is related to the computation concern of extra-functional properties
Execution Container (level) relates to the coordination concern of extra-functional properties
Hardware (level) finally does both, computation and communication of extra-functional properties

Problem

Extra-functional system properties such as e.g. end-to-end response times are cross-cutting in nature and
typically involve knowledge and contributions from different developer roles (e.g. component
developers and system builders) who are often working independently in different places and at
different points in time. This easily leads to inconsistencies in the system. Resolving inconsistencies
typically requires expert knowledge and deep insights into all the distributed system parts
Extra-functional properties bridge between functional constraints in individual building blocks and
application-specific system requirements
Extra-functional properties might be grounded in several system parts that are distributed over several
components
Tracing and assuring extra-functional properties might involve additional (dedicated) analysis tools

Solution

The specification of functional aspects of individual building blocks must be linked with the definition
of application-specific, extra-functional system aspects on model level
Individual building blocks specify functional constraints that restrict the remaining design space to be
exploited for a later system design
System-specification allows only those design options that do not conflict with the individual building-
block constraints

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/glossary#extra-functional_properties
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

Dedicated analysis tools simulate run-time conditions and predict extra-functional system behavior (i.e.
the run-time performance quality of a system)
Optionally: a run-time monitoring mechanism can assure compliance with specified extra-functional
properties

Example

End-to-end response time from sensing until acting in a service robot can be considered as one particular extra-
functional property

this end-to-end response time typically involves several interconnected components forming a data-flow
chain of components
each component in a chain contributes with a certain delay to the overall end-to-end time
the component’s internal delay might be the result of the internally used device driver with certain
execution characteristics or otherwise result from the internally configured activities (i.e. tasks/threads)
individual components should leave as much configuration freedom as possible and only specify really
needed functional constraints (such as an unchangeable device driver behavior)
a specified system-level end-to-end response time needs to be checked with respect to predefined
functional constraints in individual components and the overall end-to-end run-time behavior of the
entire chain of components

for analysing the run-time behavior of the entire chain of components at design-time, dedicated,
matured and powerful analysis tools such as SymTA/S can be used
run-time behavior can also be directly monitored in an executed robotic system using a dedicated
monitoring infrastructure

This example is described with more details in a dedicated wiki page: Managing Cause-Effect Chains in
Component Composition.

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:stepwise_management_nfp · Last modified: 2018/06/08 15:54
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp2019-01-31

https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Software Components

Context

A common way to handle system complexity is Component-Based Software Engineering
Individual components are composable building-blocks that can be (re-)used in different applications
(i.e. systems)
Components in a system are not independent of each other but need to exchange data
Interconnected components realize (and collaboratively execute) overall system functions (e.g. the
navigation stack)

Modeling and developing a software component is the main responsibility of Component Suppliers.

This architectural pattern relates to the following abstraction levels:

Skill (level) requires a coordination interface for each component
Service (level) specifies interaction points to other components (i.e. the communication concern)
Function (level) realizes the component’s internal functionality
Execution Container (level) links functionality with the execution platform (i.e. the computation
concern)
Hardware (level) allows to directly interact with sensors and/or actuators within a component

Problem

The overall system behavior at run-time is the result of sets of interconnected components that need to
be executed in a systematic and deterministic way.
Real-world environments are open-ended and unpredictable in nature which requires a certain
adaptability and flexibility of the robot system behavior.

System flexibility in turn requires run-time reconfigurability of individual components.
Configuration options of individual components might involve design-time and run-time
configurability and depend on the internal (i.e. functional) realization of a component.

There are cases where several provided services might need to be realized in a single component (e.g.
because the used library cannot be separated into several components)
The overall role of a component is manifold:

to realize a coherent set of provided services
to specify dependencies to other services (provided by other components)
to encapsulate (i.e. decouple) the functional (internal) realization of services from their general
representation on system level
to specify allowed configuration options and possible run-time modes (i.e. to be used from the
skill level)
to hide platform-related details such as communication middleware, operating system and
internally used device drivers (i.e. mapping to the execution container and interacting with
sensors/actuators)

Solution

The concept of a component spans across several abstraction levels:
http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

From a functional point of view, a component spans over “Execution Container”, “Function”, “Service” and
optionally also the “Skill” levels. From the robotic behavior coordination point of view, a component is on the

level of robotic skills1).

A flexible component model that allows different bundlings of several provided services and that decouples the
service definition from its realization within a component:

a component can realize more than one provided service but a certain provided service is realized by
exactly one distinct component
a component should implement or use a service but not define it (service definition is a separated step)

In addition to the “regular” services a component also implements a generic configuration and coordination
interface that provides access to:

the component's life-cycle state automaton
admissible run-time modes (i.e. activity states)
the component's configuration parameters (i.e. allowed parameter sets)
the coordinated dynamic wiring of component’s services (i.e. without conflicting with the component's
internal functionality)

See also:

Component metamodel

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

1)

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Acomponents
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp, David P. Miller, and Mark G. Slack.
“Experiences with an architecture for intelligent, reactive agents”. In: Journal of Experimental & Theoretical
Artificial Intelligence, Volume 9, 1997, DOI: 10.1080/095281397147103
[http://dx.doi.org/10.1080/095281397147103].

general_principles:architectural_patterns:components · Last modified: 2018/06/08 15:52
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components 2019-01-31

http://dx.doi.org/10.1080/095281397147103

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Communication

Context

Communication between entities (i.e. exchange of information). Communication is a concern and relates to the
following levels:

Service (level) structures communication
Execution container (level) provides resources for communication
Operating System / Middleware (level) realizes communication
Hardware (level) does communication

This architectural pattern relates to the following roles:

Service Designer: selects communication pattern (see below)
System Builder: selects communication middleware

Problem

A huge number of communication middlewares
A huge number of overlapping and conflicting communication schemes
Requirements that the solution must fulfill:

Realize vertical (i.e. layers) and horizontal (e.g. components) exchange of information (with the
goal to enable communication, coordination and configuration)
Support different schemes for data-flow oriented communication and coordination/configuration
concerns
At the minimum provide:

Publish/Subscribe (i.e. data-flow) communication semantics
Request/Response (i.e. on demand) communication semantics

Support independence of the underlying middleware solution (i.e. middleware abstraction layer)
Reduce the huge variety of overlapping communication semantics in order to improve
composability between components
Decouple the access to communication within a component (functional-level) from the
communication between two interacting components (service-level)

Solution

An essential set of communication patterns that is rich enough to cover common communication use-cases, yet
at the same time reduced enough to support composability.

CommunicationPatterns (for continuous data transfer)
Request/Response

e.g. SmartSoft-Query
Publish/Subscribe

e.g. SmartSoft-Push (sub-variants: PushNewest and PushTimed)
ConfigurationPattern (for component configuration)

Component Parametrization

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:communication 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder

e.g. SmartSoft-Parameter
Dynamic Wiring

e.g. SmartSoft-Wiring
CoordinationPattern (for skill realization)

Component Lifecycle Automaton
e.g. SmartSoft-State (generic lifecycle state automaton)

Component (activity) Modes
e.g. SmartSoft-State (user-defined states) and SmartSoft-Parameter (trigger)

Component Feedback
e.g. SmartSoft-Event

See also:

Communication Patterns

Discussion

Different middlewares allow for different middleware abstraction levels. For instance, message-based
middlewares require a protocol-based abstraction, while e.g. DDS allows for a higher level of abstraction (i.e.
directly using the publish/subscribe communication with accordingly preselected QoS attributes). In any case,
middleware details should be hidden from both, the component’s internal communication access and the
communication semantics between components.

The separation of patterns into groups for Communication (i.e. continuous data exchange), Configuration (i.e.
parametrization of individual components) and Coordination (i.e. skill-component interaction) provides
solutions for recurring communication problems and clarifies the purpose of a particular pattern.

The communication access from within a component (i.e. communication interface access) needs to be as
flexible as possible as long as it does not violate with the clearly specified communication semantics outside of
the component (resp. between interacting components).

Not every semantic detail needs to be made explicit on model level (some may come from “de-facto standard”
implementations). The focus in models need to be on a consistent representation and systematic management of
different communication schemes.

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:communication · Last modified: 2018/06/08 15:52
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:communication

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:communication 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Task-Plot Coordination
(Robotic Behaviors)
A description of this architectural pattern can be found here [http://www.servicerobotik-ulm.de/drupal/?
q=node/86]. The architecture is a generic architecture for robotics behavior. In terms of the abstraction levels,
this pattern addresses task and skill levels; in terms of concerns, it addresses coordination and configuration.

See also:

Task-Level Composition for Robotic Behavior

Context

Service robots act in unstructured and open-ended environments that require flexibility and adaptability in
execution for the robotic behavior. The basic robot functionality is realized by software components. Software
components are typically general software building blocks that are independent of a specific application or
scenario. By contrast, the robot’s behavior is highly application-specific and depends on the desired tasks that
the robot is supposed to perform and the expected environments where the robot will operate in.

Problem

A static sequence of actions is too inflexible for coping with the dynamics of the real world where each
single action can fail or can produce unexpected results

Robust behaviors require several alternative strategies for performing a task whose combinatorial
combination easily explodes if statically designed in advance

Robot behaviors need to be expressed on different levels of abstraction (i.e. high-level tasks such as e.g.
“make coffee” are refined to more specific sub-tasks such as e.g. “approach kitchen”, “operate the
coffee machine”, etc.)
Components are active system parts that continuously exchange data while robot behaviors are event-
driven, passive parts that react to events for switching into adequate successive behavior steps
(depending on the so far successfully executed actions or failures in execution)

A robot behavior bridges between continuous execution in components and event-driven
coordination on task plot (level)

Solution

Robotic Behavior spans across several levels:

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

Robotic behavior is about continuous vs. discrete (see here [http://www.servicerobotik-ulm.de/drupal/?
q=node/86])
task-plot description (i.e. hierarchical task-tree)
using external solvers as experts on demand (i.e. symbolic planer), see deliberative layer here
[http://www.servicerobotik-ulm.de/drupal/?q=node/86]

This pattern is supported by the SmartSoft World via SmartTCL [http://www.servicerobotik-ulm.de/drupal/?
q=node/84] and Dynamic State Charts [http://www.servicerobotik-ulm.de/drupal/?q=node/87]

Discussion

…

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:robotic_behavior · Last modified: 2018/06/26 11:57
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/general_principles:architectural_patterns:mapping_robotic_system_levels_controll_arch_3.png?id=general_principles%3Aarchitectural_patterns%3Arobotic_behavior
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/86
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Architectural Pattern for Component Coordination
The here proposed pattern structures and semantically enriches the access of the functionalities within
components for coordination by defining a component coordination interface. The interface enables the run-
time coordination of the components by robotic behavior models on skill and task abstraction level. This
interface is the foundation for robotic behavior development and system orchestration (as described in
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

Context

The architectural pattern can be used in the context of coordination of closed software components. The pattern
deals only with the concern of coordination and is located at the abstraction level of services, lifting the access
to the functionalities within a software component to the skill abstraction level (see Separation of Levels and
Separation of Concerns). It involves the roles of the Service Designer (Domain Experts), the Component
Supplier and the Behavior Developer.

Problem

Functionalities within closed software components needs to be coordinated to so that the robot as a whole is
able to provide a service. The access to the functionalities within the components needs to be on a balanced
level to avoid fine grained interaction, so that the user of the software component does not need to know
implementation specific details of the component.

The coordination of the component needs to be possible without binding the behavior models (task level
description) to a concrete component.

Solution

The solution is to define an uniform behavior coordination interface for robotics software components. The
interface is two fold: the coordinating component part and the coordinated component part. The coordinating
component part is typically realized/implemented by a sequencer component in case of a 3T / three tier
architecture (see Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

The coordination access to a component via the interface can be grouped into six basic categories, each with a
different purpose, semantic and communication mechanism:

Configuration - Run-Time configuration or parameterization of components, for coordination.
Activation - Activation of activities and therefor the functionalities within the components.
Results (Events) - Receiving the results of the activation of the functionalities within the components.
Connection - Coordination of the inter-component connections and thereby configuring the data flow of
the coordinated components.
Component Life-Cycle - Providing access to components life-cycle e.g. shutdown or error states of the
components.
Information Query - Requesting and receiving information for coordination from components.

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

The relation of the interface parts to the component parts is shown by the following figure:

The realization of the coordination interface within RobMoSys is done using the Communication/Coordination
and Configuration Pattern.

See also:

Component metamodel

Discussion

The interface proposed in the pattern harmonizes the coordination access to the components and the
functionality encapsulated by them. This allows for the separation of the behavior coordination and behavior
models from the functionalities.

See also

Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Software Components
Separation of Levels and Separation of Concerns

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination2019-01-31

https://robmosys.eu/wiki-sn-03/_media/general_principles:architectural_patterns:coordination-cycle.png
https://robmosys.eu/wiki-sn-03/_detail/general_principles:architectural_patterns:behaviorinterfacestructureview_hres_1.png?id=general_principles%3Aarchitectural_patterns%3Acomponent-coordination
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:architectural_patterns:component-coordination · Last modified: 2018/06/28 08:54
http://www.robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination

http://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Separation of Levels and Separation of Concerns
The figure below illustrates the separation of levels and the separation of concerns. Please also refer to the
RobMoSys Glossary for descriptions of used terms. The levels indicate abstractions in a robotics system.

The levels can be seen as an analogy to “ISO/OSI model” for robotics that addresses additional concerns
beyond communication. The analogy is interesting, because ISO/OSI partitions the communication aspect in
different levels of abstraction that then help to discuss and locate contributions. The ISO/OSI separations in
levels allows to develop efficient solutions for each level. Establishing such levels for robotics would clearly
help to communicate between robotics experts–as ISO/OSI does in computer science.

The levels and concerns can be used to identify and illustrate architectural patterns. The blue line in the figure
is an abstract example. An architectural pattern combines several levels and several concerns. For example, the
architectural pattern for a software component spans across the levels of service, function and execution
container.

See also

Architectural Patterns

About the Levels

The lower levels address more concerns and are more cross-cutting in their nature
The higher levels are more abstract and address less concerns / individual concerns. They thus allow a

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:components
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/_detail/general_principles:levels-concerns2.png?id=general_principles%3Aseparation_of_levels_and_separation_of_concerns

better separation of concerns and separation of roles.
By definition, a level can not be defined on its own, since its semantics is the relationships between the
items at this “level” and those at the other levels. This exercise to get these relationships well-defined is
a tough one, this is of high priority though, since “level”/“layer” is one of the most often used term in
(software) architecture.
A layer is on top of another, because it depends on it. Every layer can exist without the layers above it,
and requires the layers below it to function. A layer encapsulates and addresses a different part of the
needs of much robotic systems, thereby reducing the complexity of the associated engineering solutions.
A good layering goes for abstraction layers. Otherwise, different layers just go for another level of
indirection. An abstraction layer is a way of hiding that allows the separation of concerns and facilitates
interoperability and platform independence.

On the number and separation of levels

Individual levels always exist but are not always explicitly visible.
Transition between layers can be fluent
There are single layer approaches (clear separation between layers offering full flexibility in
composition) but also hybrid ones (combining several adjacent layers into one loosing flexibility). For
example, ROS1 implemented both the middleware and execution container while in ROS2, the
middleware level is planned to be separated.
Different levels might require different technologies
Individual levels may also be separated horizontally (e.g. fleet of robots vs. an individual robot, or group
of components vs. an individual component)

Example: Levels

Below are examples for each of the levels.
They demonstrate the level of abstraction that can be found in each layer.

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

The individual Levels

Mission (Level)

A higher level objective/goal for the robot to achieve.
At run-time, a robot might need to prioritize one mission over another in order to rise the probability of
success and/or to increase the overall quality of service

Examples

In logistics: do order picking for order 45
serve customer
serve as butler

Synonyms

goal
objective

Task (Level)

A task (on the Task level) is a symbolic representation of what and how a robot is able to do something,

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

https://robmosys.eu/wiki-sn-03/_media/general_principles:layers_and_examples2.png

independent of the realization.
A job that is described independent of the functional realization.
Includes explicit or implicit constraints.
tasks might be executed in sequence or in parallel
task-sets might be predefined statically (at design-time) or dynamically generated (e.g. using a symbolic
planner)
tasks might need to be refined hierarchically (i.e. from a high-level task down to a set of low-level tasks)
not to be confused with tasks in the sense of processes/threads (see Execution Container)
see also: Task-Level Composition for Robotic Behavior

Examples

Move to room nr. 26
Grasp blue cup
Get a cup from the kitchen
deliver coffee

Synonyms

job

See also:

Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

Skill (Level)

A the skill level is an abstraction level that decouples task-level and service-level. The purpose of abstraction
is to enable replacement and composition of components (components providing the same skill) and
decoupling (e.g. separation of roles: component developer and behavior developer).

Skills provide access to the functionalities realized within components and make them accessible to the task
level. Skills coordinate software components through RobMoSys Software Component Coordination interface.
With skill definitions on Tier 2, skills enable the task modeling independent of the underlying software
component architecture. Skill implementations are bundled with software components and are provided by the
component supplier role.

A skill defines basic capabilities of a robot. The area of transition between high-level tasks and concrete
configurations and parameterizations of components on the service-level.

A collection of skills is required for the robot to do a certain task. For example, a butler robot requires skills for
navigation, object recognition, mobile manipulation, speaking, etc. A component often implements a certain
skill, but skills might also be realized by multiple components.

Skill-level often interfaces between symbolic and subsymbolic representations.

Examples

An abstract high level task (e.g. move-to kitchen) is mapped to concrete configurations and services that
components offer (e.g. parameterize path planning, localization and motion execution components with
destination set to kitchen).
grasp object with constraint

Synonyms

capability
system-function

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

See also:

Architectural Pattern for Component Coordination
Robotic Behavior in RobMoSys using Behavior Trees and SmartSoft
Skills for Robotic Behavior

Service (Level)

A service is a system-level entity that serves as the only access point between components to exchange
information at a proper level of abstraction.

Services follow a service contract and separate the internal and external view of a component. They describe
the functional boundaries between components. Services consist of communication semantics, data structure
and additional properties.

Components realize services and might depend on existence of a certain type of service(s) in a later system.

See also: Service-based Composition

Function (Level)

a coherent set of algorithms, for example implemented in libraries, that serve a unique functional
purpose
a piece of software that performs a specific action when invoked using a certain set of inputs to achieve

a desired outcome1)

Example

A function implemented in an library, e.g. OpenCV Blob Finder
An implemented algorithm, e.g. PID-controller
Functions developed or modeled in Matlab, Simulink, etc.
Inverse kinematics (IK) solver

Synonyms

functional block

Execution Container (Level)

provides the infrastructure and resources for the functional level
provides mappings towards the underlying infrastructure (e.g. operating system, communication
middleware).

Examples

Access to scheduler
Threads, eventually processes

Operating System and Middleware (Level)

Example elements on this level: e.g. phread, socket, FIFO scheduler

An Operating System is, for example, responsible for:

Memory management
Inter-Process-Communication

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start

Networking-Stack, e.g. TCP
Hardware Abstraction Layer

Examples for Operating System

Linux, Windows
FreeRTOS, QNX, vxWorks

A (communication) middleware is a software layer between the application and network stack of the operating
system. Communication middlewares are very common in distributed systems, but also for local
communication between applications. They provide an abstract interface for communication independent of the
operating system and network stack.

There are many distributed middleware systems available. However, they are designed to support as many
different styles of programming and as many use-cases as possible. They focus on freedom of choice and, as
result, there is an overwhelming number of ways on how to implement even a simple two-way communication
using one of these general purpose middleware solutions. These various options might result in non-
interoperable behaviors at the system architecture level.

For a component model as a common basis, it is therefore necessary to be independent of a certain middleware.

Examples

OMG CORBA
OMG DDS
ACE

Hardware (Level)

Solid pieces of bare metal that the robot is built of and uses to interact with the physical environment. It
includes actors/sensors and processing unit.

Examples

Sensors: laser scanner, camera
Actuators: manipulator, robot base/mobile platform
Processing units: embedded computer, cpu architecture

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

1)

“Systems and software engineering – Vocabulary,” in ISO/IEC/IEEE 24765:2010(E) , vol., no., pp.1-418, Dec.
15 2010 DOI: 10.1109/IEEESTD.2010.5733835https://doi.org/10.1109/IEEESTD.2010.5733835

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://doi.org/10.1109/IEEESTD.2010.5733835

[https://doi.org/10.1109/IEEESTD.2010.5733835]

general_principles:separation_of_levels_and_separation_of_concerns · Last modified: 2018/12/19 11:49
http://www.robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

http://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Ecosystem Organization

Composition Tiers

The general composition structure distinguishes three tiers.

RobMoSys envisions a robotics business ecosystem in which a large number of loosely interconnected
participants depend on each other for their mutual effectiveness and individual success. The modeling
foundation guidelines and the meta-meta-model structures are driven by the needs of the typical tiers of an
ecosystem and the needs of their stakeholders (see figure 1). The different tiers are arranged along levels of
abstractions. Figure 1 also illustrates the amount of experts or people contributing or using the particular tiers.

Tier 1 structures the ecosystem in general for robotics. It is shaped by the drivers of the ecosystem that define
an overall composition structure which enables composition and which the lower tiers conform to (similar to,
for example, the ecosystem of the Debian GNU/Linux OS and its structures). Tier 1 is shaped by few
representative experts for ecosystems and composition. This is kick-started by the RobMoSys project.
Structures defined on Tier 1 can be compared to structures that are defined for the PC industry. The personal
computer market is based on stable interfaces that change only slowly but allow for parts changing rapidly
since the way parts interact can last longer than the parts themselves and there is a huge amount of cooperating
and competing players involved. This resulted in a tremendous offer of composable systems and components.

Tier 2 conforms to these foundations, structuring the particular domains within robotics and is shaped by the
experts of these domains, for example, object recognition, manipulation, or SLAM. Tier 2 is shaped by
representatives of the individual sub-domains in robotics.

Tier 3 conforms to the domain-structures of Tier 2 to supply and to use content. Here are the main “users” of
the ecosystem, for example component suppliers and system builders. The number of users and contributors is
significantly larger than on the above tiers as everyone contributing or using a building block is located at this
tier.

Tier 1: Composition-Structure – Meta-Structure

Tier 1 structures the ecosystem in general for robotics, independent of the sub-domains. It is shaped by the
drivers of the ecosystem that define an overall structure which enables composition and which is to be filled by

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:composition-tiers.png?id=general_principles%3Aecosystem%3Astart

the lower tiers. Tier 1 defines general concepts and models for system composition such as the concept of
service definitions, concept of components, and the composition-workflow that is tailored to service robotics.
See Tier 1 Details for more information.

In terms of meta-modeling, elements of this tier correspond to/are meta-meta-models

Elements on this tier

RobMoSys Composition Structures, e.g.

concept of service definitions
concept of components, i.e. the Component Metamodel
a set of communication semantics to choose from

Examples of roles on this tier

Content on this tier is defined by the ecosystem drivers, i.e. the RobMoSys community with moderation of the
RobMoSys consortium.

See also

Tier 1 Details

Tier 2: Robotics-Domain-Specific Structures – Robotics Domain Models

Tier 2 structures the particular domains within service robotics. It is shaped by the experts of these domains, for
example experts from object recognition, from manipulation, or from SLAM. This is a community effort
which structures each robotics domain by creating domain-models. Experts working at this level define
concrete service definition models, for example a service definition for robot localization.

Domain-models, for example, are “Service Definitions” that cover data structure, communication semantics
and additional properties for specific services such as “robot localization”. To find such a service definition,
domain experts of each particular domain discuss how to represent the location/position of a robot and what
additional attributes are required and how they are represented (e.g. how the accuracy is represented).

In terms of meta-modeling, elements of this tier correspond to/are meta-models

Examples of elements on this tier

service definitions for localization
definition of how a robot pose with uncertainty is represented

Examples of roles on this tier

These are experts in the particular domain (SLAM, object recognition, manipulation), for example the
manipulation domain to come up with domain-models for a composable motion stack based on the
RobMoSys composition structures on Tier 1.
Service Designer role

Tier 3: Ecosystem Content

Tier 3 uses the domain-structures from Tier 2 to fill them with content: to supply or to use content. It is shaped
by the users of the ecosystem, for example component suppliers and system builders. They use the domain-
models to create models as actual “content” of the ecosystem to be supplied and used. On this tier, for
example, concrete Gmapping component for SLAM that provides a localization service is supplied to a system

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer

builder to compose a delivery robot.

In terms of meta-modeling, elements of this tier correspond to/are models (of components/systems)

Examples of elements on this tier

Components for AMCL localization, Gmapping, etc. providing a localization service
Task plot: how to make coffee
Composed applications: A restaurant butler robot
Component model based on the Component Metamodel

Examples of roles on this tier

Component Supplier
System Architect
System Builder

RobMoSys Modeling Support

See the various meta-models of the RobMoSys composition structures.

RobMoSys Tooling Support

See how the SmartMDSD Toolchain supports the RobMoSys Ecosystem Organization in three
composition tiers
See how Papyrus4Robotics supports the three composition tiers

See also

Analogy: The PC Domain
Roles in the Ecosystem
Tier 1 Details
Composition in an Ecosystem

Acknowledgement

This document contains material from:

Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:ecosystem:start · Last modified: 2018/06/13 16:31
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:start

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/composition:start
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Roles in the Ecosystem
The participants in the ecosystem (see Ecosystem Organization) take one or several “roles” to use and supply
building blocks. The RobMoSys composition structures define which parts are variable and which parts are
fixed, i.e. guided by the structures to ensure composability. Each role uses dedicated views to work on models
and Modeling Twin

List of Roles

(alphabetical order)

Behavior Developer
Component Supplier
Function Developer
Performance Designer
Safety Engineer
Service Designer
System Architect
System Builder

Roles in Context of Composition Tiers

The figure below illustrates the roles and their corresponding activities that use or create models on each
composition tier.

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:roles-ecosystem.png?id=general_principles%3Aecosystem%3Aroles
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start

See also

Ecosystem Organization to learn about Ecosystem and its Composition Tiers
RobMoSys Views to learn about the concept of views that roles use
Modeling Twin

general_principles:ecosystem:roles · Last modified: 2017/05/31 13:22
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:roles-use-case-models.png?id=general_principles%3Aecosystem%3Aroles
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin

RobMoSys Wiki
http://www.robmosys.eu

System Builder
This role on Tier 3 puts together systems from building blocks (i.e. software components). Based on a system
architecture from a system architect, the system builder selects components (provided by component suppliers)
from the ecosystem that realize the needed services. Matchmaking must be made on the basis of offered
services and on other properties, e.g. the required accuracy. Another concern of system builders is to package
everything together such as e.g. also the robotic behavior models from behavior developers and making the
system ready for deployment.

Synonym:

Within the literature, this role is sometimes called “system integrator” which is considered inappropriate
within the RobMoSys context, because of its close relation to “system integration” which contrasts to
system composition (see RobMoSys Glossary).

Related views and models:

System Component Architecture Metamodel

See also:

System Architect
Component Supplier
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:system_builder · Last modified: 2017/06/21 10:23
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Service Designer
These are the domain experts on Tier 2 that design individual service definitions for use by Tier 3 roles
component supplier and system architect. This enables the definition of “de-facto” standard service definitions
within a specific robotics sub-domain such as “object recognition”, “mobile manipulation”, “SLAM”, etc. For
example, they can define what is a common (good) representation for a “localization” service that should be
used (and shared) within the “SLAM” domain.

Synonym:

none

Related views and models:

Service Design View
Service-Definition Metamodel

See also:

Component Supplier
System Architect
User Stories including this role
Roles in the Ecosystem

Acknowledgement

This document contains material from:

Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

general_principles:ecosystem:roles:service_designer · Last modified: 2018/06/08 15:48
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/modeling:views:service_design
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Performance Designer
A performance designer is a role at Tier 3 and is responsible to configure performance-related system
properties. Therefore, predefined Activities within components are configured exploiting their left-open
variability such that several Activities form trigger chains and thus realize application-specific end-to-end
timings. Based on a performance model, a Compositional Performance Analysis (CPA) can be automatically
triggered to simulate and validate the envisioned run-time performance of a system. Moreover, a performance
model can be used by the System Builder role to refine the instantiated components of a given system. Further
details can be found in:

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]
Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München,
München, Germany, 2018. [https://mediatum.ub.tum.de/?id=1362587]

Synonym:

none

Related views and models:

Performance Metamodel

See also:

User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:performance_designer · Last modified: 2018/06/13 08:58
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://mediatum.ub.tum.de/?id=1362587
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Component Supplier
A component supplier is a role on Tier 3 that offer software components as units of composition that provide or
require services (service-level) and contain functions. He/she models the component by using existing service
definitions and functions. He/she therefore uses models from the roles service designer and function developer.

One of the tasks of the component supplier is also to implement a skill that lifts the abstraction of a component
from the service level to the task level (see Separation of Levels and Separation of Concerns). These skills are
then used be the behavior developer to orchestrate components.

Synonym:

component developer

Related views and models:

Component Development View
Component-Definition Metamodel

See also:

Service Designer
Function Developer
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:component_supplier · Last modified: 2018/06/26 11:10
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:function_developer
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Behavior Developer
The role of the Behavior Developer is responsible for developing tasks or task-plots (composition of tasks)
modeling how a robotics system, consisting of software components, is orchestrated at run-time to provide a
service as a whole system. The role models robot behavior through the tasks at the according abstraction level
of tasks.

The tasks that the behavior developer models make use of the functionalities provided by the components.
Functionalities that are implemented within software components become accessible through skills (skill
behavior model). Skills lift the abstraction level of components to use them on a task level (see Separation of
Levels and Separation of Concerns). Thereby the tasks itself are independent of any component and can be
reused with a robotics system consisting of different software components. To connect tasks to components the
role uses the skill definitions (Domain Experts, Tier 2), as interface to the skills.

Skills are defined at Tier 2 and are implemented in Tier 3 by the component supplier role.

The resulting tasks are used by the System Builder to compose a run-able system including the behavior
models. Thereby the component independent tasks are linked with skills provided by the selected components,
according to the skill definitions used by the tasks.

The role of the Behavior Developer is driven by the needs of an application or a service a robotic system has to
provide. It realizes variability at a task level, thereby using and fixing some of the variability provided either by
skills or by other reused tasks. The role may also introduce additional variability at the task level and specify
rules and policies how this variability will be bound at run-time, using the then available information (context).

Synonym:

none

Related views and models:

Robotic Behavior Metamodel

See also:

User Stories including this role
Roles in the Ecosystem
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Task-Level Composition for Robotic Behavior
Separation of Levels and Separation of Concerns
Component Supplier

general_principles:ecosystem:roles:behavior_developer · Last modified: 2018/06/26 11:10
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier

RobMoSys Wiki
http://www.robmosys.eu

System Architect
This role on Tier 3 designs a system architecture based on existing service definitions from service designers.
The resulting system architecture is independent of specific components and can be used by system builders to
select according components for realizing this system architecture. In other words, a system architect provides
a kind of “system blueprint” for system builders who can realize this system by selecting appropriate
components. For example, a system architect might design a robot navigation stack based on mapping,
localization, and motion-execution services.

Synonym:

none

Related views and models:

System Service Architecture Metamodel

See also:

Service Designer
System Builder
User Stories including this role
Roles in the Ecosystem

general_principles:ecosystem:roles:system_architect · Last modified: 2017/06/21 10:04
http://www.robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect

http://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/general_principles:user_stories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Technical User Stories
The following user-stories provide more detailed examples of the primary user-stories [http://robmosys.eu/user-
stories/] and the user-stories presented at the ERF 2017 [http://robmosys.eu/download/sara-tucci-cea-christian-
schlegel-hs-ulm-presentation-of-the-robmosys-project/]. The user-stories are supposed to guide RobMoSys
consortium to provide the structures and the open call third party partners to apply.

User-stories are described in the As user, I want-style:

As a (role), I want (goal, objective, wish), so that (benefit)
As a (role), I can (perform some action), so that (some goal is achieved)

Some user-stories are described in context of a specific ecosystem participant or role. Some are not described
in a specific context and can apply to multiple roles. For example what is of interest to an integrator can be of
interest to a supplier since the integrator might also supply a system (see system-of-system).

See also:

Roles in the Ecosystem

Composable commodities for robot navigation with traceable and
assured properties

A very generic but extremely important user story illustrating the full scope of RobMoSys by a single example:
Based on model-driven tools, develop and provide composable navigation components with all their explicated
properties, variation points, resource requirements etc. (the modeling twin / data sheet). Become able to
compose your navigation system out of these readily available commodity building blocks according to your
needs and be sure that your needs are being matched, that the properties become traceable etc.

I, as system builder, just want to become able to compose robotics navigation out of commodity
building blocks according to my needs with predictable properties, assured matching with my
requirements, free from interference. It is just astonishing that this is not yet possible in robotics. (with
MoveBase being exactly an example of 1how it should not be)

Description of building blocks via model-based data sheets

RobMoSys achieves a specific level of quality and traceability in building blocks, their composition and the
applications.

as a component supplier

I want my component to become part of as many systems as possible to ensure return-of-investment for
development costs and to make profit.
I need to offer my software component (building block) such that others can easily decide whether it fits
their needs and how they can use it.
I want to offer my software component with a data sheet in form of a digital model (see Modeling
Twin). A data sheet contains everything you need to know to become able to use that software
component in a proper way (interface between the component and its environment) while protecting

http://robmosys.eu/wiki-sn-03/general_principles:user_stories 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
http://robmosys.eu/user-stories/
http://robmosys.eu/download/sara-tucci-cea-christian-schlegel-hs-ulm-presentation-of-the-robmosys-project/
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin

intellectual property. It contains information about the internals of the software component only as long
as this is needed for a proper use.

as a system builder

I want to select from available components the one which best fits my requirements and expectations
(provided quality, required resources, offered configurability, price and licensing, etc.)
I want to check via the data sheet (in form of a digital model) whether that building block with all its
strings attached fits into my system given the constraints of my system and given the variation points of
the building block. Thereto, I want to be able to import it into my system design to perform e.g. a what-
if analysis etc.
I want to extract from my system design the specification of a missing building block such that someone
else can apply for providing a tailored software component according to my needs
I want to use components as grey-box, use them “as-is” and only adjust them within the variation points
expressed in the data-sheet without the need to examine or modify source code.

Replacement of component(s)

A hardware device is broken and the identical device is not available anymore (deprecated, discontinued, only
next version available). As a system builder,

I want to check whether all my relevant system level properties and constraints are matched when I use
the new device.
I also want to know how I need to configure it for that.

The very same holds true for software components where a software library used is not available anymore with
updates of other libraries etc.:

As a system builder, when I remove a software component from a system, I want to know which
constraints define the now white spot in my design in order to fill in another one with the proper
configuration to again match the system level properties.

Example:

From laser-based localization to visual localization
Replacing a 6 DOF manipulator with a 5 DOF manipulator

Composition of components

I want to be able to predict selected properties of the composition of various software components given their
individual properties, their configurations, their composition. For example, I want to know about the required
resources, whether there are bottlenecks somewhere, whether there are no unnecessarily high update rates
without consumers requiring them etc.

I want to know about the consistency of the overall settings in order to increase the trust into the system. I want
to know that critical paths are transformed from design-time into run-time monitors and sanity checks, e.g.

Quality of Service

I would like to know whether the amount of resources and the achieved performance (in general, quality of task
achievement) is adequate. I want to know what kind of impact a decrease in resource assignment has on the
performance of the functionalities of the robot.

I want to make sure that properties are traceable through the system and are managed through the development

http://robmosys.eu/wiki-sn-03/general_principles:user_stories 2019-01-31

and composition steps. For example

qualities at service ports of components are linked with component configurations which are linked with
configurations of the execution container and the underlying OS and middleware
at deployment time (system builder), reservation based resource management should be tool supported

Determinism, e.g. for robot navigation

As system builder, I want my system (e.g. navigation system on a mobile robot) to work exactly the same way
again when I change the platform (e.g. change the mobile base or the laser ranger or the computing platform in
a mobile robot).

I want to know that the intended functional dependencies and intended processing chains are finally
realized within my system composition
I want to know that relevant functional dependencies are still valid even after replacing one of my
onboard computers by a different one

Free from hidden interference

When extending a system, I want to know that I do not interfere with the already setup components,
already used resource shares etc.
I want to be sure that deploying further components onto my system is free from hidden interference or
hidden side-effects.

Management of Non-Functional Properties

As system builder,

I want to be able to adhere to functional and, in particular, to non-functional properties when composing
software components.
I want to re-use software components as black (gray) boxes with explicated variation points such that
application-specific system-level attributes can be matched without going into the internals of the
building blocks.
I want to be able to work on explicated system level properties: allow to design system properties such
as end-to-end latencies and explicit data-propagation semantics during system composition without
breaking component encapsulation.
I want to be able to match / check / validate / guarantee required properties via proper configurations of
variation points, via sound deployments etc.

Separation of roles (in particular, between component providers (driven by technology) and system builders
(driven by the application domain) is considered a basic prerequisite towards the next level of market maturity
for software in robotics, and thus towards a software business ecosystem. Support for the system builder is
needed in order to know about the properties of resulting systems instead of wondering whether they match the
requirements or whether they are resource-adequate etc.

Gap between design-time assumptions and run-time situation

When a system is deployed, design-time assumptions might not hold. For many systems it is difficult to know
when the system fails during operation.

As a system builder, I want to generate sanity checks, monitors and watchdogs from my design-time
models to be able to detect unwanted behavior and to detect operation outside of specified ranges.

http://robmosys.eu/wiki-sn-03/general_principles:user_stories 2019-01-31

System analysis tools

There are analysis tools in related domains not yet accessible to robotics as they are complex to use. I would
like to have support from these tools during the design of components, their selection and composition etc. I
want to better address what-if questions, to perform trade-off analysis etc. These tools should be attached to
robotics via dedicated model transformations without requiring me to get into them.

Task modeling for task-oriented robot programming

Reusable and composable task blocks which express knowledge about how to execute tasks (action plot)
and what are good ways to execute tasks (qualities).
Management of the constraints such that composition for parallel and nested execution is free of
conflicts and that open variation points can be bound at run-time according to the given situation ways
to link generic task descriptions (with all their constraints and resource requirements) with software
components (with all their configurations etc.)

Safety

As safety engineer, I want to model limits for critical properties like the maximum speed when carrying
around a hot coffee, when maneuvering in a crowded environment, the maximum speed dependent on
visibility ranges etc.
As safety engineer, I model constraints for particular applications and environments.
As system builder, I want to be able to import these constraints such that tools help me to ensure design-
time consistency and run-time conformance with them (via generated hard-coded limits, via monitors,
via sanity checks etc.)

It is important to highlight what we are trying to say about system safety (not necessarily to prove), because
systems are safe in a particular context under a particular set of assumptions (e.g. by run-time monitors etc.).
The focus is possibly shifted from fail-safe to safe-operational, which may include some liveness in it. It is
about efficient falsification (the following things cannot happen) rather than costly verification (it always
behaves only like that).

general_principles:user_stories · Last modified: 2019/01/29 15:05
http://www.robmosys.eu/wiki-sn-03/general_principles:user_stories

http://robmosys.eu/wiki-sn-03/general_principles:user_stories 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Tier 2: Examples of Domain Models
RobMoSys allows the definition of domain-specific models and
structures at composition Tier 2. To illustrate this concept,
RobMoSys defines the following extendable content for Tier 2.

Flexible Navigation Stack
Mobile Manipulation Stack
Motion, Perception, Worldmodel Stack
Active Object Recognition

See also the RobMoSys Model Directory

domain_models:start · Last modified: 2019/01/28 16:49
http://www.robmosys.eu/wiki-sn-03/domain_models:start

http://robmosys.eu/wiki-sn-03/domain_models:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_media/system-examples:intralogistic.jpg
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start
https://robmosys.eu/wiki-sn-03/domain_models:motion-perception-worldmodel:start
https://robmosys.eu/wiki-sn-03/domain_models:active-object-recognition:start
https://robmosys.eu/wiki-sn-03/model-directory:start

RobMoSys Wiki
http://www.robmosys.eu

Flexible Navigation Stack
The flexible navigation stack is a set of components that realize specific navigation services to provide a
flexibly applicable navigation capability for a service robot. The services defined (service definitions) for the
navigation stack are a typical example of the Composition Tier 2 contents of the RobMoSys Ecosystem. This
navigation stack can be used with various robot platforms and different kinds of sensors. Moreover, it is able to
deal with unstructured and dynamic environments of variable scale. The focus hereinafter is to emphasize the
general design choices and architectural decisions of the navigation stack components. After that, the following
section provides some technical details and references for the concrete open-source components that can be
used already now, e.g. with the Robotino3 platform.

The figure on the right illustrates the three main levels
of the navigation stack. These levels describe the
shared responsibilities between different parts of the
navigation stack. These responsibilities are assigned
top down according to the subsidiarity principle (as
explained next).

Obstacle Avoidance Level

The bottom level defines components (a full list is provided further below) related to the fast and reactive
obstacle-avoidance navigation loop. This loop ensures that regardless of where the robot has to move next, this
movement will not cause any collisions and the robot will not be commanded to execute a physically invalid
movement considering the robot's kinematic and dynamic constraints. Therefore this loop will only command
navigation values that never lead to a collision even if these commands might not directly lead toward the next
goal (e.g. because of the need to avoid a suddenly appeared obstacle in between). Consequently, this loop
might lead to a globally non-optimal, yet collision-free, navigation.

Geometrical Path Planning Level

At the middle level, a geometric path planner calculates intermediate way-points based on a grid-map of the

http://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/_media/domain_models:navigation-stack:navigation-stack.png

current environment. The planner relies on this map, which is updated during the navigation to accommodate
for changes in the environment. A localization component estimates the current position of the robot within
that maps. Several existing path-planning algorithms (using A* for example) allow the generation of
intermediate way-points to be individually approached by the lower obstacle-avoidance level. In contrast to the
lower obstacle-avoidance level, this intermediate geometric path planing level has a global view on the mapped
environment. This is useful to e.g. avoid local minima (by generating intermediate way-points around them). It
is worth mentioning that this intermediate level typically does not generate full trajectories (to be exactly
executed by the lower level), but sparse intermediate way-points. These way-points are within a direct line of
sight, which allows approaching them individually by the lower level without requiring a map. Overall, this
enables a clear separation of concerns between the two lower levels and avoids several disadvantages with
respect to wasting resources (due to e.g. too frequent need for path re-planning) continuous velocity changes
and too tight (i.e., inflexible and hardly exchangeable) coupling with the lower level.

Topological Path Planning Level

In some cases, even the intermediate level is not sufficient. For instance, if a robot needs to navigate in an
entire building consisting of several floors, maybe connected over elevators, then building a single huge grid
map becomes complicated, too inefficient and too resource consuming. In these cases, it is rather reasonable to
calculate several smaller grid-maps (e.g. one for each level or room in the building) and to concatenate these
grid-maps in a topological map (which is typically a graph). The responsibility of this top level is to provide a
logical plan how to navigate through the separated maps, e.g. through levels or rooms of a building.

Flexibility in the Navigation Stack

The separation of the navigation components into these three levels has several advantages. The levels can be
composed to individual navigation solutions best fitting the needs of the application or the current environment
a robot is navigating in. According to these needs the size of the stack can be changed, with the bottom level
being the most versatile and configurable one. For instance, some scenarios might require to manually
command a robot using a joystick. In that case, both upper levels would be replaced by a simple joystick driver
component, while the collision avoidance level still validates the navigation commands. In other scenarios, a
robot might always navigate in a single map only. For that the geometrical path-planner on the middle level
(without the topological path planner on top) is fully sufficient. Of course, there are also scenarios where all
three levels are needed. Even in these latter cases, components on the individual levels can be flexibly
exchanged (even at run-time, while moving) by alternatives because of a clear separation of responsibilities on
each level and due to the clear interfaces between the levels. For example, it is possible to exchange free

navigation with corridor-based navigation1) to make the robot move only within predefined tracks.

The navigation stack components and services

The figure below illustrates the interaction of the navigation components over generic navigation services.
While the navigation services are always stable, there are several alternatives for each of the navigation
components (see below) that realize the same services but internally implement different algorithms. This
decoupling between a component's internal implementation and the component's service-based interaction is a
fundamental principle in RobMoSys that enables a flexible reuse (i.e., exchange) of components by alternatives
with unique selling points and thus makes the navigation stack flexibly usable in different applications with
different requirements with respect to envisioned environments and the used robot platforms.

http://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start 2019-01-31

The navigation stack consists of two hardware-related components, namely Laser and BaseServer. These two
components abstract away the used hardware. While the components themselves are specific to a particular
platform (e.g. Robotino3, PAL Tiago, etc.), they implement the following services that are platform-
independent:

BaseServer
The BaseServer acts as a hybrid component, it is both a sensor component in the sense that it
provides updated odometry values, and as a actuator component in the sense that it receives
navigation commands to be executed by the base platform.
provides BaseStateService: PushPattern<DataType=CommBasicObjects.CommBaseState>:
This service continuously provides the current geometric position (i.e., odomentry) of the base
platform.
provides NavigationVelocityService: SendPattern
<DataType=CommBasicObjects.CommNavigationVelocity>: This service receives
navigation-velocity command values which are executed by the base platform. The base platform
executes the latest available navigation command until a new value arrives and overrides the
previous value.
provides LocalizationUpdateService: SendPattern < DataType =
CommBasicObjects.CommBasePositionUpdate >: This is an optional service that allows
correcting the robot's pose (i.e., its odometry) from a localization component (see below).

Laser
The Laser component receives odometry updates and publishes new laser-scans together with the
latest available odometry value. This component is one classical type of a scanner component.
requires BaseStateService (see explanation above)
provides LaserService: PushPattern
<DataType=CommBasicObjects.CommMobileLaserScan>: This service continuously
provides the current laser-scan including the CommBaseState (as the geometric frame) from the
time when the laser-scan has been recorded.

The other three navigation components implement the different capabilities of the navigation stack, namely (1)
obstacle avoidance, (2) mapping, and (3) path-planning. Again, similar to the two hardware-related components
above, the three components internally implement a specific algorithm and are exchangeable due to the

http://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/domain_models:navigation-stack:navigationcomponents.png?id=domain_models%3Anavigation-stack%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service

following algorithm-independent service definitions that they individually implement:

Mapper
This component receives a current laser-scan and accumulates the information from this scan
into a locally maintained grid-map.
requires LaserService (see explanation above)
provides CurrGridMapPushService: PushPattern
<DataType=CommNavigationObjects.CommGridMap>: This is an updated grid-map.

Planner
This component takes a current grid-map and the current destination location2) as input and
calculates a path (consisting of intermediate way-points) to reach that destination.
requires CurrGridMapPushService (see explanation above)
provides PlannerGoalService: PushPattern < DataType =
CommNavigationObjects.CommPlannerGoal >: This is the next intermediate way-point for
the platform to approach.

ObstacleAvoidance
This component implements an obstacle-avoidance algorithm, such as e.g. the Curvature

Distance Lookup (CDL) [http://ieeexplore.ieee.org/document/724683/]3) approach. This
components takes two inputs, namely the current laser-scan and the next way-point to approach
and calculates a navigation command that approaches the next way-point on the as direct
curvature as possible avoiding any collisions.
requires LaserService (see explanation above)
requires PlannerGoalService (see explanation above)
requires NavigationVelocityService: provides navigation-velocity commands to be executed by
the base platform, thus closing the loop back to the BaseServer (see explanation above).

optional Localization
This component implements a localization algorithm (such as e.g. AMCL
[https://www.ri.cmu.edu/publications/monte-carlo-localization-for-mobile-robots/]) based on the
current laser-scan to calculate a current actual position of the robot within the environment. This
position is communicated through the LocalizationUpdateService (see below) to correct the
robot's odomentry (i.e., to improve the accuracy).
requires LaserService (see explanation above)
requires LocalizationUpdateService: This service provides a pose update for the robot's
odometry.

Overall, the three navigation components BaseServer, Laser and ObstacleAviodance together realize the
lowest obstacle avoidance level (see above). The Mapper, the Planner and optionally the Localization
components realize the middle geometric path planning level. Finally, the upper topological path planning
level is realized by a symbolic planner component.

SymbolicPlanner
This is a generic component that is able to find solutions for a given problem domain. Internally,
this component might implement a symbolic planner algorithm like metric-ff or lama.
provides SymbolicPlan: QueryPattern<Request=CommSymbolicPlannerRequest,
Answer=CommSymbolicPlannerPlan>: This query service allows querying for a solution for a
given problem domain. The problem domain is transferred within the Request object and the
solution is replied within the Answer object.

The symbolic planner component is not only used for geometric path planning but is a generic component that
is used for all kinds of combinatoric problems. This component typically directly interacts with the Task
Coordination Level.

http://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start 2019-01-31

http://ieeexplore.ieee.org/document/724683/
https://www.ri.cmu.edu/publications/monte-carlo-localization-for-mobile-robots/
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns

RobMoSys Modeling Support

The following composition structures are directly related to the realization of the navigation stack:

ComponentDefinition Metamodel
Service-Definition Metamodel
Communication-Pattern Metamodel
System Component Architecture Metamodel

RobMoSys Tooling Support

The following page discusses the concrete models of this example using the SmartMDSD Toolchain:
Support for the Flexible Navigation Stack

1)

Matthias Lutz, Christian Verbeek and Christian Schlegel. “Towards a Robot Fleet for Intra-Logistic Tasks:
Combining Free Robot Navigation with Multi-Robot Coordination at Bottlenecks”. In Proc. of the 21th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, September 6-9,
2016. Electronic ISBN: 978-1-5090-1314-2, DOI: 10.1109/ETFA.2016.7733602. Link
[https://doi.org/10.1109/ETFA.2016.7733602]
2)

The next destination is commanded from the behavior-coordination component (see Robotic Behavior
Metamodel for further details).
3)

Christian Schlegel. “Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile
robot”. In IEEE International Conference on Intelligent Robots and Systems (IROS). Victoria, Canada, 1998.
DOI: 10.1109/IROS.1998.724683 [https://doi.org/10.1109/IROS.1998.724683].

domain_models:navigation-stack:start · Last modified: 2019/01/31 16:05
http://www.robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start

http://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://doi.org/10.1109/ETFA.2016.7733602
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://doi.org/10.1109/IROS.1998.724683

RobMoSys Wiki
http://www.robmosys.eu

Mobile Manipulation Stack
The mobile manipulation stack is a set of components that realize specific services to provide a flexibly
applicable mobile manipulation capability for a service robot. The services defined (service definitions) for the
mobile manipulation stack are a typical example of the Composition Tier 2 contents of the RobMoSys
Ecosystem. This mobile manipulation stack can be used with various robot platforms and different kinds of
sensors. Moreover, it is able to deal with unstructured environments of variable scale. The focus hereinafter is
to emphasize the general design choices and architectural decisions of the mobile manipulation components.

The mobile manipulation stack components and services

The figure below illustrates the interaction of the mobile manipulation components over generic mobile
manipulation services. While the those services are always stable, there are several alternatives for each of the
components (see below) that realize the same services but internally implement different algorithms. This
decoupling between a component's internal implementation and the component's service-based interaction is a
fundamental principle in RobMoSys that enables a flexible reuse (i.e., exchange) of components by alternatives
with unique selling points and thus makes the mobile manipulation stack flexibly usable in different
applications with different requirements with respect to envisioned environments and the used manipulators
and robot platforms.

The mobile manipulation stack consists of the following hardware-related components, namely BaseServer,
PTUServer, RGBDCameraServer and ManipulatorServer. These components abstract away the used
hardware. While the components themselves are specific to a particular platform (e.g. Robotino3, UR, etc.),
they implement the platform-independent services.

The ManipulationPlanner and the ObjectRecognition component implement different capabilities of the
stack, namely (1) recognition of objects and environments and (2) collision free manipulation planning. Again,

http://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/_detail/domain_models:mobile-manipulation-stack:mobilemanipulationcomponents.png?id=domain_models%3Amobile-manipulation-stack%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service

similar to the two hardware-related components above, the components internally implement a specific
algorithm and are exchangeable due to the algorithm-independent service definitions that they individually
implement.

Overall, the above component realize different capabilities providing skills to be used for coordination on
above abstraction levels. The Sequencer component is the coordinating component executing the skill- and
task- level behavior models. The sequencer uses the KnowledgeBase component to memorize necessary
information, states and models, e.g. environment model, self model etc.

RobMoSys Modeling Support

The following composition structures are directly related to the realization of the mobile manipulation stack:

ComponentDefinition Metamodel
Service-Definition Metamodel
Communication-Pattern Metamodel
System Component Architecture Metamodel

RobMoSys Tooling Support

The concrete models of the mobile manipulation stack are modeled and realized using the SmartMDSD
Toolchain.
see RobMoSys Model Directory

domain_models:mobile-manipulation-stack:start · Last modified: 2019/01/31 16:27
http://www.robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start

http://robmosys.eu/wiki-sn-03/domain_models:mobile-manipulation-stack:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/model-directory:start

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Model Directory
A list of domain models, software components and systems for use with RobMoSys Tooling. Please see end of
page for a legend.

Tier 2 Domain Models

Name Description Purpose

CommBasicObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommBasicObjects]

A collection of
very basic
service
definitions and
communication
objects for use
in almost every
robotics system.

Universal

CommNavigationObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommNavigationObjects]

A collection of
domain models
for wheeled
robot
navigation.

Navigation

CommRobotinoObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommRobotinoObjects]

A collection of
domain models
for use with the
FESTO
Robotino robot.

Mobile-Base

CommLocalizationObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommLocalizationObjects]

A collection of
domain models
for localization.

Localization

CommManipulationPlannerObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommManipulationPlannerObjects]

A collection of
domain models
for (mobile)
manipulation.

Mobile
Manipulation

CommManipulatorObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommManipulatorObjects]

A collection of
domain models
for
manipulators.

Manipulation

CommObjectRecognitionObjects [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommObjectRecognitionObjects]

A collection of
domain models
for object
recognition.

Object
Recognition

CommTrackingObjects [https://github.com/Servicerobotics- A collection of Object

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommBasicObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommNavigationObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommRobotinoObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommLocalizationObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommManipulationPlannerObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommManipulatorObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommObjectRecognitionObjects
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommTrackingObjects

Ulm/DomainModelsRepositories/tree/master/CommTrackingObjects] domain models
for tracking
objects.

Recognition

DomainForklift [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/DomainForklift]

A collection of
domain models
for accessing
forklift
manipulators.

Actuator-
Access

DomainPTU [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/DomainPTU]

A collection of
domain models
for accesing
pan-tilt-devices.

Actuator-
Access

DomainSpeech [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/DomainSpeech]

A collection of
domain models
for human-
machine-
interaction with
speech.

Speech-To-
Text

DomainSymbolicPlanner [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/DomainSymbolicPlanner]

A collection of
domain models
for symbolic
planning.

Planner

DomainVision [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/DomainVision]

A collection of
domain models
related to
vision.

Actuator-
Access

Name Description Purpose

Tier 3 Component Models

Name Description

SmartCdlServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartCdlServer]

Implements the Curvature Distance
Lookup (CDL) algorithm for fast local
obstacle avoidance. It considers the
dynamics and kinematics of the robot,
as well as its polygonal shape.

ComponentLaserObstacleAvoid [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentLaserObstacleAvoid]

The SmartLaserObstacleAvoid
component implements a simple
reactive obstacle avoidance.

ComponentPlayerStageSimulator [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentPlayerStageSimulator]

The SmartPlayerStageSimulator
simulates a robot in a 2D bitmapped
environment using Player/Stage. It
offers several services for controlling
the robot, such as sending navigation
commands, providing access to the
robot's odometry and laser scans.

ComponentSymbolicPlanner [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentSymbolicPlanner]

Provides a symbolic planner service.
Works with ff, metric-ff (suggested)
and lama.

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/DomainForklift
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/DomainPTU
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/DomainSpeech
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/DomainSymbolicPlanner
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/DomainVision
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=5132fb&media=https%3A%2F%2Fgithub.com%2FServicerobotics-Ulm%2FComponentRepository%2Fraw%2Fmaster%2FSmartCdlServer%2Fmodel%2FSmartCdlServerComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentLaserObstacleAvoid
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=4d401e&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FComponentLaserObstacleAvoid%2Fmodel%2FComponentLaserObstacleAvoidComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentPlayerStageSimulator
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8b284a&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FComponentPlayerStageSimulator%2Fmodel%2FComponentPlayerStageSimulatorComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentSymbolicPlanner
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=e931d0&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FComponentSymbolicPlanner%2Fmodel%2FComponentSymbolicPlannerComponentDefinition.jpg

ComponentTTS [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentTTS]

SmartTTS is a component for text to
speech (tts) synthesis. SmartTTS pipes
speech output messages to stdin of an
arbitrary executable. It is thus a simple
wrapper for all tts applications that
accept text via stdin, e.g. mbrola,
festival or /bin/cat for debugging.

SmartAmcl [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartAmcl]

SmartAmcl implements the Adaptive
Monte-Carlo Localization (Amcl)
algorithm. Localization is based on a
particle filter and a pre-captured grid
map of the environment.

SmartCdlServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartCdlServer]

The SmartCdlServer is based on the
Curvature Distance Lookup (CDL)
algorithm for fast local obstacle
avoidance.

SmartGMapping [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartGMapping]

SmartGMapping implements
GMapping for simultaneous
localization and mapping (SLAM).

SmartGazeboBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer]

The SmartGazeboBaseServer can be
used to command a robot in a 3D
environment using the Gazebo
simulator.

SmartJoystickNavigation [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartJoystickNavigation]

The SmartJoystickNavigation
component takes joystick input
commands (CommJoystick) and
translates them to v/omega navigation
commands
(CommNavigationVelocity).

SmartJoystickServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartJoystickServer]

The SmartJoystickServer provides
access to input commands from a
joystick via PushNewest
communication pattern. The input
commands are represented by x/y-
value (as available) and an identifier
for the button pressed.

SmartLaserLMS200Server [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server]

The SmartLaserLMS200Server makes
laser scans from SICK LMS 200 and
PLS langer rangers available. Scans
can be requested by push newest or
query communication.

SmartMapperGridMap [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartMapperGridMap]

The SmartMapperGridMap provides
mapping services based on occupancy
grid maps. Laser scans are taken for
building a current and a longterm map.

SmartPioneerBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer]

The SmartPioneerBaseServer makes
P2OS-based robot platforms available.
It handles all the communication with
the hardware. It offers several services

Name Description

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentTTS
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=65f60b&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FComponentTTS%2Fmodel%2FComponentTTSComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartAmcl
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8cd349&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartAmcl%2Fmodel%2FSmartAmclComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=4b2d45&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartCdlServer%2Fmodel%2FSmartCdlServerComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGMapping
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=c5f173&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartGMapping%2Fmodel%2FSmartGMappingComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=a756aa&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartGazeboBaseServer%2Fmodel%2FSmartGazeboBaseServerComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartJoystickNavigation
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=2ec8df&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartJoystickNavigation%2Fmodel%2FSmartJoystickNavigationComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartJoystickServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=03199e&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartJoystickServer%2Fmodel%2FSmartJoystickServerComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=5d7350&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartLaserLMS200Server%2Fmodel%2FSmartLaserLMS200ServerComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartMapperGridMap
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=6f8a87&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartMapperGridMap%2Fmodel%2FSmartMapperGridMapComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=76e7dc&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartPioneerBaseServer%2Fmodel%2FSmartPioneerBaseServerComponentDefinition.jpg

for controlling the robot, such as
sending navigation commands to the
base and providing access to the
robot's odometry.

SmartPlannerBreadthFirstSearch [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch]

The SmartPlannerBreadthFirstSearch
provides path planning services based
on grid maps. It uses a grid map from
a map building component (e.g.
SmartMapperGridMap) and sends an
intermediate waypoint as well as the
goalpoint to the motion execution (e.g.
SmartCdlServer).

SmartRobotConsole [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartRobotConsole]

A simple coordination component
using a console menu to configure
software component for several simple
scenarios

Yarp_BaseStateService [https://github.com/CARVE-ROBMOSYS/Yarp-
SmartSoft-
Integration/tree/master/Bridges/BridgeV3_FromYarp_BaseStateService]

A mixed-port component that bridges
between YARP and SmartSoft: This
one is focussed on the
BaseStateService for use with the R1
robot.

Yarp_GridMap2D Component [https://github.com/CARVE-
ROBMOSYS/Yarp-SmartSoft-
Integration/tree/master/Bridges/BridgeV3_FromYarp_GridMap2D]

A mixed-port component that bridges
between YARP and SmartSoft: This
one is focussed on the GriMap Service
for use with the R1 robot.

Yarp_LaserService Component [https://github.com/CARVE-
ROBMOSYS/Yarp-SmartSoft-
Integration/tree/master/Bridges/BridgeV3_FromYarp_LaserService]

A mixed-port component that bridges
between YARP and SmartSoft: This
one is focussed on the Laser Service
for use with the R1 robot.

Yarp_CommNavigationVelocity Component [https://github.com/CARVE-
ROBMOSYS/Yarp-SmartSoft-
Integration/tree/master/Bridges/BridgeV3_ToYarp_CommNavigationVelocity]

A mixed-port component that bridges
between YARP and SmartSoft: This
one is focussed on the
NavigationVelocity Service for use
with the R1 robot.

ComponentRobotinoBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentRobotinoBaseServer]

The Robotino Base Server provides
access to the robotino robot. It handles
the communication with the hardware
or the simulator. It offers several
services for controlling the robot, such
as sending navigation commands to the
base and providing access to the
robot's odometry. Position updates can
be sent to the component to overcome
odometry failures.

ComponentLaserLMS1xx [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentLaserLMS1xx]

The ComponentLaserLMS1xx makes
laser scans from SICK LMS 1xx series
available.

SmartKinectV2Server [https://github.com/Servicerobotics- The SmartKinectV2Server captures

Name Description

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=1efc41&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartPlannerBreadthFirstSearch%2Fmodel%2FSmartPlannerBreadthFirstSearchComponentDefinition.jpg
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartRobotConsole
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=f66a4d&media=https%3A%2F%2Fraw.githubusercontent.com%2FServicerobotics-Ulm%2FComponentRepository%2Fmaster%2FSmartRobotConsole%2Fmodel%2FSmartRobotConsoleComponentDefinition.jpg
https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/tree/master/Bridges/BridgeV3_FromYarp_BaseStateService
https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/tree/master/Bridges/BridgeV3_FromYarp_GridMap2D
https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/tree/master/Bridges/BridgeV3_FromYarp_LaserService
https://github.com/CARVE-ROBMOSYS/Yarp-SmartSoft-Integration/tree/master/Bridges/BridgeV3_ToYarp_CommNavigationVelocity
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentRobotinoBaseServer
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=cc72eb&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F8%2F85%2FSmartRobotinoBaseServer.JPG
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentLaserLMS1xx
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartKinectV2Server

Ulm/ComponentRepository/tree/master/SmartKinectV2Server] RGB, depth and range images from
the Microsoft Kinect. Undistorted
images can be requested by push or
query communication.

SmartObjectRecognition [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartObjectRecognition]

A component for object recognition.

ComponentOpenRave [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentOpenRave]

This component is based on the
OpenRAVE framework. It allows to
plan a trajectory to a given point with
the specified manipulator.

ComponentSkillInterface [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/ComponentSkillInterface]

The ComponentSkillInterface provides
an interface to call and execute skills
as explained in Skills for Robotic
Behavior.

SmartRobotinoLaserServer [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartRobotinoLaserServer
provides laser scans from the robotino
SIM simulator or other scanners
operated by robotino deamons. Scans
can be requested by push newest or
query communication.

SmartRobotinoIRServer [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartRobotinoIRServer ir scans
from the robotino platforms (and
simulator).

SmartRobotinoRPCBridge [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The martRobotinoRPCBridge
component is the interface component
between the the robotino rpcd and the
SmartSoft components. It is used to
transfer data between the two system
parts, e.g. the map as it is recorded by
the SLAM component.

SmartRobotinoImageServer [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartRobotinoImageServer
provides images captured by a
robotino daemon or the simulator.

SmartFestoFleetCom [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartFestoFleetCom is the
interface component to the FESTO
Fleet-Manager (MPS)

SmartFestoGripperServer [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartFestoGripperServer
provides access to the FESTO gripper
for Robotino3.

SmartFestoMPSDocking [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartFestoMPSDocking performs
the docking/undocking of a Robotino3,
equipped with a conveyer belt, to a
FESTO MPS station.

SmartMarkerTracker [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartMarkerTracker is capable of
detecting visual markers and docking
to MPS stations equipped with visual
markers.

Name Description

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartObjectRecognition
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentOpenRave
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/ComponentSkillInterface
https://robmosys.eu/wiki-sn-03/composition:skills:start
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=a0b96f&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F4%2F46%2FSmartRobotinoLaserServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=b58102&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F8%2F8a%2FSmartRobotinoIRServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=243dcf&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F8%2F8e%2FSmartRobotinoRPCBridge.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=7e6d88&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F6%2F64%2FSmartRobotinoImageServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8c948c&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2Fc%2Fc5%2FSmartFestoFleetCom.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=9bfbac&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2Fc%2Fcb%2FSmartFestoGripperServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=b025be&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2Fb%2Fb2%2FSmartFestoMPSDocking.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=e4c619&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F9%2F9a%2FSmartMarkerTracker.JPG

SmartNavigationPlanner [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartNavigationPlanner uses
ompl to perform planning for
navigation. The component is used in
the context of corridor based fleet
navigation.

SmartPurePursuitNavigation [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartPurePursuitNavigation
realizes a pure-pursuit navigation,
calculating velocities to follow a
trajectory.

SmartRobotinoBatteryChargerDocking
[http://wiki.openrobotino.org/index.php?title=Smartsoft]

The
SmartRobotinoBatteryChargerDocking
performs the docking/undocking of a
Robotino3 to a battery charger station.

SmartRobotinoConveyerBeltServer
[http://wiki.openrobotino.org/index.php?title=Smartsoft]

The
SmartRobotinoConveyerBeltServer
provides access the robotino3
conveyer belt, used to transport KLTs
(small load carrier).

SmartRobotinoMasterRPCBridge [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The component is the interface
component between the the robotino
rpcd and the SmartSoft components. It
is used to transfer data between the two
system parts, e.g. the map as it is
recorded by the SLAM component.
This component is among the set of
fleet coordination components.

SmartPathNavigationServer [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartPathNavigationServer is the
coordinating component for corridor
based local coordinated navigation
with multiple robots in a fleet.

SmartPathNavigationClient [http://wiki.openrobotino.org/index.php?
title=Smartsoft]

The SmartPathNavigationClient is
client component for corridor based
fleet navigation.

Sequencer The Sequencer/SmartLispServer
component is responsible for
interpreting and executing the behavior
models which are written in SmartTCL
(Smart Task Coordination language).
To execute the tasks, Sequencer
orchestrates all the other components.

SmartSimpleKB [https://sourceforge.net/p/smartsoft-
ace/code/HEAD/tree/trunk/src/components/SmartSimpleKB/]

The SmartSimpleKB component
represents the knowledge base of the
robot system. System wide runtime
information is saved in the knowledge
base. It contains the current state of the
robot as well as application related
information like the location of
shelves, properties of objects and
grasping strategies.

Name Description

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=016436&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F0%2F01%2FSmartNavigationPlanner.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=994de8&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2Fd%2Fd5%2FSmartPurePursuitNavigation.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=3b684f&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F6%2F65%2FSmartRobotinoBatteryChargerDocking.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=9ef0c7&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F9%2F99%2FSmartRobotinoConveyerBeltServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=0b00ab&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2Fb%2Fbd%2FSmartRobotinoMasterRPCBridge.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=60403e&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F9%2F9b%2FSmartPathNavigationServer.JPG
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=7e7068&media=http%3A%2F%2Fwiki.openrobotino.org%2Fimages%2F6%2F63%2FSmartPathNavigationClient.JPG
https://sourceforge.net/p/smartsoft-ace/code/HEAD/tree/trunk/src/components/SmartSimpleKB/

SmartBoxDetection [http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/] The SmartBoxDetection component
recognizes individual packaging boxes
for partial commissioning processes.
The required boxes are searched and
recognized with the help of box
dimensions and the defined storage
area in the shelf. Subsequently,
position and orientation of the
recognized boxes are provided through
the service.

SmartRackDetection [http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-
2/]

The SmartRackDetection component
recognizes the position and orientation
of a shelf in which objects are
arranged in an organized manner (A-
Frame). Based on the pose of the shelf,
the component calculates the position
of the individual objects and provides
this information through the service.

SmartRealSensePersonTracker [http://zafh-
intralogistik.de/arbeitspakete/arbeitspaket-2/]

The SmartRealSensePersonTracker
component runs a person recognition
algorithm on a RGBD data stream. The
component can be configured to
recognize one specific person in the
image and calculate its position
relative to the robot. This position can
be used by the robot to follow this
person.

SmartKinectV2Server [http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-
2/]

The SmartKinectV2Server component
abstracts the accesses to color and
depth data that was recorded by a
Kinect (Xbox one) camera. For
recognizing objects the component
provides RGBD streams as well
individual color or depth images.

SmartRealSenseV2Server [http://zafh-
intralogistik.de/arbeitspakete/arbeitspaket-2/]

The SmartRealSenseV2Server
component abstracts the accesses to
color and depth data that was recorded
by a RealSense (D435) camera. For
recognizing objects the component
provides RGBD streams as well
individual color or depth images.

SmartURServer SmartURServer component abstracts
the accesses to a UR5 robot arm by
encapsulating the communication with
the hardware and making it easily
accessible through services.

SmartSchunkGripperServer The SmartSchunkGripperServer
component abstracts the accesses to a
gripper from Schunk by encapsulating
the communication with the hardware

Name Description

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/
http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/
http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/
http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/
http://zafh-intralogistik.de/arbeitspakete/arbeitspaket-2/

and making it easily accessible through
services.

Name Description

Tier 3 Systems

Name Description Purpose

SystemTiagoNavigation [https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemTiagoNavigation]

A pilot skeleton
that covers the
navigation aspect
of the Intralogistics
Industry 4.0 Robot
Fleet Pilot and
Assistive Mobile
Manipulation Pilot.
This system covers
the TIAGo Robot
in
simulation/Gazebo.

Navigation

SystemP3dxNavigationRealWorld [https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemP3dxNavigationRealWorld]

A pilot skeleton
that covers the
navigation aspect
of the Intralogistics
Industry 4.0 Robot
Fleet Pilot and
Assistive Mobile
Manipulation Pilot.
This system covers
the Pioneer P3dx
Robot in a real
world setting.

Navigation

SystemP3dxNavigationPlayerStageSimulator [https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemP3dxNavigationPlayerStageSimulator]

-A pilot skeleton
that covers the
navigation aspect
of the Intralogistics
Industry 4.0 Robot
Fleet Pilot and
Assistive Mobile
Manipulation Pilot.
This system covers
the Pioneer P3dx
Robot in
simulation with
Player/Stage

Navigation

SystemLaserObstacleAvoidP3dxPlayerStageSimulator
[https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemLaserObstacleAvoidP3dxPlayerStageSimulator]

A system used in
the tutorials. It
uses a primitive
obstacle avoidance
component. This
system is for use
with the Pioneer
P3DX robot.

Example

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemTiagoNavigation
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=cda65e&media=https%3A%2F%2Fgithub.com%2FServicerobotics-Ulm%2FSystemRepository%2Fraw%2Fmaster%2FSystemTiagoNavigation%2Fmodel%2FSystemTiagoNavigationSystemArchitecture.jpg
https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemP3dxNavigationRealWorld
https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemP3dxNavigationPlayerStageSimulator
https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemLaserObstacleAvoidP3dxPlayerStageSimulator

SystemLaserObstacleAvoidTiagoGazeboSimulator
[https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemLaserObstacleAvoidTiagoGazeboSimulator]

A system used in
the tutorials. It
uses a primitive
obstacle avoidance
component. This
system is for use
with the Pioneer
P3DX robot in the
player stage
simulator.

Example

SystemTTS [https://github.com/Servicerobotics-
Ulm/SystemRepository/tree/master/SystemTTS]

An example that
illustrates the use
of text to speech
components.

Speech-
To-Text

Name Description Purpose

Explanation/Legend

Status Descriptions

Ready This model can be used for immediate composition with other models

InProgress This model is currently being worked on. This can be ongoing work such as implementation or
migration from earlier tooling versions (as e.g. with the SmartMDSD Toolchain v2)

Planned This model is scheduled and it will soon be worked on and going to be available.

Vendor Index

Short Vendor Name Website

HSU Ulm University of Applied Sciences, Service
Robotics Research Center

http://www.servicerobotik-ulm.de
[http://www.servicerobotik-ulm.de]

CARVE RobMoSys Integrated Technical Project
“CARVE”

https://robmosys.eu/carve/
[https://robmosys.eu/carve/]

REC Robotics Equipment Corporation GmbH http://servicerobotics.eu
[http://servicerobotics.eu]

ZAFH
Intralogistik

ZAFH Intralogistik - Kollaborative Systeme zur
Flexibilisierung der Intralogistik

http://zafh-intralogistik.de [http://zafh-
intralogistik.de]

Tooling

SmartMDSD Toolchain
v3

Models tagged with “SmartMDSD Toolchain v3” are fully RobMoSys
conformant and available for immediate composition.

SmartMDSD Toolchain
v2
[https://wiki.servicerobotik-
ulm.de/how-tos:v2-or-v3]

Models tagged with “SmartMDSD Toolchain v2” are sufficiently conformant
to RobMoSys and available for immediate composition with the SmartMDSD
Toolchainv 2. These components are under migration to full RobMoSys
conformance and use in v3.

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemLaserObstacleAvoidTiagoGazeboSimulator
https://github.com/Servicerobotics-Ulm/SystemRepository/tree/master/SystemTTS
http://www.servicerobotik-ulm.de
https://robmosys.eu/carve/
http://servicerobotics.eu
http://zafh-intralogistik.de
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://wiki.servicerobotik-ulm.de/how-tos:v2-or-v3

model-directory:start · Last modified: 2019/01/31 16:41
http://www.robmosys.eu/wiki-sn-03/model-directory:start

http://robmosys.eu/wiki-sn-03/model-directory:start 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Pilot Skeletons: Demonstrating the RobMoSys
Approach
RobMoSys uses pilots to demonstrate the use of its approach
through the development of full applications with robots. Pilots
span different domains and different kind of applications. The
pilots can be provided to project contributors to support
designing, developing, testing, benchmarking and demonstrating
their contribution.

Goods Transport in a Company:
Intralogistics Industry 4.0 Robot Fleet Pilot

Mobile Manipulation for manufacturing applications on
a product line:

Flexible Assembly Cell Pilot
Human Robot Collaboration for Assembly Pilot

Mobile manipulation for assistive robotics in a domestic environment or in care institutions:
Assistive Mobile Manipulation Pilot

Modular Educational Robot Pilot

The project is open for constructive suggestions from the community for further pilots or extensions to existing
pilots, as long as “platform”, “composability” and “model-tool-code” are first-class citizens of those
suggestions.

pilots:start · Last modified: 2019/01/28 15:02
http://www.robmosys.eu/wiki-sn-03/pilots:start

http://robmosys.eu/wiki-sn-03/pilots:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/pilots:assistive-mobile-manipulation.png?id=pilots%3Astart
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/pilots:flexible-assembly
https://robmosys.eu/wiki-sn-03/pilots:hr-collaboration
https://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-03/pilots:education

RobMoSys Wiki
http://www.robmosys.eu

Modular Education Robot Pilot
This Pilot aims at validating the RobMoSys methodology by applying it in an educational scenario. The general
idea is to enable School and University teachers and students to access robot technology without any technical
knowledge of robotics, in order to design novel application and educational activities that involve a robot
system.

Hence, the main objectives of the Pilot are the following:

Enable users to easily design new application with a simple user interface.
Enable users to easily design new end-effector for the robot arm.
Enable users to easily integrate the robot with web interface.

The pilot demonstrates the following user stories:

Free from hidden interface / Replacement of components(s): the user wants to create a new interface for
an existing eDO robot without interfering with the existing components (e.g., a robot hand designed for
enabling the robot to communicate with tactile Sign Language tSL) or replace joints with custom object
designed by the user without interfering with the functions of the robot.
Safety: The teachers want the robot to limit critical properties and add working constraints when robot
are used by children and underage student
Quality of Service: the user doesn’t want waste time to configure and setup the robot. The robot need
auto-configurable its system and its interface with the educational environment.

The Pilot will use the e.DO Robot from Comau.

pilots:education · Last modified: 2018/02/12 09:23
http://www.robmosys.eu/wiki-sn-03/pilots:education

http://robmosys.eu/wiki-sn-03/pilots:education 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/pilots:comau-2.png?id=pilots%3Aeducation
https://robmosys.eu/wiki-sn-03/general_principles:user_stories

RobMoSys Wiki
http://www.robmosys.eu

Flexible Assembly Cell Pilot
The objective of this Pilot is to validate the RobMoSys methodology by applying it on a discrete manufacturing
task within a highly-flexible assembly cell. The pilot will validate the methodology through all stages, from
design to task execution. Some of the performance indicators that will be considered include robustness, ease of
integration and monitoring.

The assembly cell has a high degree of autonomy and does not rely on special-purpose tools or sensors. It
consists of two robotic arms in a shared workspace, each equipped with a 2D or 3D camera for perception and
a gripper for object manipulation.

This pilot demonstrates:

Modeling of a discrete assembly task: the cell operator should be able to specify different assembly
tasks using reusable and composable task blocks without having to know the details of the software and
hardware that will be ultimately realizing the task.
Replacing a hardware component: the system builder should be able to replace a hardware component
and check whether the system can still perform all the required tasks.

pilots:flexible-assembly · Last modified: 2017/08/08 09:40
http://www.robmosys.eu/wiki-sn-03/pilots:flexible-assembly

http://robmosys.eu/wiki-sn-03/pilots:flexible-assembly 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/pilots:assembly_cell.png?id=pilots%3Aflexible-assembly
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#replacement_of_component_s

RobMoSys Wiki
http://www.robmosys.eu

Assistive Mobile Manipulation Pilot
The objective of this Pilot is to validate the RobMoSys methodology by applying it to an assistive robotics
scenario in a domestic environment. The pilot will validate the methodology across all stages from design to
task execution.

Some of the performance indicators that will be considered include ease of integration, flexibility when
adapting to a new customer's needs (e.g. a person with a specific physical constraint, such as blindness) and
effortless comparison between different alternatives using metrics.

Stage: apartment of a person with some physical constraints. The TIAGo mobile manipulator as an assistant for
the person.

This pilot demonstrates:

Replacement of component(s): the System Builder wants to select and replace from available robot end-
effectors the one which best fits the requirements and expectations of the person with physical
constraints, taking into account specific metrics (provided quality, offered configurability, provided
skills, price and licensing, etc.).
Free from hidden interference: the Component Developer wants to create a new interface for an existing
TIAGo robot without interfering with the existing components (e.g a tablet for the hard of hearing
person or an audio interface that uses a microphone and a speaker for a blind person).
Composition of components: the System Builder wants to create a new TIAGo robot check via the data
sheet (in the form of a digital model) whether the new building block (the interface) fits into the system
given the constraints of the system and the variation points of the building block.

Available RobMoSys Software Baseline:

The pilot is related to the Gazebo/TIAGo/SmartSoft Scenario. It runs the TIAGo platform with the

http://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/pilots:tiago_oldman.jpg?id=pilots%3Aassistive-manipulation
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#replacement_of_component_s
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#free_from_hidden_interference
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#composition_of_components
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

flexible navigation stack in the SmartSoft World.
Tutorial for running the Gazebo/Tiago/SmartSoft Scenario in simulation
The pilot uses the TIAGo [http://tiago.pal-robotics.com] robot from PAL Robotics.

pilots:assistive-manipulation · Last modified: 2019/01/28 16:45
http://www.robmosys.eu/wiki-sn-03/pilots:assistive-manipulation

http://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation 2019-01-31

https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
http://tiago.pal-robotics.com

RobMoSys Wiki
http://www.robmosys.eu

Intralogistics Industry 4.0 Robot Fleet Pilot
This pilot is about goods transport in a company, such as factory intra-logistics. It showcases the ease of system
integration via composition of software components to a complete robotics application. It can be used to
showcase the performance of goods delivery and according non-functional requirements.

Videos of the pilot in action:
https://www.youtube.com/watch?v=qRSDxBOUVx0 [https://www.youtube.com/watch?
v=qRSDxBOUVx0]
https://www.youtube.com/watch?v=ML_BtZsiPHo [https://www.youtube.com/watch?
v=ML_BtZsiPHo]

This pilot demonstrates:

Task level composition
Service-based composition of software components

Available RobMoSys Software Baseline

The pilot is built using the SmartMDSD Toolchain by composing SmartSoft components
The pilot features the flexible navigation stack.
Components are coordinated using Robotics behavior coordination in SmartSoft: SmartTCL
The pilot uses a fleet of Robotino3 robots. A packaged set of several components for immediate use,
including those from the navigation stack with the Robotino3 platform can be downloaded from
openrobotino.org [http://wiki.openrobotino.org/index.php?title=Smartsoft].
Tutorial for running the Gazebo/Tiago/SmartSoft Scenario in simulation

http://robmosys.eu/wiki-sn-03/pilots:intralogistics 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://www.youtube.com/watch?v=qRSDxBOUVx0
https://www.youtube.com/watch?v=ML_BtZsiPHo
https://robmosys.eu/wiki-sn-03/_detail/system-examples:intralogistic.jpg?id=pilots%3Aintralogistics
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:components:smartsoft
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
http://wiki.openrobotino.org/index.php?title=Smartsoft
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

Pilot Roadmap

The SmartMDSD Toolchain v3 is currently being extended with a focus on conformance to the RobMoSys
composition structures. A stable and feature-complete version is expected for release end of 2017. By 1st of
March 2018, the here described pilot will be supported by the SmartMDSD Toolchain v3. This includes
software components with full support of:

Gazebo/TIAGo/SmartSoft Scenario in simulation using the Gazebo simulator.
Navigation Stack using FESTO Robotino3 and Pioneer P3DX.

More software components and support for fleet coordination to follow. Further development steps and future
roadmap of this Pilot in the course of the RobMoSys project will follow with the publication of the second
open call.

Usage of this Pilot

This pilot is featured in the demonstration Robotic Behavior in RobMoSys using Behavior Trees and
SmartSoft
Software components of this pilot are being used in Using the YARP Framework and the R1 robot with
RobMoSys
This pilot is featured in the demonstration Dealing with Metrics on Non-Functional Properties in
RobMoSys

pilots:intralogistics · Last modified: 2019/01/28 16:44
http://www.robmosys.eu/wiki-sn-03/pilots:intralogistics

http://robmosys.eu/wiki-sn-03/pilots:intralogistics 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo
https://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start
https://robmosys.eu/wiki-sn-03/community:roqme-intralog-scenario:start

RobMoSys Wiki
http://www.robmosys.eu

Human Robot Collaboration for Assembly Pilot
The objective of this Pilot is to validate the RobMoSys methodology in the context of advanced manufacturing
where humans and robots are working together in the same production site. This pilot has 2 main objectives:

Safety certification of the production site based on model-based risk analysis.
Modeling once, using everywhere: reusing task description for several robots

This pilot demonstrates:

Safety certification: The system integrators/the safety experts should be guided to set up a new
production site or to evaluate an existing one through the RobMoSys tools. Those tools should assist the
users to choose the appropriate configuration of the production site in order to be conformant to safety
norms.
Easing the development of robotics systems: The components offered by the RobMoSys ecosystem
should be composable and easy to configure. The design and deployment tasks should be in the reach of
non-expert users.
Flexibility and resistance to low-level changes: The system builder and the integrators should be able to
design their task and to deploy it on different robots having the same capabilities.

pilots:hr-collaboration · Last modified: 2019/01/29 15:01
http://www.robmosys.eu/wiki-sn-03/pilots:hr-collaboration

http://robmosys.eu/wiki-sn-03/pilots:hr-collaboration 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/pilots:img_0108.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-03/_detail/pilots:cobomanip.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-03/_detail/pilots:polishing.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-03/_detail/pilots:hv_slim.jpg?id=pilots%3Ahr-collaboration
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#safety
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:user_stories#replacement_of_component_s

RobMoSys Wiki
http://www.robmosys.eu

Tools and Software Baseline

RobMoSys provides a set of tools and a software baseline that
conform to the RobMoSys approach. This set can serve as a
starting-point for applying the RobMoSys methodology or to
extend it.

Tooling

Development Environments and Tools
The SmartMDSD Toolchain: An Integrated Development Environment (IDE) for robotics
software
Papyrus for Robotics: A set of Papyrus-based DSLs and tools
Groot: an IDE to create, modify and monitor BehaviorTrees
BehaviorTree.CPP: a C++ framework to design, execute, monitor and log robotics behaviors,
using Behavior Trees
RoQME Plugins for the SmartMDSD Toolchain: Tooling to enable modeling and monitoring of
QoS in robotics systems

Roadmap of Tools and Software

Tutorials and Documentation

For the SmartMDSD Toolchain
For Papyrus for Robotics

Usable Domain models, Components, and Systems

Browse the Model Directory to see building blocks available for immediate composition with
RobMoSys tooling.

baseline:start · Last modified: 2019/01/29 11:20
http://www.robmosys.eu/wiki-sn-03/baseline:start

http://robmosys.eu/wiki-sn-03/baseline:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins
https://robmosys.eu/wiki-sn-03/baseline:roadmap
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/model-directory:start

RobMoSys Wiki
http://www.robmosys.eu

Roadmap of Tools and Software
The RobMoSys project makes a software baseline available to early work with concepts of RobMoSys
composition structures. This includes already existing metamodels and tooling, for example from the The
SmartSoft World and Papyrus4Robotics World.

See also

Roadmap of MetaModeling
Conformance of SmartSoft to RobMoSys composition structures

baseline:roadmap · Last modified: 2017/06/23 12:11
http://www.robmosys.eu/wiki-sn-03/baseline:roadmap

http://robmosys.eu/wiki-sn-03/baseline:roadmap 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/_detail/modeling:roadmap.png?id=baseline%3Aroadmap
https://robmosys.eu/wiki-sn-03/modeling:roadmap
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start

RobMoSys Wiki
http://www.robmosys.eu

Gazebo/TIAGo/SmartSoft Scenario
This scenario contributes to the Pilot mobile manipulation for assistive robotics in a domestic environment or
in care institutions and Intralogistics Industry 4.0 Robot Fleet Pilot

The robot platform
TIAGo from Pal-
Robotics is
accessible in the
SmartSoft World.
A scenario was set
up in which you
can use the
SmartSoft
navigation stack
and SmartTCL for
behaviour
coordination to
move TIAGo
around in the
Gazebo simulator.

The TIAGo robot platform in simulation can be used with the SmartMDSD Toolchain as available software for
the open calls where we emphasize: “do not re-invent in open call projects but build on existing technologies
and tools”.

The scenario includes:

Navigation Stack: obstacle avoidance (CDL), recording maps with Gmapping, localization, path
planning
SmartTCL for behavior coordination to move TIAGo around in the gazebo simulator

Available Baseline: Gazebo/TIAGo with the SmartMDSD Toolchain
v3

The models and components to run the Pal-Robotics TIAGo using SmartSoft/SmartMDSD Toolchain within
Gazebo are available in the SmartMDSD Toolchain v3 Virtual Machine as described here. If you are interested
in trying out the scenario with the SmartMDSD Toolchain v2, please refer to http://www.servicerobotik-
ulm.de/drupal/?q=node/91 [http://www.servicerobotik-ulm.de/drupal/?q=node/91].

http://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/pilots:assistive-manipulation
https://robmosys.eu/wiki-sn-03/pilots:intralogistics
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=8eaa33&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2Fcomponents_with_gazebo.png
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
http://www.servicerobotik-ulm.de/drupal/?q=node/91

Open the SmartMDSD Toolchain in the virtual machine and take a look at the components. The main software
component that interacts with the Gazebo Simulation [http://gazebosim.org/] environment is the
SmartGazeboBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer] component.

This component internally communicates with the Gazebo Simulation and provides communication-services
that are used by the other navigation components [https://github.com/Servicerobotics-Ulm/ComponentRepository]
(as shown in the figure below).

http://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/baseline:scenarios:tiagogazebo.png?id=baseline%3Ascenarios%3Atiago_smartsoft
http://gazebosim.org/
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer
https://robmosys.eu/wiki-sn-03/_detail/baseline:scenarios:smartgazebobaseservercomponentdefinition.jpg?id=baseline%3Ascenarios%3Atiago_smartsoft
https://github.com/Servicerobotics-Ulm/ComponentRepository

The easiest way to test the components is to use the fully configured Virtualbox image with precompiled
component binaries and configured Gazebo Simulation environment with preloaded TIAGo models.

To run the full scenario, launch the SmartMDSD Toolchain, right-click on the Eclipse project
SystemTiagoNavigation, select SmartSoft Build Tools, click Deploy. The scenario control menu will
appear. Choose menu-start with your keyboard and hit enter to start the system.

Wait until the Gazebo simulation starts, loads the Tiago models and all the navigation componets start within
individual XTerms. Select the XTerm with the title “SmartRobotConsole” (be aware that some XTerms might
start on top of other XTerms thus hiding them).

Within SmartRobotConsole XTerm type in the menu number: 99 (for selecting the Demos)
Within the next menu, type in the number 2 (for the Planner-CDL Goto demonstration)
Now the menu should ask to give in a new goal coordinate x/y in mm for the robot to drive to. As an
example type in:

(-3000)(8000)

This coordinate should command the robot to drive to a neigbour room on the right.

To stop the scenario, choose menu-stop from the scenario control menu.

See also

This scenario is featured in Robotic Behavior in RobMoSys using Behavior Trees and SmartSoft
A variant of this scenario is featured in Using the YARP Framework and the R1 robot with RobMoSys

baseline:scenarios:tiago_smartsoft · Last modified: 2018/10/17 14:38
http://www.robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

http://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/baseline:scenarios:systemtiagonavigationsystemarchitecture.jpg?id=baseline%3Ascenarios%3Atiago_smartsoft
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo
https://robmosys.eu/wiki-sn-03/community:yarp-with-robmosys:start

RobMoSys Wiki
http://www.robmosys.eu

The SmartSoft World
SmartSoft is an umbrella term for concepts and tools to build robotics systems. The
SmartSoft approach [http://www.servicerobotik-ulm.de/drupal/?q=node/19] defines a
systematic component-based robotics software development methodology and according
model-driven tools [http://www.servicerobotik-ulm.de/drupal/?q=node/20] that support
different developer roles in a collaborative design and development of robotic software
systems. The SmartSoft World includes (a non-complete list):

The SmartMDSD Toolchain: an Integrated Development Environment (IDE) for
robotics software development using model-driven software development.
The SmartMARS Meta-Model: It defines the structures behind the service-
oriented and component-based approach.
The SmartSoft Framework and implementation: two exchangeable reference implementations
(current: ACE middleware, former: CORBA middleware) and execution containers for several
platforms and operating systems.
A repository with open source software components for immediate reuse to compose new
applications (sensor access, skills, task sequencing, knowledge representation, etc.). They have been
built with the SmartSoft technologies and tools.

There are two main technology clusters in SmartSoft that adhere to the RobMoSys structures. One is the
SmartSoft robotics framework that provides a C++ library for programming robotics software components
independent of the underlying communication middleware. The other technology is the SmartMDSD Toolchain
that directly implements the RobMoSys metamodels and conforms to the RobMoSys structures. It serves as a
baseline for model-driven tooling.

SmartSoft is officially supported by FESTO Robotino [http://www.festo-didactic.com/int-en/learning-
systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-
edition.htm] (see also Robotino Wiki [http://wiki.openrobotino.org/index.php?title=Smartsoft]).

See: Getting started with the SmartSoft World [http://www.servicerobotik-ulm.de/drupal/?q=node/7]

The SmartMDSD Toolchain (version 2.x) and the SmartSoft framework (version 2.x) are very matured (TRL
6) are – among others – used by FESTO Robotino. They will be supported for a while but are not fully conform
to RobMoSys. The RobMoSys staff is happy to support you in choosing the right version depending on your
needs. (To all RobMoSys Integrated Projects: approach your coaches for help!)

Conformance to RobMoSys Composition Structures

The SmartSoft software baseline is continuously evolving to match the latest developments in robotics
software engineering methods. While many current SmartSoft structures already now fully conform to the
RobMoSys definitions, there are some necessary refinements that are summarized below.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/lib/exe/fetch.php?tok=1dc3ed&media=http%3A%2F%2Fwww.servicerobotik-ulm.de%2Fdrupal%2Fsites%2Fdefault%2Ffiles%2FPoweredBySmartSoft-single_small.png
http://www.servicerobotik-ulm.de/drupal/?q=node/19
http://www.servicerobotik-ulm.de/drupal/?q=node/20
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/model-directory:start
http://www.festo-didactic.com/int-en/learning-systems/education-and-research-robots-robotino/robotino-for-research-and-education-premium-edition-and-basic-edition.htm
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://www.servicerobotik-ulm.de/drupal/?q=node/7

Further differences between the current SmartMARS Metamodel and the RobMoSys composition structures
will be described in the same way here.

Separation of Levels and Concerns in SmartSoft

SmartSoft provides implementations for the individual levels listed in Separation of Levels and Separation of
Concerns:

Level Available/Accessible in the SmartSoft World

Mission SmartTCL HL Interface

Task Plot SmartTCL Task Block

Skill SmartTCL Skill Block

Service Service Definitions:
- Communication Object (data structure)
- Communication Patterns (comm. semantics)
SmartSoft Components

Function C++ Library (libOpenRave)

Execution
Container

SmartTask

OS/Middleware ACE, CORBA, DDS, Linux, Windows, iOS

Hardware UR5, Sick, ARM, x86, Robotino, Segway,
MARS

Robotics Behavior in SmartSoft

SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] (and the concept of Dynamic State Charts
[http://www.servicerobotik-ulm.de/drupal/?q=node/87]) are realizations of the Architectural Pattern for Task-Plot
Coordination (Robotic Behaviors)

SmartSoft Terminology

To be extended

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:smartsoft:communication-pattern-view-smartsoft.png
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/87
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

Communication Object

A self-contained entity to hold and access information that is being exchanged via services between
components in SmartSoft.
Communication objects are ordinary C++-like objects that define the data structure and implement
middleware-specific access methods and optional user access methods (getter and setter) for convenient
access.
See also the RobMoSys definition for Communication Objects

Communication Pattern

Communication Patterns are a set of few but sufficient characteristics for the exchange of information over
services for component interaction in SmartSoft. Communication patterns are fix set of software patterns
defining recurring communication solutions for robotics software components. SmartSoft provides
communication patterns for the sake of composability, for example send, two-way request-response, and
publish/subscribe mechanisms on a timely or availability basis. SmartSoft communication patterns are an
implementation of the Architectural Pattern for Communication

Framework

Abstracts away platform-specific details such as independence of a particular operating-system (OS) and
communication middleware by providing a unified and platform independent API.

Quality of Service

Quality of Service (QoS) defines the ability of a system to meet application-specific customer needs and
expectations while remaining economically competitive. (see Wikipedia service-quality)

Further Resources

All about the SmartSoft World can be found at http://www.servicerobotik-ulm.de [http://www.servicerobotik-
ulm.de]. Selected links:

Getting started with SmartSoft [http://www.servicerobotik-ulm.de/drupal/?q=node/7] provides an overview
and starting point
Use SmartSoft and Gazebo to run the PAL robotics Tiago [http://www.servicerobotik-ulm.de/drupal/?
q=node/91] in simulation

Selected Publications

Dennis Stampfer. “Contributions to System Composition using a System Design Process driven by
Service Definitions for Service Robotics”. Dissertation, Technische Universität München, München,
Germany, 2018. Link [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2]
Alex Lotz, “Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System”, Dissertation, Technische Universität München,
München, Germany, 2018. Link [https://mediatum.ub.tum.de/?id=1362587]
Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software.”
In: Journal of Software Engineering for Robotics (JOSER): Special Issue on Domain-Specific
Languages and Models in Robotics (DSLRob) 7.1 (2016). ISSN 2035-3928, pp. 3–19. Link
[http://joser.unibg.it/index.php/joser/article/view/91]
Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:communication
http://www.servicerobotik-ulm.de
http://www.servicerobotik-ulm.de/drupal/?q=node/7
http://www.servicerobotik-ulm.de/drupal/?q=node/91
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://mediatum.ub.tum.de/?id=1362587
http://joser.unibg.it/index.php/joser/article/view/91

Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]
Matthias Lutz, Dennis Stampfer, Alex Lotz, and Christian Schlegel. “Service Robot Control
Architectures for Flexible and Robust Real-World Task Execution: Best Practices and Patterns.” In:
Workshop Roboter-Kontrollarchitekturen, co-located with Informatik 2014. Vol. P-232. GI-Edition:
Lecture Notes in Informatics (LNI). ISBN: 978-3-88579-626-8. Stuttgart: Bonner Köllen Verlag, 2014.
LINK [https://www.gi.de/service/publikationen/lni/gi-edition- proceedings- 2014/gi-edition-lecture-notes-in-
informatics-lni-p-232.html]

See also: Further Publications [http://www.servicerobotik-ulm.de/drupal/?q=node/15] and Technical Reports
[http://www.servicerobotik-ulm.de/drupal/?q=node/18] in context of SmartSoft.

baseline:environment_tools:smartsoft:start · Last modified: 2019/01/29 14:43
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start 2019-01-31

http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://www.gi.de/service/publikationen/lni/gi-edition- proceedings- 2014/gi-edition-lecture-notes-in-informatics-lni-p-232.html
http://www.servicerobotik-ulm.de/drupal/?q=node/15
http://www.servicerobotik-ulm.de/drupal/?q=node/18

RobMoSys Wiki
http://www.robmosys.eu

Support for Service-based Composition
This page uses the SmartMDSD Toolchain to illustrate the support for Service-based Composition. Therefore,
the Gazebo/TIAGo/SmartSoft Scenario is used as an example.

This page is a placeholder. Please refer to the Gazebo/TIAGo/SmartSoft Scenario that already uses the
principles of service-based composition.

baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start · Last modified: 2018/06/14
17:04

http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-
composition:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

RobMoSys Wiki
http://www.robmosys.eu

SmartMDSD Toolchain Support for the RobMoSys
Ecosystem Organization
This page describes how the SmartSoft World and the SmartMDSD Toolchain supports the three composition
tiers in the RobMoSys Ecosystem.

The SmartMDSD Toolchain is an Integrated Development Environment (IDE) for robotics software to support
system composition by realizing the RobMoSys composition structures (i.e., the RobMoSys meta-models) for
the three composition tiers in the RobMoSys Ecosystem.

Therefore, SmartMDSD Toolchain provides textual
and graphical model editors, and implements a fully
fledged code-generator that generates C++ code for
SmartSoft Software Components. Moreover, dedicated
model editors of the SmartMDSD Toolchain support
the different developer roles in their individual
responsibilities according to their respective modeling
view. Existing content, such as the Flexible Navigation
Stack developed with the SmartMDSD Toolchain
demonstrates the usability of the modeling tools and
provides initial content to be used and extended by
external parties.

The SmartMDSD Toolchain is available as a
standalone installation [http://www.servicerobotik-
ulm.de/files/SmartMDSD_Toolchain/releases/] and as a
virtual machine image [http://web2.servicerobotik-ulm.de/files/virtual-machine/] that includes a fully configured
SmartSoft installation and the components of the Navigation Stack.

Support for Composition Tier 1

The SmartMDSD Toolchain implements the RobMoSys composition structures using Eclipse Ecore.

The figure on the right illustrates by the
example of the component meta-model
how the RobMoSys composition
structures are realized based on Eclipse
Ecore. This and many other meta-models
are implemented within the SmartMDSD
Toolchain and are used to provide
dedicated model editors for specific
roles at the lower Tiers 2 and 3.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start#robmosys_modeling_support
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start#robmosys_modeling_support
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:ecosystemsmartmdsdtoolchain.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
http://www.servicerobotik-ulm.de/files/SmartMDSD_Toolchain/releases/
http://web2.servicerobotik-ulm.de/files/virtual-machine/
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier1zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier1structure.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

Support for Composition Tier 2

The SmartMDSD Toolchain supports in
modeling domain structures (i.e., domain
models) that conform to the RobMoSys
composition structures defined at Tier 1 (see
above). On the one hand, this means that the
Toolchain internally implements the related
Service-Definition Metamodel (see the Ecore
diagram below) as part of Tier 1, and, on the
other hand, the Toolchain provides relevant
model editor (see the Eclipse screenshot
below) to support the involved Service
Designer role in the definition of domain
models (i.e., service definitions). These

domain models are used at the next Tier 3 to (a) implement components that realize specific services and to
(b) compose systems by interconnecting required and provided services of related components.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier2zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:servicedefinition.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

The SmartMDSD Toolchain screenshot below shows an excerpt of the domain models of the Flexible
Navigation Stack.

All the domain models of the Flexible Navigation Stack and other stacks are publicly available for immediate
use in the Github repository:

DomainModelsRepositories [https://github.com/Servicerobotics-Ulm/DomainModelsRepositories]

The main developer role at this Tier 2 is the Service Designer.

Support for Composition Tier 3

The Tier 3 is about adding content to the Ecosystem in the form of reusable software components and systems.
The SmartMDSD Toolchain supports in developing components and in composing previously developed
components to systems, as well as deploying systems to robotic target platforms.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start2019-01-31

https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:navigationservcies.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:tier3zoom.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart

Similar to Tier 2, the SmartMDSD
Toolchain implements several
RobMoSys composition structures
(i.e., Ecore-based meta-models) for
Tier 3 related to component
development, system composition,
and deployment. On the one hand, at
this Tier 3, Component Suppliers can
develop individual components that
realize selected service definitions
(i.e., domain models from Tier 2).
On the other hand, System Builders
can compose components to new
systems. Other roles, such as

Performance Designer, Safety Engineer, and Behavior Developer cooperatively contribute to a system from
different modeling viewpoints. This Tier 3 consists of the majority of Toolchain users as these are all the
Ecosystem participants who provide concrete content and who compete with building block alternatives with
unique selling points thus altogether realizing a robotics component and system market.

The figure below shows the Component-Definition Metamodel based on Ecore as an example. Several other
meta-models are realized within the SmartMDSD Toolchain as well. A most recent version of the meta-model
realizations can be found in the SmartMDSD Toolchain sources (which are open-source using the BSD3
License).

Based on the Component-Definition Metamodel (shown in the Ecore diagram above), the SmartMDSD
Toolchain implements a graphical Component-Definition model editor, that allows modeling components such
as e.g. the PioneerBaseServer component shown in the screenshot below.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:safety_engineer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:componentdefinition.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component

Several fully implement components based on the SmartMDSD Toolchain and the SmartSoft framework can
be found in this Github repository:

https://github.com/Servicerobotics-Ulm/ComponentRepository [https://github.com/Servicerobotics-
Ulm/ComponentRepository]

Besides of the component-development view (that is used for illustration above), the SmartMDSD Toolchain
implements several other system-related modeling views that enable the related developer roles to define
relevant system models.

See next:

Flexible Navigation Stack
Gazebo/TIAGo/SmartSoft Scenario
The SmartMDSD Toolchain

baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start · Last modified: 2018/06/29 16:20
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:smartpioeerbaseserver.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Aecosystem-tiers%3Astart
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

RobMoSys Wiki
http://www.robmosys.eu

Support of Skills for Robotic Behavior
This page describes how the SmartSoft World and the SmartMDSD Toolchain support Skills for Robotic
Behavior.

This description is based on the SmartMDSD Toolchain v3.7.

Definition of Skills - Tier 2

The SmartMDSD Toolchain supports the developer in modelling skill definitions with an xtext DSL and the
accompanying tooling. Skill definitions are modeled in Domain Model repositories projects, along with the
other tier 2 models (see example in figure below). The component developer is able to use those definitions to
realize the skills.

Realization of Skills - Tier 3 (Component Developer)

Using the modeled skill definition, the SmartMDSD Toolchain supports the role of the component developer to
realize skills using an xtext DSL and the accompanying tooling. This skill realizations interact with the
components and coordinate them using the components coordination interface (parameter, events, activation
etc.), see example in figure below.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:toolchain-skill-definition-example.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Askills%3Astart

Examples

Robot Navigation Examples: moverobot

Example skills for robot navigation, i.e. moverobot and orientaterobot, can be found at:

Skill Definition: Domain Model repository [https://github.com/Servicerobotics-
Ulm/DomainModelsRepositories/tree/master/CommNavigationObjects/model]
Skill Realization: CDL Component [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartCdlServer/model]

Intralogistics i4.0 Robot Fleet Pilot

To see the skill support of the SmartMDSD Toolchain in action, please refer to Robotic Behavior in RobMoSys
using Behavior Trees and the SmartMDSD Toolchain (MOOD2be ITP).

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:toolchain-skill-realization-example.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Askills%3Astart
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories/tree/master/CommNavigationObjects/model
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer/model
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start

See also

Skills for Robotic Behavior
Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain (MOOD2be ITP)
The SmartMDSD Toolchain can be used together with Groot, a GUI to develop behavior trees.

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start · Last modified: 2018/12/20 13:53
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start2019-01-31

https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://robmosys.eu/wiki-sn-03/community:behavior-tree-demo:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Support for the Flexible Navigation Stack
This page describes how the SmartMDSD Toolchain and the SmartSoft World supports the Flexible
Navigation Stack.

Ready-to-run Example: Tiago

As one of the further baselines in RobMoSys, the SmartSoft navigation components can be used with the PAL
Robotics Tiago platform within the Gazebo simulation. It features PAL Robotics Tiago: see
SmartGazeboBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer] as virtual robot base. This example is available
“ready-to-go” in the virtual machine image. A screenshot of the SmartMDSD Toolchain displaying the flexible
navigation stack:

Available Software Components in the SmartSoft World

The fife ready-to-use navigation components of the navigation stack can be downloaded from the SmartSoft
Github component repository [https://github.com/Servicerobotics-Ulm/ComponentRepository]. The following list
of references provides documentation for the fife navigation components:

SmartCdlServer [https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer]:
this is the main obstacle-avoidance component that uses the Curvature Distance Lookup (CDL)

[http://ieeexplore.ieee.org/document/724683/]1) approach in its core
SmartPlannerBreadthFirstSearch [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch]: this is geometrical path-planning
component using a breadth-first-search algorithm
SmartMapperGridMap [https://github.com/Servicerobotics-

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/domain_models:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartGazeboBaseServer
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/_detail/baseline:scenarios:systemtiagonavigationsystemarchitecture.jpg?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Anavigation-stack%3Astart
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
http://ieeexplore.ieee.org/document/724683/
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPlannerBreadthFirstSearch
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartMapperGridMap

Ulm/ComponentRepository/tree/master/SmartMapperGridMap]: this component calculates up to date
occupancy grid maps
SmartAmcl [https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartAmcl]: this is a
localization component internally using the Adaptive Monte Carlo Localization (AMCL)
[http://wiki.ros.org/amcl] algorithm.

The SmartCdlServer [https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer]
component (see figure below) deserves some further explanations. In a nutshell, this component receives laser-
scans and next goals (which can be either a position, velocity, orientation or even undefined). Based on these
inputs, the internal CDL algorithm calculates a set of collision-free navigation-commands. Each of these
navigation-commands is equally valid, the selection of one “appropriate” one is performed upon a configurable
navigation-strategy. For example, one strategy might try to maximize the overall velocity, another might try to
stay in the middle of a hallway, yet another strategy might try reaching the next goal closest possible (often the
default strategy). This separation between the general obstacle-avoidance and the definition of different
strategies adds flexibility with respect to applicability of this component in different scenarios.

There is a list of further components related to different sensor types and robot platforms as alternatives to the
above list of components: More precisely, the following two to use robot platforms are supported directly:

Pioneer P3DX: SmartPioneerBaseServer [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer]

The following sensor component provides updated laser-scans using the SICK LMS200 laser scanner:

SmartLaserLMS200Server [https://github.com/Servicerobotics-
Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server]: provides lase-scans.

The Flexible Navigation Stack with FESTO Robotino3

Note: all components and links in this section refer to the v2-generation of the SmartMDSD Toolchain:

SmartRobotionBaseServer: see the Robotino3 Wiki [http://wiki.openrobotino.org/index.php?
title=Smartsoft]
A packaged set of several components for immediate use, including those from the navigation stack
with the Robotino3 platform can be downloaded from here [http://wiki.openrobotino.org/index.php?
title=Smartsoft].

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start2019-01-31

https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartAmcl
http://wiki.ros.org/amcl
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartCdlServer
https://robmosys.eu/wiki-sn-03/_media/domain_models:navigation-stack:cdl-component.png
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartPioneerBaseServer
https://github.com/Servicerobotics-Ulm/ComponentRepository/tree/master/SmartLaserLMS200Server
http://wiki.openrobotino.org/index.php?title=Smartsoft
http://wiki.openrobotino.org/index.php?title=Smartsoft

Another application that uses this navigation stack in a structured and coordinated fleet environment using e.g.

Robotino3 robots is described in the ETFA2016 paper [http://ieeexplore.ieee.org/document/7733602/]2).

1)

Christian Schlegel. “Fast local obstacle avoidance under kinematic and dynamic constraints for a mobile
robot”. In IEEE International Conference on Intelligent Robots and Systems (IROS). Victoria, Canada, 1998.
DOI: 10.1109/IROS.1998.724683 [https://doi.org/10.1109/IROS.1998.724683].
2)

Matthias Lutz, Christian Verbeek and Christian Schlegel. “Towards a Robot Fleet for Intra-Logistic Tasks:
Combining Free Robot Navigation with Multi-Robot Coordination at Bottlenecks”. In Proc. of the 21th IEEE
International Conference on Emerging Technologies and Factory Automation (ETFA), Berlin, September 6-9,
2016. Electronic ISBN: 978-1-5090-1314-2, DOI: 10.1109/ETFA.2016.7733602
[https://doi.org/10.1109/ETFA.2016.7733602]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start · Last modified: 2018/06/06 14:47
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start2019-01-31

http://ieeexplore.ieee.org/document/7733602/
https://doi.org/10.1109/IROS.1998.724683
https://doi.org/10.1109/ETFA.2016.7733602

RobMoSys Wiki
http://www.robmosys.eu

Support for Coordinating Activities and Life Cycle
of Software Components
This page describes how the SmartMDSD Toolchain supports Coordinating Activities and Life Cycle of
Software Components.

Example Use-Cases for Component Operation Modes

As an example, the figure on the
right shows the model of the
“SmartAmcl” component (i.e., a
component providing a localization
service based on the “Adaptive
Monte Carlo Localization”
approach). This component internally
specifies a single activity called
“AmclTask”. Moreover, the
“AmclTask” is mapped to the
component's operation mode called
“active” (see green ellipse in the
figure). As stated above, the
component's lifecycle does not need
to be explicitly modeled as it is
implicitly available for each component by default. Additionally, the component's lifecycle provides two
default operation modes called “active” and “neutral” (as part of the “Alive” submachine within the
component's lifecycle). That is, if the “active” operation mode is activated, then the referenced activity
“AmclTask” is activated thus consuming the relevant resources. By contrast, switching into the “neutral”
operation mode implicitly deactivates the operation mode “active” and thus the referenced activity
“AmclTask”. In other words, the component is conveyed into a “standby” mode thus releasing the relevant
resources.

The two default operation modes “active” and “neutral” cover the majority of simple software components
that provide a single service based on a single activity with a functional block. However, more complex
components allow the definition of multiple provided services and several activities within a single component.
For such cases, a more detailed model of the component's operation modes is required.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki-sn-03/_detail/composition:component-activities:smartamcl.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart

As an example for a more complex
component, the figure above provides the
model of the “SmartMapper” component. This
component provides three services, namely
“LtmQueryServer”, “CurrQueryServer” and
“CurrMapOut”. The first service provides a
long-term map while the other two services
provide access to the current map (i.e., a grid-
map of a local section from the long-term
map). The component internally maintains
and updates both map types. There are different situations at runtime, where either one of the map types is
needed, or both map types are used, or none of the map types is currently needed. The model of the
component's operation modes (see figure on the right) supports all these cases. As can be further seen in the
component model (in the figure above) the “LtmMapTask” activity is only active if one of the operation
modes “BuildLtmMap” or “BuildBothMaps” is active. Respectively, the “CurrMapTask” activity is only
active if one of the operation modes “BuildCurrMap” or “BuildBothMaps” is active. Please note that the
“neutral” operation mode is not explicitly modeled as it implicitly exists for every component by default.

See also:

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State Management of a
Component”, in Technical Report 2011/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2011. PDF
[http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]
Component Development View
Component-Definition Metamodel

baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start · Last modified: 2018/06/06
08:08

http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-
activities:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:component-activities:smartmapper.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart
https://robmosys.eu/wiki-sn-03/_detail/composition:component-activities:mapperstates.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acomponent-activities%3Astart
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component

RobMoSys Wiki
http://www.robmosys.eu

Support for Managing Cause-Effect Chains in
Component Composition
This page uses the SmartMDSD Toolchain to illustrate the Management of Cause-Effect Chains in Component
Composition. Therefore, the Gazebo/TIAGo/SmartSoft Scenario is used as an example.

Example Use-Case for Managing Cause-Effect Chains

The figure below shows a schematic illustration of the Gazebo/TIAGo/SmartSoft Scenario consisting of
navigation components altogether providing collision-avoidance and path-planning navigation functionality.
This example is used in the following to discuss different aspects related to managing cause-effect chains
which are again related to managing performance-related system aspects.

The example system in the figure above consists of five navigation components, from which two are related to
hardware devices (i.e., the Pioneer Base and the SICK Laser) and the other three components respectively
implementing collision-avoidance (i.e., the CDL component), mapping and path-planning. As an example, two
performance-related design questions are introduced in the following with the focus on discussing the
architectural choices and the relevant modeling options:

1. How fast can a robot react to sudden obstacles taking the current components into account?
2. How often does the robot need to recalculate the path to its current destination (thus reacting to major

map changes)?

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:navigationexamplequestion.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart

The component development view

The design and management of performance-related system aspects can be approached from two different
viewpoints. On the one hand, individual components can specify implementation-specific configuration
boundaries (as shown in the example below). On the other hand, a system that instantiates relevant navigation
components can refine their configurations (within the predefined configuration boundaries) to meet
application-specific performance requirements (see next section).

The figure above shows the model of the “SmartPlannerBreadthFirstSearch” component as a representative
example for demonstrating the role of the Component Supplier. The responsibility of this role is to define and
to implement a component so that it can be (re-)used in different systems. Among other things, the component
supplier also is responsible to define component-specific, performance-related constraints (if the internal
business logic of this component requires specific execution characteristics). For example, the planner
component (in the figure above) specifies that the “PlannerTask” should be executed with an update frequency
within the boundaries from 2.0 to 10.0 Hertz and that the actual update frequency can be configured within
these boundaries during a later system configuration phase.

Component Development View
Component Supplier Role
Component Definition Metamodel

The system-configuration view

The figure below shows an example model of the navigation scenario. This model enables System Builders to
instantiate and compose components to a system and to specify initial wiring as well as initial configurations of

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:smartplannertc.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder

these components.

System Configuration View
System Builder Role
System Component Architecture Metamodel

The performance view

A given system (as e.g. shown in the previous section) can be refined so that performance-related
configurations are designed in combination, which is the main responsibility of the Performance Designer (as
discussed next).

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:sysnavconfig.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-03/modeling:views:system-configuration-view
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer

A performance designer refines the configurations of activity models from the selected components of the
system configuration view (see preceding section). Therefore, several activities are considered in combination
and the component shells are blended out (as they are not relevant for this performance view). The figure
above illustrates the transformation from a system-configuration model to an activity-net.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:componentstotaskchains.svg.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:toolchainv3-performanceview.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart

The transformation of a system-configuration model of the navigation scenario into an activity-net results in the
model shown in the above figure. In this model individual activity nodes (orange blocks in the figure) can be
refined by selecting reasonable activation semantics (i.e., selecting a DataTrigger or a PeriodicTimer as an
activation-source for an activity node). Overall, an activity-net forms a directed graph with several paths
sometimes crossing the same activity nodes.

In order to specify end-to-end delays, individual (acyclic) paths of the overall activity-net need to be selected.
Such paths are called cause-effect chains and are visualized by the three rectangles in the above figure on the
right. For each of these cause-effect chains individual end-to-end delay requirements can be specified. These
end-to-end delay specifications can be now easily verified by triggering an automated performance analysis
(see next).

Performance View
Performance Designer Role
Cause-Effect-Chain and its Analysis Metamodels

Performance Analysis based on SymTA/S

Based on the performance model (from the preceding section) a compositional performance analysis can be
automatically triggered which simulates different run-time conditions including scheduling and sampling
effects. This analysis allows verifying the specified end-to-end delays and based on the results to refine the
performance model.

As an example, the figure above shows the results of the compositional performance analysis which is
calculated using the SymTA/S timing analysis tool from Luxoft [https://auto.luxoft.com/uth/timing-analysis-tools/]
(formerly Symtavision). The results show for the cause-effect chain called “FastReactiveNavigationLoop” that
the distribution of the overall end-to-end delays is within the specified requirements defined in the performance
model.

See also:

Managing Cause-Effect Chains in Component Composition
Architectural Pattern for Stepwise Management of Extra-Functional Properties

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:views:performance-view
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:symtas-analysis.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Acause-effect-chain%3Astart
https://auto.luxoft.com/uth/timing-analysis-tools/
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp

Cause-Effect-Chain and its Analysis Metamodels

Video

Tooling Migration Status

The above described example is developed with the SmartMDSD Toolchain V3 (Technology Preview) whose
implementation (together with the presented example) can be found on SourceForge
[https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/]. Please note that the features from the
Technology Preview are currently under migration into the newest stable SmartMDSD Toolchain release (see
SmartMDSD Toolchain Vendor Website [https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start-toolchain:]
and in the RobMoSys Wiki).

The following features from the Technology Preview have already been migrated into the latest stable
SmartMDSD Toolchain release [https://github.com/Servicerobotics-Ulm/SmartMDSD-Toolchain/releases/latest]:

Feature Migration Status in stable
release

Textual Grammar migrated

Graphical Notation under migration

Deployment Integration migrated

Model Generation for
SymTA/S

under migration

If you are interested in understanding all the details of the cause-effect chain approach or to exactly reproduce
the presented example, then please use the technology preview. If you are interested in the development of new
systems using stable tooling, then please use our latest stable SmartMDSD Toolchain release
[https://github.com/Servicerobotics-Ulm/SmartMDSD-Toolchain/releases/latest], where you can already now
develop the cause-effect models textually (which serves as a basis also for the graphical notations that will be
added in one of the upcoming releases). Moreover, we are currently exploring different options for open-source
model analysis tools that we can use in the same way as SymTA/S. If you have questions, ask them at
Discourse Forum [https://discourse.robmosys.eu/].

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start-toolchain:
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start
https://github.com/Servicerobotics-Ulm/SmartMDSD-Toolchain/releases/latest
https://github.com/Servicerobotics-Ulm/SmartMDSD-Toolchain/releases/latest
https://discourse.robmosys.eu/

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start · Last modified: 2019/01/29 14:38
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-

chain:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start2019-01-31

https://mediatum.ub.tum.de/?id=1362587

RobMoSys Wiki
http://www.robmosys.eu

The SmartMDSD Toolchain
The SmartMDSD Toolchain is an
Integrated Development
Environment (IDE) for robotics
software to support system
composition according to the
structures of RobMoSys. It supports
in applying the RobMoSys approach
with the SmartSoft World.

Authors Service Robotics Research Center at the Ulm University of Applied Sciences

Website https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start [https://wiki.servicerobotik-
ulm.de/smartmdsd-toolchain:start]

License BSD3

Getting Started and Download

SmartMDSD Toolchain Website [https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start]
SmartMDSD Toolchain VirtualBox virtual machine image [https://wiki.servicerobotik-ulm.de/virtual-
machine] (development environment preinstalled)
Getting Started Guide [https://wiki.servicerobotik-ulm.de/getting-started-guide]
For documentation and tutorials, please refer to the SmartMDSD Toolchain Website
[https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start]

Tutorials and HowTo's

Running the Gazebo/Tiago/SmartSoft Scenario
Full list of Tutorials [https://wiki.servicerobotik-ulm.de/tutorials:start]. Some highlights are:

Developing Your First Software Component [https://wiki.servicerobotik-ulm.de/tutorials:develop-
your-first-component:start] | video tutorial [https://youtu.be/BRI_HKMilNw]
Developing Your First System: Composing Software Components [https://wiki.servicerobotik-
ulm.de/tutorials:develop-your-first-component:start] | video tutorial [https://youtu.be/BRI_HKMilNw]
Accessing an OPC UA Device: Using the Plain OPC UA Port (DeviceClient) to create a Mixed-
Port Component [https://wiki.servicerobotik-ulm.de/tutorials:opcua-client:start] | video tutorial
[https://youtu.be/uPZ07_Gi3YE]
Composing a System with OPC UA Mixed-Port Components [https://wiki.servicerobotik-
ulm.de/tutorials:opcua-client-system:start-toolchain:] | video tutorial [https://youtu.be/udQiwRdzCVw]
Developing an OPC UA Server: Using the Plain OPC UA Port (ReadServer)
[https://wiki.servicerobotik-ulm.de/tutorials:opcua-server:start] | video tutorial

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:smartsoft:smartmdsd-toolchain:system.png?id=baseline%3Aenvironment_tools%3Asmartsoft%3Asmartmdsd-toolchain%3Astart
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start
https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start
https://wiki.servicerobotik-ulm.de/virtual-machine
https://wiki.servicerobotik-ulm.de/getting-started-guide
https://wiki.servicerobotik-ulm.de/smartmdsd-toolchain:start
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://wiki.servicerobotik-ulm.de/tutorials:start
https://wiki.servicerobotik-ulm.de/tutorials:develop-your-first-component:start
https://youtu.be/BRI_HKMilNw
https://wiki.servicerobotik-ulm.de/tutorials:develop-your-first-component:start
https://youtu.be/BRI_HKMilNw
https://wiki.servicerobotik-ulm.de/tutorials:opcua-client:start
https://youtu.be/uPZ07_Gi3YE
https://wiki.servicerobotik-ulm.de/tutorials:opcua-client-system:start-toolchain:
https://youtu.be/udQiwRdzCVw
https://wiki.servicerobotik-ulm.de/tutorials:opcua-server:start
https://youtu.be/Ho7Fr2KefKQ

[https://youtu.be/Ho7Fr2KefKQ]
Mixed-Port for ROS: Accessing ROS nodes from software components
[https://wiki.servicerobotik-ulm.de/tutorials:ros:mixed-port-component-ros-toolchain:]

For HowTo's see https://wiki.servicerobotik-ulm.de/how-tos:start [https://wiki.servicerobotik-ulm.de/how-
tos:start]

RobMoSys Support and Use Cases

This section contains specific examples (non-complete list) of how the SmartMDSD Toolchain supports the
RobMoSys composition structures:

Support of Skills for Robotic Behavior
Support for the RobMoSys Ecosystem Organization
Support for Managing Cause-Effect Chains in Component Composition
Support for Coordinating Activities and Life Cycle of Software Components
Support for the Flexible Navigation Stack
Support for Service-based Composition

Available Building Blocks and Models

A collection of SmartSoft contents is readily available under Open Source Licenses. They have been developed
using the SmartMDSD Toolchain and are available for immediate reuse.

The following previously developed/modeled building blocks and scenarios are available for immediate use:

Domain Models Repositories [https://github.com/Servicerobotics-Ulm/DomainModelsRepositories]: These
are examples of RobMoSys Composition Tier 2
Component Repository [https://github.com/Servicerobotics-Ulm/ComponentRepository]: These are
examples of previously developed building blocks for Tier 3
System Repository [https://github.com/Servicerobotics-Ulm/SystemRepository]: These are examples of
systems and applications on RobMoSys Composition Tier 3 that are composed from the building blocks
The SmartMDSD Toolchain features the Gazebo/TIAGo/SmartSoft Scenario, another example of a
robot application on Tier 3

For use with the SmartMDSD Toolchain v2, see: List of available components [http://www.servicerobotik-
ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html]

baseline:environment_tools:smartsoft:smartmdsd-toolchain:start · Last modified: 2019/01/31 12:11
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:start2019-01-31

https://wiki.servicerobotik-ulm.de/tutorials:ros:mixed-port-component-ros-toolchain:
https://wiki.servicerobotik-ulm.de/how-tos:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:ecosystem-tiers:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:navigation-stack:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://github.com/Servicerobotics-Ulm/DomainModelsRepositories
https://github.com/Servicerobotics-Ulm/ComponentRepository
https://github.com/Servicerobotics-Ulm/SystemRepository
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
http://www.servicerobotik-ulm.de/drupal/doxygen/components_commrep/group__componentGroup.html

RobMoSys Wiki
http://www.robmosys.eu

Papyrus4Robotics
If you already know what Papyrus4Robotics is and you just want to get started with it, see Getting Started With
Papyrus4Robotics.

Otherwise, read the sections below to learn more Papyrus4Robotics.

Presentation

Papyrus is an industrial-grade open source Model-Based Engineering tool. It is based on standards and
supports Model-Based Design in UML, SysML, MARTE, fUML, PSCS/SM, FMI 2.0 and many more. Papyrus
has been used successfuly in industrial projects and is the base platform for several industrial modeling tools
—read more about Papyrus Use Case Stories [https://eclipse.org/papyrus/testimonials.html].

To address the robotics domain according to the RobMoSys methodology and structures, a set of Papyrus-
based DSLs and tools are being collected under the Papyrus4Robotics umbrella.

It is important to emphasize that RobMoSys-compliant software baselines are not in competition. Indeed,
RobMoSys aims, as one of its primary goals, at the realization of a virtual integration platform built upon
existing tools and standards for the development of robotic systems.

Concretely, this means that the RobMoSys approach and structures can enable model exchange and
collaborative development between, e.g., safety engineers and system integrators who use different
RobMoSys-compliant software baselines. As an example, SmartSoft and its large set of software components
can be used to define the system's functional architecture. Then, a safety module in Papyrus4Robotics can be
used to perform dysfunctional analysis on the architecture's key components, including Hazard Analysis and
Risk Assessment (HARA), Failure Mode and Effects Analysis (FMEA) and Fault Tree Analysis (FTA).
Model-based safety analysis would be enabled by the following components. A dedicated modeling view; a
DSL with the main safety concepts for robotics, e.g., various hazards and safety requirements as specified by
ISO standards 10218-1/2 (industrial robots), 15066 (collaborative industrial robots) and 13482 (personal care
robots); a set of analysis and report generation modules. Read the Aldebaran's use case story
[https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf] to find out more on this subject.

Realization and tools

Papyrus4Robotics uses UML/SysML as underlying realization technology. The platform uses the UML profile

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics
https://eclipse.org/papyrus/testimonials.html
https://eclipse.org/papyrus/resources/aldebaran-usecasestory.pdf
https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:safety_example.png

mechanism to enable the implementation of Domain-Specific Languages (DSLs) that assist RobMoSys's
ecosystem users in designing robotics systems.

RobotML is a DSL specifically oriented to modeling and design of mobile manipulation robotic systems.
RobotML conforms to RobMoSys's foundational principles of separation of roles and concerns. It provides
several view points, including (but not limited to) those for the definition of State Machines, Hardware and
Software components , Controllers and Environment. RobotML domain models allow for the representation of
the system's architecture, control and communication aspects and span across all 5C concerns of Computation,
Coordination, Coordination, Configuration and Composition.

Further modeling views are provided by additional components of Papyrus4Robotics. For example, the
performance view is featured by Papyrus Architect, a Papyrus4Robotics module dedicated to explore quality
attributes of architectures, with a focus on timing properties in real-time applications of embedded (robotic)
systems. It leverages the MARTE (Modeling and Analysis of Real-Time Embedded systems) DSL for the
specification of system architecture (functional/physical) and of timing properties. The performance view
addresses the problem of evaluating the performance of candidate architectures with respect to attributes like
hardware resource utilization.

In addition to DSLs and modeling, Papyrus4Robotics also features code-generation capabilities. Papyrus
Designer [https://wiki.eclipse.org/Papyrus_Software_Designer] supports code generation from models of SW
including embedded and real-time and DDS-based distributed systems as potential targets. In Designer, the
generation starts from a model that includes the definition of software components, hardware nodes and
deployment information. The latter consists of a definition of the instances of components and nodes and an
allocation between these. Code generation is done by a sequence of transformations steps. The model
transformation takes care of some platform specific aspects (e.g. communication mechanisms or thread
allocation), based on non-functional properties.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:robotml_example.png
https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:performance_view.png
https://wiki.eclipse.org/Papyrus_Software_Designer

RobotML includes generators that transform RobotML-compliant models into code for robotic middlewares
(e.g., Orocos-RTT [http://www.orocos.org/rtt]) or simulators (e.g., MORSE
[https://www.openrobots.org/wiki/morse/]).

Conformance to the RobMoSys structures

Some modeling concepts in Papyrus4Robotics are already aligned with the RobMoSys definitions. However,
further refinement and alignment of meta-models is in process and scheduled to be released and productively
used by the end of 2017.

Separation of Levels and tool coverage

Papyrus4Robotics provides implementations for the individual levels listed in Separation of Levels and
Separation of Concerns

Level Corresponding DSL or Tool in Papyrus4Robotics

Task Plot RobotML State Machine

Skill RobotML Inteface

Service RobotML operation (defined in the Skill interface)
Software Component representation in Papyrus Designer

Function C++ library (e.g., libOpenRave, etc.)

Execution
Container

Task and resource representation in Papyrus Designer

OS/Middleware DRM::SRM in UML MARTE

Hardware DRM::HRM in UML MARTE, RobotML’s sensors and
actuators

Platform workbenches in the context of RobMoSys

One major project's focus is on models, software and tools that are generically useful for all possible robotic
systems and applications. This includes systems and applications that can, e.g., pass certification, monitor their
resource usage at runtime, or form systems-of-systems with just a reconfiguration of the available models.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:papyrusdesignercodegen.png
http://www.orocos.org/rtt
https://www.openrobots.org/wiki/morse/

Building such systems and applications require multi-disciplinary competences (beyond robotics) and sets of
platform tools that support best-practices established in near and mature engineering-centric domains, such as
automotive or aerospace.

Possible modeling workbenches enabled by the RobMoSys's software baselines are for example SmartMDSD
Toolchain, the Papyrus4Robotics set of modeling tools. There are many more existing modeling tools that can
be made conformal to the RobMoSys's baseline. In a robotics ecosystem multiple users provide models by
using these workbenches and these models are interfaced over the RobMoSys's baseline.

Some workbenches allow for many different kinds of analysis that are strongly related to good practices to
employ during the development process—as recommended by experts in the complex and critical systems
design domain (read Annex 1 of D5.1 to find out more). This includes (and is not limited to):

verification and co-simulation activities (e.g., based on the FMI 2.0 standard) during early stage of
design, thanks to the definition of a model of computation (MoC) on system level;
handling safety and security aspects as soon as possible and not as an afterthought;
checking whether the amount of reserved resources (hardware/software) is adequate to meet given
performance criteria (e.g., respect of time constraints on end-to-end latencies)

It is unrewarding to define one single modeling workbench that covers all aspects of design, analysis and
synthesis (i.e. code-generation). Instead, because platform tools conform to the RobMoSys structures, models
can be exchanged from one modleing workbench to another to cover all the design needs of the ecosystem
users at all the phases of development.

Resources

Installation procedure
Papyrus [https://eclipse.org/papyrus/]
Papyrus RobotML [https://eclipse.org/papyrus/components/robotml/1.2.0/]
Papyrus Software Designer [https://wiki.eclipse.org/Papyrus/Designer/getting-started]

Documentation and tutorials
Papyrus Documentation [http://www.eclipse.org/papyrus/documentation.html]
Papyrus RobotML Documentation [https://eclipse.org/papyrus/components/robotml/1.2.0/]
Papyrus Software Designer User Guide [https://wiki.eclipse.org/index.php?
title=Papyrus_Software_Designer&redirect=no]

Videos
Model driven safety assessment for robotics [https://www.youtube.com/watch?v=CnklgQ7tWns]
Modeling and safety assessment for Nao [https://www.youtube.com/watch?v=-k1xWJr4wg0]
More videos on Papyrus Companions
[https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA]

Selected publications
Selma Kchir, Saadia Dhouib, Jérémie Tatibouet, Baptiste Gradoussoff, Max Da Silva Simoes,
RobotML for industrial robots: Design and simulation of manipulation scenarios. ETFA 2016: 1-
8
Nataliya Yakymets, S. Dhouib, Hadi Jaber, Agnes Lanusse, Model-driven safety assessment of
robotic systems. IROS 2013: 1137-1142
Saadia Dhouib, Selma Kchir, Serge Stinckwich, Tewfik Ziadi, Mikal Ziane, RobotML, a
Domain-Specific Language to Design, Simulate and Deploy Robotic Applications. SIMPAR
2012: 149-160

baseline:environment_tools:papyrus4robotics · Last modified: 2018/04/30 15:57
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics 2019-01-31

https://eclipse.org/papyrus/
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/Papyrus/Designer/getting-started
http://www.eclipse.org/papyrus/documentation.html
https://eclipse.org/papyrus/components/robotml/1.2.0/
https://wiki.eclipse.org/index.php?title=Papyrus_Software_Designer&redirect=no
https://www.youtube.com/watch?v=CnklgQ7tWns
https://www.youtube.com/watch?v=-k1xWJr4wg0
https://www.youtube.com/channel/UCxyPoBlZc_rKLS7_K2dtwYA

RobMoSys Wiki
http://www.robmosys.eu

RoQME Plugins for the SmartMDSD Toolchain
Tooling to enable modeling and monitoring of QoS in robotics systems

Authors Cristina Vicente-Chicote, Universidad de Extremadura (Spain), Pablo García-Ojeda,
Universidad de Extremadura (Spain),Daniel García-Pérez, Universidad de Extremadura
(Spain),Jesús Martínez, Universidad de Málaga (Spain),Adrián Romero-Garcés, Universidad
de Málaga (Spain),Juan F. Inglés-Romero, Biometric Vox, S.L. (Spain)

Website https://robmosys.eu/roqme/ [https://robmosys.eu/roqme/]

License Open source: To be defined

Screenshot

Description

The RoQME Plugins for the SmartMDSD Toolchain are to be released in February/March 2019.

Features

Support for Domain Experts (Tier 2):
A textual model editor enabling the creation and validation of QoS models

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/roqme/
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:safetyandperformance.png?id=baseline%3Aenvironment_tools%3Aroqme-plugins

Support for QoS Experts (Tier 3):
A textual model editor enabling the creation and validation of QoS models

Support for System Builders (Tier 3):
A model-to-code transformation enabling the generation of a QoS Metrics Provider component
model that conforms-to the RobMoSys structures. It is generated from the models by the QoS
Engineer.
The component generated from a RoQME model (QoS Metrics Provider) can be seamlessly
integrated into a RobMoSys architecture and connected to any component willing to use the
computed metrics.

Run-Time support:
Visualization for metrics

Relation to other RobMoSys Tools

The collection of RoQME plugins is intended to be used with the SmartMDSD Toolchain.

Further Resources

RoQME Integrated Technical Project [https://robmosys.eu/roqme]
Publications:

M. Lutz, J.F. Inglés-Romero, D. Stampfer, A. Lotz, C. Vicente-Chicote, C. Schlegel. "Managing
Variability as a Means to Promote Composability: A Robotics Perspective"
[https://www.researchgate.net/publication/328792784], in New Perspectives on Information Systems
Modeling and Design. IGI-Global, November 2018, ch. 12, pp. 274-295. DOI: 10.4018/978-1-
5225-7271-8.ch012 [http://dx.doi.org/10.4018/978-1-5225-7271-8.ch012]
J. M. Espín López, R. Font, J. F. Inglés-Romero, C. Vicente-Chicote. Towards the Application of
Global Quality-of-Service Metrics in Biometric Systems
[https://www.researchgate.net/publication/328890945]. Proc. IberSPEECH 2018. Barcelona (Spain),
21-23 November 2018. DOI: 10.21437/IberSPEECH.2018
[http://dx.doi.org/10.21437/IberSPEECH.2018]
J.F. Inglés-Romero, J.M. Espín, R. Jiménez, R. Font, C. Vicente-Chicote. Towards the Use of
Quality of Service Metrics in Reinforcement Learning
[https://www.researchgate.net/publication/327243001_Towards_the_Use_of_Quality-of-
Service_Metrics_in_Reinforcement_Learning_A_Robotics_Example]: A Robotics Example. Proc.
5th International Workshop on Model-driven Robot Software Engineering (MORSE’18), in
conjunction with MODELS 2018. Copenhagen (Denmark), 15 October 2018.
C. Vicente-Chicote, J.F. Inglés-Romero, J. Martínez, D. Stampfer, A. Lotz, M. Lutz, C. Schlegel.
A Component-Based and Model-Driven Approach to Deal with Non-Functional Properties
through Global QoS Metrics [https://www.researchgate.net/publication/328102310_A_Component-
Based_and_Model-Driven_Approach_to_Deal_with_Non-
Functional_Properties_through_Global_QoS_Metrics]. Proc. 5th International Workshop on
Interplay of Model-Driven and Component-Based Software Engineering (ModComp'18), in
conjunction with MODELS 2018. Copenhagen (Denmark), 14 October 2018.
C. Vicente-Chicote, J. Berrocal, J. García-Alonso, J. Hernández, A. J. Bandera, J. Martínez, A.
Romero-Garcés, R. Font and J.F. Inglés-Romero. RoQME: Dealing with Non-Functional
Properties through Global Robot QoS Metrics
[https://www.researchgate.net/publication/327239527]. XXIII Jornadas de Ingeniería del Software y
Bases de Datos (JISBD'18), Sevilla (España), 17-19 September, 2018.

RoQME in action: QoS metrics in an intralogistics scenario (video)
https://www.youtube.com/watch?v=fb1uLT5CNjg&feature=youtu.be
[https://www.youtube.com/watch?v=fb1uLT5CNjg&feature=youtu.be]

Social Networks:

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins 2019-01-31

https://robmosys.eu/roqme
https://www.researchgate.net/publication/328792784
http://dx.doi.org/10.4018/978-1-5225-7271-8.ch012
https://www.researchgate.net/publication/328890945
http://dx.doi.org/10.21437/IberSPEECH.2018
https://www.researchgate.net/publication/327243001_Towards_the_Use_of_Quality-of-Service_Metrics_in_Reinforcement_Learning_A_Robotics_Example
https://www.researchgate.net/publication/328102310_A_Component-Based_and_Model-Driven_Approach_to_Deal_with_Non-Functional_Properties_through_Global_QoS_Metrics
https://www.researchgate.net/publication/327239527
https://www.youtube.com/watch?v=fb1uLT5CNjg&feature=youtu.be

ResearchGate Project: https://www.researchgate.net/project/RoQME-QoS-Metrics-on-NFP
[https://www.researchgate.net/project/RoQME-QoS-Metrics-on-NFP]
LinkedIn Group: https://www.linkedin.com/groups/12096769/
[https://www.linkedin.com/groups/12096769/]
Twitter Account: https://twitter.com/RoQME_ITP [https://twitter.com/RoQME_ITP]

baseline:environment_tools:roqme-plugins · Last modified: 2019/01/29 12:52
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:roqme-plugins 2019-01-31

https://www.researchgate.net/project/RoQME-QoS-Metrics-on-NFP
https://www.linkedin.com/groups/12096769/
https://twitter.com/RoQME_ITP

RobMoSys Wiki
http://www.robmosys.eu

Getting Started With Papyrus4Robotics

Installation

Papyrus4Robotics is distributed as a self-contained Eclipse RCP [https://wiki.eclipse.org/Rich_Client_Platform].

The RCP for your OS (64bits) is available from the links below:

Windows [ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-
win32.win32.x86_64.zip]
Linux [ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-linux.gtk.x86_64.zip]
MacOS [ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-
macosx.cocoa.x86_64.tar.gz]

To install it, just unpack the RCP archive in a directory of choice.

To run it, make sure that you have a Java 8 or newer JRE/JDK. Then just launch the papyrus-robmosys
executable.

Alternatively, just install any current Eclipse or use an existing installation and add the following update site to
it:

* ftp://ftp.cea.fr/pub/lise/robmosys/updates/ [ftp://ftp.cea.fr/pub/lise/robmosys/updates]

Running an Example

Papyrus4Robotics comes with an installed example to get you started. To run the example, just click
New→Example and accept the default propositions in the wizard.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://wiki.eclipse.org/Rich_Client_Platform
ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-win32.win32.x86_64.zip
ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-linux.gtk.x86_64.zip
ftp://ftp.cea.fr/pub/lise/robmosys/RCPs/org.eclipse.papyrus.robmosys.product-macosx.cocoa.x86_64.tar.gz
ftp://ftp.cea.fr/pub/lise/robmosys/updates

The Example Explained

Introduction

This example shows how Papyrus4Robotics supports the service-based approach for the composition of
software components.

Composition in an Ecosystem organized in tiers is the approach adopted by RobMoSys to system integration.
Next sections discuss how tier 2 and tier 3 participants use Papyrus4Robotics to model a simple service-based
composition of a mapper component and a planner component.

The illustration below corresponds to the role descriptions, as taken from the RobMoSys wiki.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:diy-runexample.gif
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start

Domain Expert (Tier 2)

Tier 2 are robotics experts who define a complete characterization of services in robotics domains, e.g.,
mapping, planning, localization, etc. Tier 2 structures each robotics domain by creating domain-models that
cover a number of aspects, including data structures and communication semantics. Service designers are the
domain experts on Tier 2 that design individual service definitions for use by Tier 3.

The picture below shows a portion of data structures defined for the mapping domain in this example.

Papyrus4Robotics leverages concepts from OMG's MARTE [https://www.omg.org/spec/MARTE/] NFP and VSL
profiles to comply with RobMoSys' specifications on digital data representation. Built-in type definitions can
be imported from the BasicNFP_Types MARTE library and specialized for a specific domain by using a
dedicated palette (right side of the picture). Leveraging on MARTE, Papyrus4Robotics supports physical
units descriptions to formally define unambiguous semantics of units of measurements in data types.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/composition:service-based-composition:service-based-composition-approach.png
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier2-data_map.png
https://www.omg.org/spec/MARTE/

Once the communicated data structures (Communication Objects, identified with the CO icon on the top left
corner) are defined, the communication pattern usage can be formalized. The next picture shows the model that
describes the MappingSdef service. In this example, MappingSdef uses the Push pattern and selects the Map
data type as communicated data structure.

Component Suppliers (Tier 3)

Component suppliers at Tier 3 provide models of software component definitions.

AcmeMapper

The model below shows a mapper component developed by a company called AcmeCorp (hence
AcmeMapper), which provides a fully compliant implementation of the MappingSdef service definition above.

The example focuses on the modeling of a single component port (pMap) providing the mapping service.
Aligned with the standard UML rules of interface realization, this is achieved by assigning the port a

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier2-servicedef_map.png
https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier3-acmemapper.png

ComponentService item as a type (AcmeMapCS) that realizes MappingSdef.

AcmeMapper contains one Parameter structure, that represents a set of parameters that make the component
configurable for reuse in different scenarios by the system builder or even at run-time. The Parameter
structure content is visualized in the model editor by selecting the Paramter icon and the Parameters
Settings tab in the property view (see below).

In this simple example, AcmeMapper has 2 configurable parameters with built-in types. However composite
value specifications (collection, tuple, choice, etc.) can be specified as well, using the MARTE VSL syntax.

AcmeMapper defines one activity (it could define more), which is a OS-agnostic representation of a thread.
Activities provide wrappers for functions (algorithms). Activities do have set of parameters for configuration
(e.g., interarrival range, that is max and min activation frequencies). Similarly to component parameters,
activity paramters can be viewed and set through the Parameters Settings tab in the property view.

EmcaPlanner

The model below shows a planner component developed by a company called EmcaInc (hence EmcaPlanner).

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier3-acmemapper-parameters.png

The example focuses on the definition of two component ports. pPlan provides a implementation of
PlanningSdef (a planning service definition model not discussed in this document). rMap requires a fully
compliant implementation of MappingSdef. To model the service requirement, in agreement with the standard
UML rules, the usage item is used to create a dependency between the EmcaMapCS and MappingSdef.

System Builder (Tier 3)

System builders instantiate component definitions to provide a platform-independent specification of a
software system. The model below shows the instantiation and connection of one instance of AcmeMapper and
one instance of EmcaPlanner.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier3-emcaplanner.png
https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier3-system.png

It is now assumed that the mapper component instance must work outdoor. The default configuration of
AcmeMapper component definition was indoor, so the component instance m must be re-configured by the
system builder.

For a component instance the parameter set is accessible by clicking on the instance itself and selecting the
Parameters Settings tab in the property view. The next picture shows the value of indoor parameter is set
to false. Yellow highlighting visually enforces the message that the parameter value is now different from the
default one.

Conclusions

This example shows a structural model in the context of composition of software components. It shows how
different tiers contribute models to achieve composition of software components, using service-definitions as
central architectural element for it. Then it focuses on one instance of the mapper component and shows a
simple reconfiguration of one of its parameters.

Do It Yourself

This section is in progress. More content will be added shortly.

Connect ComponentInstance Items

Connections between component instances can be drawn by using the connects item from the system
component architecture palette.

First, select connects from the palette. Then point and click the source and target component ports to be
connected. Note that the connection is only possible if

both source and target elements are component ports
both ports provide/require compatible services. In other words, for 2 connected (component) ports, the
type represented by a component service must be instance-of the same service definition.

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:tier3-system-mreconfig.png

baseline:environment_tools:getting_started_with_papyrus4robotics · Last modified: 2019/01/09 16:52
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:getting_started_with_papyrus4robotics2019-01-31

https://robmosys.eu/wiki-sn-03/_media/baseline:environment_tools:diy-connectcomponentinstances.gif

RobMoSys Wiki
http://www.robmosys.eu

Groot
Groot, an IDE to create, modify and monitor BehaviorTrees.

Authors Davide Faconti, Eurecat

Website https://github.com/BehaviorTree/Groot [https://github.com/BehaviorTree/Groot]

License MIT

Screenshot

Description
Groot is an optional graphical application that can be used together with BehaviorTree.CPP (BT.CPP) to
improve the efficiency and productivity of the Behavior Developer.

In software programming, it is possible to write code using a plain text editor, but a modern IDE allows the
software developer to be much more productive. Similarly, any behavior tree is ultimately represented in a
XML format, that can be edited by hand, but a tool like Groot provides many additional features and make the
development process easier, more reliable and, ultimately, more enjoyable.

Features
Groot can be used to either:

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://github.com/BehaviorTree/Groot
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:groot.png?id=baseline%3Aenvironment_tools%3Agroot

Create or Edit behavior trees that are executed by the BT.CPP engine.
Monitor a BT.CPP engine in real-time, showing the current state of the robot.
Visualize off-line logs recorded using the BT.CPP engine.

Relation to other RobMoSys Tools
Groot can load the palette of available Actions looking at the set of available skills in the SmartMDSD
Toolchain.

Further Resources
Further Resources

MOOD2Be Integrated Technical Project [https://robmosys.eu/mood2be]
https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/
[https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/]

baseline:environment_tools:groot · Last modified: 2019/01/29 12:47
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:groot

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:groot 2019-01-31

https://robmosys.eu/mood2be
https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/

RobMoSys Wiki
http://www.robmosys.eu

BehaviorTree.CPP
BehaviorTree.CPP is a C++ framework to design, execute, monitor and log robotics behaviors, using
Behavior Trees.

Authors Davide Faconti, Eurecat

Website https://behaviortree.github.io/BehaviorTree.CPP/
[https://behaviortree.github.io/BehaviorTree.CPP/]

License MIT

Screenshot

Description

Hierarchical Finite State Machines are often used to design the behaviors of a robot. The purpose of this
abstraction is to have a better Separation of Concern (Computation vs Coordination) and Separation of Roles
(Component Developer vs Behavior Developer). This library provides an alternative to HFSM based on
BehaviorTrees. Unlike most of the other implementations which use scripting languages such as Lua or Python,
this library is implemented in C++. Nevertheless, behaviors can be modified and loaded at run-time without
the need for recompiling the user’s application. The framework provides multiple tools to help the user design,
compose and debug robots behaviors.

Features

BehviorTree.CPP provides multiple tools to help the user design, compose and debug robots behaviors to the
Behavior Developer. State transitions can be recorded on file or be published in real-time to allow tools such as
Groot to visualize them in a human friendly way.

Relation to other RobMoSys Tools

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://behaviortree.github.io/BehaviorTree.CPP/
https://robmosys.eu/wiki-sn-03/_detail/baseline:environment_tools:behaviortree.png?id=baseline%3Aenvironment_tools%3Abehaviortree.cpp

The BT.CPP library is completely Middleware independent. In the context of RobMosys, it was demonstrated
how a generic execution engine can load a specific plugin which is meant to interact with the SmartMDSD
Toolchain.

This plugins contains the interface with software components or the more abstract concept of “skills”. In other
words, reading the file manifest containing the available skills, the engine can register the corresponding
Actions programmatically at run-time, freeing up the user from both manual code writing and the need for
code generation.

Further Resources

MOOD2Be Integrated Technical Project [https://robmosys.eu/mood2be]
Tutorials: https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/
[https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/]
https://github.com/BehaviorTree/BehaviorTree.CPP [https://github.com/BehaviorTree/BehaviorTree.CPP]

baseline:environment_tools:behaviortree.cpp · Last modified: 2019/01/29 15:27
http://www.robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp

http://robmosys.eu/wiki-sn-03/baseline:environment_tools:behaviortree.cpp 2019-01-31

https://robmosys.eu/mood2be
https://behaviortree.github.io/BehaviorTree.CPP/BT_basics/
https://github.com/BehaviorTree/BehaviorTree.CPP

RobMoSys Wiki
http://www.robmosys.eu

Other Approaches in the RobMoSys Context

RobMoSys follows a reuse-oriented approach. This means that
reinvention should be kept to a minimum and existing
approaches should be used wherever possible. The following
list provides some common approaches that are considered
relevant within the RobMoSys context.

General Purpose Modeling Languages (SysML/UML)
and Dynamic-Realtime-Embedded (DRE) domains
(AADL, MARTE, etc.)
Robotics Approaches (ROS, YARP, RTC, etc.)
Middlewares (DDS)
Industry 4.0 domain: OPC UA

other_approaches:start · Last modified: 2018/06/29 14:05
http://www.robmosys.eu/wiki-sn-03/other_approaches:start

http://robmosys.eu/wiki-sn-03/other_approaches:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/modeling:robmosys-vs-general-modeling-variant1.png?id=other_approaches%3Astart
https://robmosys.eu/wiki-sn-03/other_approaches:modeling_languages
https://robmosys.eu/wiki-sn-03/other_approaches:opc-ua

RobMoSys Wiki
http://www.robmosys.eu

OPC Unified Architecture (OPC UA)
The organization of an ecosystem in three tiers can also be found in other domains. For example, a significant
part of the industry 4.0 domain is shifting towards the OPC Unified Architecture (OPC UA)
[https://opcfoundation.org/]. OPC UA is a standard for machine-to-machine communication comprising
communication infrastructure and information models for semantic data exchange. OPC UA is standardizing
connectivity of industrial devices and enables the interoperability among products of different vendors. It does
not yet address the next level of interoperability which we call “composability”.

The OPC UA ecosystem is in its structures exactly conformant to the explicated tiers of the RobMoSys
ecosystem approach. The OPC foundation is the driver in tier 1, the companion specifications belong to tier 2
and finally there are the users at tier 3. The strong point about OPC UA is that it is driven by industry in a joint
effort and that they successfully manage the ramp up of an ecosystem along these tiers.

A direct comparison of the RobMoSys Ecosystem with OPC UA is given in the figure below.

As prominent example for domain models (companion specifications), VDMA is working on companion
specifications for vision and robotics. Companion specifications sometimes contain additional concepts that
have evolved in a particular domain, but that are generally applicable. For example, the companion
specification for vision foresees a generic state automaton for components with component-specific sub-states
—a very similar concept to the RobMoSys component life-cycle and communication pattern "state pattern". In
the long-run, they may be adopted by OPC UA itself, thus move from Tier 2 to Tier 3. This movement of
structures describes the evolvement of an ecosystem and also has been identified for RobMoSys (see wiki page
on „Tier 1 in detail“). OPC UA is actively postulating the creation of companion specifications by providing
support and guidance.

OPC UA eases device integration thanks to an overall methodology (Tier 1) and domain-specific standards
(composition Tier 2). Device suppliers now can adopt the Tier 2 standards and gain compatibility with users
that expect these standards. OPC UA, however, does not specifically aim for composition and is, in fact, less
suitable for composition of software components. It misses adequate abstractions and concepts (e.g. such as
RobMoSys communication patterns). However, composability starts being addressed in OPC UA as it can be
observed in recent developments that are on the way to introduce the concept of skills.

OPC UA can also be used as an underlying communication infrastructure below the RobMoSys structures. In
the context of composition, the challenge with OPC UA is to introduce additional structures that enable
composition. This is done by, for example, the RobMoSys communication patterns. This is where the German
national BMWi/PAiCE Project “Service Robot Network” (SeRoNet) is adopting parts of the RobMoSys
composition structures and provides a mapping to OPC UA. Thereby, SeRoNet can fully benefit from
composition as introduced by RobMoSys but also manages the seamless integration with the traditional OPC

http://robmosys.eu/wiki-sn-03/other_approaches:opc-ua 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://opcfoundation.org/
https://robmosys.eu/wiki-sn-03/_detail/other_approaches:composition-tiers-opcua.png?id=other_approaches%3Aopc-ua
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern

UA world, for example to use OPC UA powered devices.

In general, the industry 4.0 world based on OPC UA has a fully conformant way of thinking with respect to the
overall RobMoSys world. Thus, there is a very good chance to communicate the RobMoSys contributions to
that domain and thereby link the robotics domain with the automation domain. While OPC UA and its
companion specifications at the moment are at the level of integration with a roadmap towards the next levels
which we call composability, RobMoSys already now proposes solutions to address composability. Due to the
very same ecosystem structures, there is a very good chance to enable adoption of the RobMoSys outcomes
within the industry driven OPC UA automation domain. For RobMoSys, the strength of OPC UA is that it
provides standardized and uniform ways to access all kinds of devices like sensors, actuators, machineries,
cloud services etc. RobMoSys puts its focus on the software composition for most complex sensori-motor
systems which then can get networked with industry 4.0 environments via OPC UA.

See also

Ecosystem Organization
Tier 1 in Detail
OPC UA Vision Companion Specification https://opcfoundation.org/markets-collaboration/vdma-
machine-vision [https://opcfoundation.org/markets-collaboration/vdma-machine-vision]
OPC UA Robotics Companion Specification: https://opcfoundation.org/markets-collaboration/vdma-
robotics [https://opcfoundation.org/markets-collaboration/vdma-robotics]
BMWi/PAiCE Project “Service Robot Network”: https://www.seronet-projekt.de [https://www.seronet-
projekt.de]
Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC Unified Architecture. 1st ed.
Springer-Verlag Berlin Heidelberg, 2009. ISBN: 978-3-540-68898-3. DOI: 10.1007/978-3-540-68899-
0.

Acknowledgement

This document contains material from:

[Stampfer2018] Dennis Stampfer, "Contributions to System Composition using a System Design
Process driven by Service Definitions for Service Robotics". Dissertation, Technische Universität
München, München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-
20180425-1399658-1-2], especially Section “2.5.3 Industrial Automation and Industry 4.0”

other_approaches:opc-ua · Last modified: 2018/06/29 16:32
http://www.robmosys.eu/wiki-sn-03/other_approaches:opc-ua

http://robmosys.eu/wiki-sn-03/other_approaches:opc-ua 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://opcfoundation.org/markets-collaboration/vdma-machine-vision
https://opcfoundation.org/markets-collaboration/vdma-robotics
https://www.seronet-projekt.de
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

General Purpose Modeling Languages and
Dynamic-Realtime-Embedded domains
SysML, SoaML, AADL, MARTE and others are flexible general purpose modeling approaches for systems.
They favor freedom of choice. While they often provide different modeling views, these views are not
connected such that overall system consistency can be ensured throughout all potential development phases.
This hinders separation of roles that is required for successful system composition and therefore is in contrast
with the overall needs for modeling in RobMoSys.

The focus of RobMoSys is on composability and consistency of the different views such that the different roles
contribute in a consistent and composable way to the system under specification and development. This
requires more elaborate structures to connect the different views in a consistent way. This can be achieved via
superordinated meta-model structures and via model-to-model transformations.

Of course, the structures of RobMoSys will be inspired by, for example, the above approaches wherever
appropriate. The RobMoSys structures might enable linking the different modeling views of the mentioned
modeling approaches.

For example, AADL requires more abstract, yet consistent, modeling views on top, while other approaches
such as SysML might be subprofiled, thus providing more detailed, yet again consistent, robotic-specific views
underneath. Many of the (meta-model) structures and abstractions in RobMoSys focus on transformations (and
exchange of knowledge) between well known and widely accepted modeling views.

Within the context of UML the term “semantic variation point” has been coined to express the purposeful
semantic ambiguity for certain UML elements. Because UML is a general purpose modeling language, this
semantic ambiguity makes sense and can be narrowed within the derived domain-specific models using e.g. the
UML profile mechanism. Moreover, even the domain-specific models can still expose some semantic
variability that is closed within concrete realizations (e.g. through code generation or reference
implementations). In this sense, RobMoSys as well offers different levels of abstraction for modeling where the
higher levels (such as e.g. the block-port-connector) are more general purpose (leaving open some semantic
variability) and lower (i.e. domain-specific) abstraction levels (such as e.g. the RobMoSys composition
structures) that narrow this semantic variability.

other_approaches:modeling_languages · Last modified: 2017/06/21 20:06
http://www.robmosys.eu/wiki-sn-03/other_approaches:modeling_languages

http://robmosys.eu/wiki-sn-03/other_approaches:modeling_languages 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start

RobMoSys Wiki
http://www.robmosys.eu

Tier 1: Modeling Foundations

RobMoSys considers Model-Driven Engineering (MDE) as the
main technology to realize the so far independent RobMoSys
structures and to implement model-driven tooling. The wiki
pages below collect some basic modeling principles related to
realizing the RobMoSys structures.

Roadmap of MetaModeling
Modeling Principles

Modeling Twin
Realization Alternatives

Tier 1 Structure
Scientific Grounding: Hypergraph and Entity-Relation model
Block-Port-Connector
RobMoSys Composition Structures (and metamodels)
Views which are used by roles

modeling:start · Last modified: 2017/08/01 14:05
http://www.robmosys.eu/wiki-sn-03/modeling:start

http://robmosys.eu/wiki-sn-03/modeling:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-03/modeling:roadmap
https://robmosys.eu/wiki-sn-03/modeling:principles
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Preliminary Ecore implementation of ER and BPC
meta-models

Entity-Relation (ER) meta-model

The concepts provided by the ER meta-model comply with the definitions in Scientific Grounding

Block-Port-Connector (BPC) meta-model

The following meta-model includes concepts that are defined in Block-Port-Connector

http://robmosys.eu/wiki-sn-03/modeling:realization_alternatives:ecore_implem 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-03/_media/modeling:realization_alternatives:er.png
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/_media/modeling:realization_alternatives:bpc.png

Eclipse/Ecore implementation of ER and BPC meta-models

Eclipse/Ecore implementation of the above meta-models can be downloaded here

To access these meta-models you will need to:

1. Install Eclipse Neon Modeling [http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3].

2. Import the plugins in your workspace.

modeling:realization_alternatives:ecore_implem · Last modified: 2017/06/23 12:36
http://www.robmosys.eu/wiki-sn-03/modeling:realization_alternatives:ecore_implem

http://robmosys.eu/wiki-sn-03/modeling:realization_alternatives:ecore_implem 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:realization_alternatives:robmosys_ecore_metamodels_plugins.zip
http://www.eclipse.org/downloads/packages/eclipse-modeling-tools/neon3

RobMoSys Wiki
http://www.robmosys.eu

Roadmap of MetaModeling
The RobMoSys project makes available a baseline of already existing metamodels. They sufficiently conform
to the RobMoSys composition structures. For example, the SmartMARS metamodel form the The SmartSoft
World and also metamodels in the Papyrus4Robotics World.

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures. RobMoSys Structures: Realization Alternatives describes this in more detail and also lists
alternatives.

See also

The given description also holds true for the Roadmap of Tools and Software
Conformance of SmartMARS Metamodel to RobMoSys composition structures

modeling:roadmap · Last modified: 2017/06/23 12:57
http://www.robmosys.eu/wiki-sn-03/modeling:roadmap

http://robmosys.eu/wiki-sn-03/modeling:roadmap 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:papyrus4robotics
https://robmosys.eu/wiki-sn-03/modeling:realization_alternatives
https://robmosys.eu/wiki-sn-03/_detail/modeling:roadmap.png?id=modeling%3Aroadmap
https://robmosys.eu/wiki-sn-03/baseline:roadmap
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start

RobMoSys Wiki
http://www.robmosys.eu

Tier 1 in Detail

Tier 1 provides the general structures for composition. The figure below shows the details of the structure of
Tier-1 that refines into three levels. All the elements in Tier-1 are summarized as meta-meta-models. Moreover,
the meta-meta-models within Tier-1 are organized themselves in a hierarchical manner in order to best serve
the realization of the RobMoSys objectives. The lowest level within Tier 1 contains the RobMoSys
composition structures. Tier-2 then conforms to these composition structures.

The levels of Tier 1

Hierarchical Hypergraphs and Entity-Relation Model

Hierarchical Hypergraphs can be considered as the topmost abstraction level within Tier 1. It allows definition
of a sound scientific grounding and a formalization in a most flexible model. Any modeling structure can be
represented by a Hypergraph. The specific structures on the levels below are always specializations (i.e.
refinements) of a Hypergraph.

The Hypergraph and Entity-Relation Model page provides additional details.

Block-Port-Connector

The next level on Tier 1 is the definition of blocks, ports and connectors as a general meta-level that allows
definition of any domain-specific meta-model such as e.g. the RobMoSys composition structure (see below).

http://robmosys.eu/wiki-sn-03/modeling:tier1 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/modeling:composition-tier1-detail.png?id=modeling%3Atier1
https://robmosys.eu/wiki-sn-03/modeling:hypergraph-er

The Block-Port-Connector page provides a more detailed description.

RobMoSys Composition Structure

RobMoSys composition structures provide domain-specific meta-structures that are used on the lower Tier 2
and Tier 3 to design robotics models in specific robotics subdomains.

The RobMoSys Composition Structures page provides further details.

The RobMoSys views are a complementary technique to the RobMoSys composition structures. This technique
supports definition of role-specific modeling views that allow modification and refinement of specific
primitives without breaking the overall structures. This is a useful technique that directly supports separation of
roles and at the same time allows realization of model-driven tooling that ensures overall system consistency.

The RobMoSys Views page provides further details.

Initial Structures and Evolvement of Tier 1

There are two approaches on how to come up with the composition structures in Tier 1. RobMoSys is a
community effort and will guide contributors in one of these approaches such that their knowledge and
methodology becomes accessible through the composition structures. For example, the following two
approaches have already proven to be successful with respect to the integrated technical projects (ITPs) of
RobMoSys.

The first and initial approach to come up with composition structures is to formalize architectural patterns.

The second approach is to evolve the composition structures over time by generalizing existing domain-
specific structures. In some cases, the composition structures of Tier 1 may not be sufficient or not complete for
modeling in a particular robotics domain. This situation requires additional structures to be added on Tier 2.
However, many of these structures tend to be generally applicable or may be generalized such that they
become domain-independent and finally part of the composition structures. This is illustrated in the figure
below.

The first step (step 1, figure above) is to identify the additional structures that are independent of an application
http://robmosys.eu/wiki-sn-03/modeling:tier1 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/_detail/modeling:composition-tier1-detail-involvement-explained.png?id=modeling%3Atier1

but general to a domain. The second step is to transfer these structures to Tier 1, thereby making them domain
independent (step 2, figure above). The final step is to work on the consistency of the newly identified
structures with the existing composition structures with the aim to integrate them (step 3, figure above).

For example, it is necessary to shape them to the overall RobMoSys approach, taking separation of roles,
composability, etc. into account. This results in the next generation of harmonized composition structures (step
4, figure above).

modeling:tier1 · Last modified: 2018/06/29 17:33
http://www.robmosys.eu/wiki-sn-03/modeling:tier1

http://robmosys.eu/wiki-sn-03/modeling:tier1 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:tier-1-in-detail-again.png

RobMoSys Wiki
http://www.robmosys.eu

Scientific Grounding
The highest abstraction level that is considered in RobMoSys is related to Hierarchical Hypergraphs and

Entity-Relation models. The Entity-Relationship1) model was one of the first approaches for formal “data base”

models of knowledge.2) It has gained renewed interest because of the rising popularity of the “Semantic

Web”3).

One of the main challenges is to represent context, more in particular, to deal with the combinatorial explosion
in the number of relationships needed to represent – and interconnect – all relevant pieces of information and
knowledge in multi-domain ICT and engineering systems. Such interconnected knowledge forms graph
networks of links and properties. This fact poses difficulties to Lisp, Prolog, or other “programming languages”
for Artificial Intelligence (AI), since they only have representations for relationship trees as first-class citizens.

The same holds for the frame languages [https://en.wikipedia.org/wiki/Frame_language] 4) in AI, which
considered “multiple inheritance” as a key feature. This last feature, together with “data encapsulation”, are

two major aspects of strict object oriented languages and models, that make “open world” 5)6) knowledge
representations difficult; the SOLID [https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)] principles of
object orientation better support knowledge representation, especially via its “D” feature, that is, the
Dependency inversion principle, which states that one should “depend upon abstractions, not on concretions”.
However, none of these approaches offers infinitely composable knowledge representations, because they only
partially support the essential features outlined in the sections below.

Hierarchical Hypergraph

The modern, higher-order, version of the Entity-Relationship model is that of a hierarchical (property)

hypergraph7)8):

hierarchical : every node and every edge can be a full graph in itself. In other words, any Relation can
be considered an Entity in itself, and can hence be used as an argument in another, higher-order
Relationship.
hypergraph: every edge can connect more than two nodes; that is, it is an n-ary “hyperedge”
property meta data: every node and every edge in the graph has a property data structure attached to it;
two (mandatory) parts of those properties are the following meta data:

unique node/edge identifier : other relationships in the graph can refer to this node or edge.
meta model identifier : each node or edge has a type, indicated by the unique identifier of the
graph that models that type.

Often used synonyms for the term “Entity” are: object, concept, atom, primitive. “Relationships” are also
called: rules, axioms, constraints, links, expressions. Often used extra meta data is the so-called provenance of
a model: who made it? when? what version is it? Etcetera. State of the art formal meta models to represent such

provenance are W3C provenance9), and Dublin Core10).

Entity-Relation Model

Each “thing” to be modelled will have a number of data structures that represent its properties. That can be
done via (possibly nested) key-value pairs, with each key having, a type, a unique identifier (with which
Relationships can refer to it), and a role to play in the “thing” properties. While efficient implementations of

http://robmosys.eu/wiki-sn-03/modeling:hypergraph-er 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)

those properties can be realised with the rich data structure primitives in computer programming languages, the
meaning of such properties, as just described above, is a hierarchical hypergraph.

A Relationship between Entities is a named directed graph, representing the Role that each Entity plays as an
Argument in the Relationship:

the top node carries the meta data of the Relationship, of which the two major ones are: (i) its unique
“identifier ” (with which other Relationships can refer to it), and (ii) the context (all the externally
defined Entities and Relationships whose names are being used in the model of this Relationship). Other
meta data in the top node are: type and provenance. In addition to the identifier (which in principle
should only be computer-readable), models often carry human-readable names and description strings,
possibly in various languages. However, these are not used in linking Entities together into
Relationships.
from the top node, there are Role edges towards each of the Entity nodes that figure as Arguments in the
relationship. Each Role edge also has similar meta data properties as the top node, but the most
distinguishing one represents the purpose (“role”) of a particular argument in the Relationship. This is
formally represented by a specific Relationship in itself.

Each “value” in an Argument has a domain (or “universe of discourse”): the type and the set(s) of possible
values that the “key” can have. In other words, that domain brings its own property data structure to each
argument. Remark the recurring pattern of “identifiers”, “types” and “contexts”, in the nodes and edges of a
hierarchical hypergraph. And also remark that the graph is directed : pointing from the Relationship to the
Entities, and down to the latters’ properties.

Natural modelling levels of abstraction

“Abstraction” is a key concept in modelling, but it is hard to define axiomatically. Below, three core “meta

meta” forms of modelling are described11):

mereology – parts: there is already quite some (mature) formalisation available in the state of the art, to
structure “Entities’; for example, the Wikipedia article [https://en.wikipedia.org/wiki/Mereology] in the
subject has a good overview and pointers to the literature. The key Relationship is has-a (also called,
“has-part” or similarly equivalent names), and is-equal.
topology – structure of interconnections between parts: this kind of structural model is a key property of
any system, and also here the state of the art insights and formalizations are sufficiently mature to have
unambiguous and consistent semantics of formal models, to the extent that it is realistic to develop
“standards” and “tools”.

Concretization (or specialization) can be considered as the opposite of abstraction. In this sense, raising the
level of abstraction means to get more general purpose while lowering the level of abstraction means to get
more specific with respect to e.g. a certain domain. It is only natural that the general purpose (i.e. higher)
abstraction levels tend to leave open some semantic variability. For instance, UML (as one representative for
general-purpose modeling languages) purposefully defines “semantic variation points”. These “semantic
variation points” can be fixed by e.g. deriving domain-specific models (in terms of UML by defining UML
profiles). In this sense, RobMoSys as well defines several levels of abstractions, with “Hierarchical
Hypergraphs” and “Entity-Relation” levels on top, over “Block-Port-Connector” and “RobMoSys composition
structures” and down to concrete realizations (sometimes “reference implementations”). Going gown this
abstraction hierarchy also means getting more domain-specific and narrowing semantic variability.

Formalization
This section provides formal specifications for the Hierarchical Hypergraphs and for an Entity-Relation model.

http://robmosys.eu/wiki-sn-03/modeling:hypergraph-er 2019-01-31

https://en.wikipedia.org/wiki/Mereology

Hierarchical Hypergraph

“a hypergraph H is a pair H = (X,E) where X is a set of elements called nodes or vertices, and E is a set
of non-empty subsets of X called hyperedges or edges” Wiki:Hypergraph
[https://en.wikipedia.org/wiki/Hypergraph]
hyperedge: each vertex in the graph can connect more than two nodes
hierarchy: each node or edge in the graph can be a full graph in itself

Entity-Relation Model

Entity-Relation is a specialization of a Hypergraph. Therefore, Entity-Relation conforms-to a Hypergraph.

entity
the “things”
entity instantiates a node of its meta-model

uniquely referencing an element of its meta-model
entity has a unique identifier

uniquely referencing this primitive
relation

n-ary link between primitives
relation instantiates a hyper-edge of its meta-model

uniquely referencing an element of its meta-model
relation has a unique identifier

uniquely referencing this relation
property

attribute of a primitive or a relation

Basic set of standard relations for linking different levels of
abstraction

We do not introduce a RobMoSys specific definition for these relations. Instead, we just use their “common
sense definition”. The following explanations are just typical “common sense descriptions”:

is-a
this is inheritance
an element of a model derives from an element of a metamodel

instance-of
this is often just a synonym for “is-a”
one talks of an instance when it is the final element in an inheritance hierarchy. What is
considered a final element depends on what parts of the inheritance hierarchy you see.

conforms-to
a meta-model is a model that defines the language for expressing a model. A model represents an
abstracted representation of an artefact. A model conforms to a meta-model. One model can have
multiple models to which it conforms.

constraints
this is a particular relation
it can be applied to primitives, relations and properties

See next:

Block-Port-Connector

http://robmosys.eu/wiki-sn-03/modeling:hypergraph-er 2019-01-31

https://en.wikipedia.org/wiki/Hypergraph
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector

References
1)

P. P.-S. Chen. The entity-relationship model—Toward a unified view of data. ACM Transactions on Database
Systems, 1(1):9–36, 1976.
2)

At more or less the same time, similar developments took place around knowledge representations via
“programming languages”, such as Lisp or Prolog.
3)

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, 284(5):34–43, 2001.
4)

M. L. Minsky. A framework for representing knowledge. In P. H. Winston and B. Horn, editors, The
psychology of computer vision. 1975.
5)

R. Reiter. On closed world data bases. In Logic and Data Bases, pages 55–76. 1978.
6)

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 3rd edition, 2009.
7)

G. Engels and A. Schürr. Encapsulated hierarchical graphs, graph types, and meta types. Electronic Notes in
Theoretical Computer Science, 2:101–109, 1995.
8)

M. Levene and A. Poulovassilis. An object-oriented data model formalised through hypergraphs. Data &
Knowledge Engineering, 6:205–224, 1991.
9)

W3C. An overview of the prov family of documents. https://www.w3.org/TR/prov-overview/
[https://www.w3.org/TR/prov-overview/], 2013.
10)

Dublin Core Metadata Initiative. Dublin core metadata element set. http://dublincore.org/documents/dces/
[http://dublincore.org/documents/dces/].
11)

P. Borst, H. Akkermans, and J. Top. “Engineering ontologies”. International Journal on Human-Computer
Studies, 46:365–406, 1997.

modeling:hypergraph-er · Last modified: 2018/10/30 12:30
http://www.robmosys.eu/wiki-sn-03/modeling:hypergraph-er

http://robmosys.eu/wiki-sn-03/modeling:hypergraph-er 2019-01-31

https://www.w3.org/TR/prov-overview/
http://dublincore.org/documents/dces/

RobMoSys Wiki
http://www.robmosys.eu

Block-Port-Connector
The Block-Port-Connector model is a specialization of the more abstract Hypergraph and Entity-Relation
model.

The following generic relations have been introduced already: is-a, instance-of, conforms-to and constraints.
There are two additional (i.e. more specific) relations that need to be introduced:

Relation Explanation Typical graphical
representation

Typical textual
representation

contains # can be applied to entities and can be
applied to relations
* this realizes hierarchical composition
(nested composition); in a hierarchical
composition elements are enclosed by
another element
* contains is topology
* the contained elements are not
accessible/visible (in contrast to elements in
a collection)
* the contained elements can or cannot exist
without the parent (depending on the
context)

an arrow with a diamond (filled
with black color for ownership
or white color for no
ownership)

contains(A,a,b,c)
contains(B,m,n)

has-a # can be applied to entities and can be
applied to relations
* this realizes aggregation
* has-a is mereology
* in aggregation, elements remain at the
same level
* elements linked with has-a remain
aceesible/visible
* the contained elements can or cannot exist
without the parent (depending on the
context)

an arrow with a diamond (filled
with black color for ownership
or white color for no
ownership)

has-a(A,a,b)

The generic entity is refined as follows:

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

block Model:
* is-a entity
* possibly has-a property (or many)
* possibly has-a port (or many)
* possibly contains property (or many)

block(block-A)

http://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:hypergraph-er
https://robmosys.eu/wiki-sn-03/_media/modeling:principles:block.png

* possibly contains block (or many)
* possibly contains collection (or many)
* possibly contains connector (or many)
* possibly contains relation (or many)
Description:
the only interaction points of a block are ports

port Model:
* is-a entity
* has-a internal dock
* has-a external dock

port(Port-A)

Description:
it is the only interaction point over which a
block can interact with other blocks;
when attached to a block, the internal dock
becomes a private to the block (contains) and
the external dock becomes public (has-a)

Comment:
In textual representation, access to docks can be
represented e.g. like internal-dock(Port-A),
external-dock(Port-A)

dock Model:
* is-a entity

dock(Dock-A)

Description:
A dock is used to semantically differentiate
between the “internal” and “external” sides of a
port with respect to the port's parent block.

Comment:
In a graphical representation, the internal dock
and the external dock can be highlighted, for
example by different colors (be careful, not to
start an irrelevant activity in introducing such
graphical notions into existing tools which
cannot handle that).

connector Model:
* is-a entity
* connects ports (n-ary relation)

connector(connector-
A)

Description:
can connect ports as long as no block boundaries
are crossed

Comment:
In graphical representation, the connector itself
is represented by a dot. With the connects-
relation, star-shaped lines (connects-relations)
originate from the dot in the center.

collection Model:
* is-a entity
* possibly has-a entity (or many)
* possibly has-a relation (or many)

collection(collection-
C,k,l,m,n)

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

http://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:principles:port.png
https://robmosys.eu/wiki-sn-03/_media/modeling:principles:dock.png
https://robmosys.eu/wiki-sn-03/_media/modeling:principles:connector.png

Description:
A collection can group any combination of
entities and / or relations. The enclosement
formed by a collection is just a virtual one
where the elements are openly accessible (in
contrast to nesting).
A collection can pick any elements out of blocks
ignoring block boundaries ⇒ this is particularly
useful to specify modeling views

Comment:
In the graphical representation, the dotted box
can enclose entities and / or relations where you
can cross the dotted line to “enter” the collection

connects Model:
is-a relation

connects(connector-
A,external-
dock(Port-A))

Description:
links a dock of a port to a connector (binary
relation)

Entity/Relation Model and Description Typical
graphical
representation

Typical textual
representation

There is a specific relation between the RobMoSys composition structures and the modeling views as is
discussed on the next page. The important point at this level here is to provide a base-level that allows
specification of both kinds. The specific part for specifying modeling views is the collection definition while
all the other specifications are used to define the RobMoSys composition structures.

Please note that while blocks and ports are semantically different, depending on the current role-specific view
with according level of abstraction, ports can contain additional structures and thus might appear as blocks on
that detailed abstraction level (see service-definition metamodel).

See next

RobMoSys composition structures

modeling:principles:block-port-connector · Last modified: 2017/07/27 14:31
http://www.robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector

http://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:principles:collection.png
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/_media/modeling:principles:connection.png
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:views:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start

RobMoSys Wiki
http://www.robmosys.eu

Modeling Twin
All entities in the market and all entities that are shared in the ecosystem come as twins. Twins consist of a
model (modeling twin) that represents the Software or Hardware artifact (SW/HW twin). Think of the modeling
twin as a bridge between traditional software artifacts and the modeling world. The modeling twin is similar to
data sheets in the PC Analogy.

The modeling twin is always supplied and handed over between roles in the ecosystem. The SW/HW twin
might be supplied later or might not exist at all. It might not exist, for example, when the artifact is purely
intended for modeling. Entities in the market will never be just HW/SW artifacts without a modeling twin as
then the artifact cannot be used. One can continue building a system independently with only the modeling
twin, then supplying the HW/SW twin later.

The modeling twin is a representative and abstraction of the artifact it represents. It explicates necessary
properties to work with it. Supplying a modeling twin does not equal to exposing all details: IP can still be
protected as the modeling twin only have to expose the information that is relevant to use it: internal structures
can remain hidden.

The modeling twin is is similar to the “digital twin”1) in IoT and industry 4.0. It, however, is beyond bridging
the physical world to the digital world: it focuses on having a representative of physical entities or software
entities for modeling purposes.

http://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-03/_detail/modeling:principles:modeling-twins-abstract-robmosys.png?id=modeling%3Aprinciples%3Amodeling-twin
https://robmosys.eu/wiki-sn-03/_detail/modeling:principles:modeling-twin-example.png?id=modeling%3Aprinciples%3Amodeling-twin

See also

PC Analogy

1)

Dr. Michael Grieves and John Vickers. “Digital Twin: Mitigating Unpredictable, Undesirable Emergent
Behavior in Complex Systems (Excerpt)”, Excerpted based on: Trans-Disciplinary Perspectives on System
Complexity. Online
[http://research.fit.edu/camid/documents/doc_mgr/1221/Origin%20and%20Types%20of%20the%20Digital%20Twin.pdf]

modeling:principles:modeling-twin · Last modified: 2017/05/24 18:13
http://www.robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin

http://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
http://research.fit.edu/camid/documents/doc_mgr/1221/Origin and Types of the Digital Twin.pdf

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Structures: Realization Alternatives
This page describes alternatives for realizing the RobMoSys Composition Structures. This list of alternatives
shows examples and is not meant to be complete.

Example 1: Using Ecore

A meta-model is an abstract representation of a model. A meta-model in itself can be considered as a model
that may or may not have an even more abstract representation (i.e. a meta-meta-model). There are no
theoretical limits for going up the abstraction hierarchy. However, from a practical point of view, at a certain
abstraction level it simply does not make much sense to go further up the hierarchy. Instead, there often is a
meta-level that is abstract enough to define its own language. Example languages for such a level are: Eclipse
Ecore and Essential MOF (EMOF). Nevertheless, it might make sense to go higher up the abstraction hierarchy
above Ecore in order to define meta-levels that ease interfacing between the different realization technologies.
Such a higher meta-level is for instance the Hypergraph notation. The relation between e.g. the Ecore based
meta-models and the more abstract meta-levels is depicted in the figure below.

The left side of the figure shows a meta-level hierarchy starting with a Hypergraph on top, over Blocks-Ports-
Connectors and down to RobMoSys composition structures. This hierarchy allows formal definition of meta-
levels for the required structures independent of a particular realization technology. In the middle of the figure,
a specific realization technology (in this case Ecore) is used to implement the RobMoSys meta-models. This is
only an example and many other technologies can be used instead in a similar fashion. Moreover, other
existing modeling languages (such as AADL) can be easily interlinked with the RobMoSys structures by
defining model-to-model transformations. This is a powerful extension mechanism that allows usage of

http://robmosys.eu/wiki-sn-03/modeling:realization_alternatives 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/_media/modeling:robmosys-vs-general-modeling-variant1.png
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start

matured and powerful tools in robotics.

In the course of the project, RobMoSys is going to provide an Ecore implementation of the RobMoSys
structures.

A preliminary implementation of Ecore meta-models for the two topmost abstraction levels within Tier 1 (on
the left in the figure above), namely the Entity-Relation and Block-Port-Connector meta-models, is available at
Preliminary Ecore implementation of ER and BPC meta-models.

Example 2: Using UML/SysML Profiling

The figure above shows another example of using a different realization technology, in this case the
UML/SysML and MOF as base structures. The RobMoSys structures on the left are unaffected by this different
technology choice. It is worth mentioning that while the UML standard also specifies the graphical notation,
the extension mechanism through profiling might be a bit more challenging when it comes to restricting the
already defined modeling structures. These pros and cons need to be traded off when choosing a modeling
technology.

modeling:realization_alternatives · Last modified: 2017/06/23 10:33
http://www.robmosys.eu/wiki-sn-03/modeling:realization_alternatives

http://robmosys.eu/wiki-sn-03/modeling:realization_alternatives 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:realization_alternatives:ecore_implem
https://robmosys.eu/wiki-sn-03/_media/modeling:robmosys-vs-general-modeling-variant2.png

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Composition Structures
The RobMoSys composition structures is a bottom abstraction layer on Tier 1 (see figure below). This layer
defines all the robotics meta-structures that are required to consistently model robotic systems throughout
several development phases and thereby supporting different developer roles. The meta-structures follow a
general composition-oriented approach where systems can be constructed out of reusable building blocks with
explicated properties. In other words, RobMoSys enables the composition of robotics applications with
managed, assured and maintained system-level properties via model-driven techniques. This enables
communication of design intent, analysis of system design before it is being built and understanding of design
change impacts. Therefore, the RobMoSys composition structures adhere to the general block-port-connector
meta-structures and can be considered as a further specialization thereof.

The figure (above) shows an exemplary list of possible composition structures (highlighted with the yellow
background color), which can be clustered into (a) specializations of blocks and (b) specializations of
relations. One of the central structures defined by RobMoSys is a consistent and rich enough component
model that considers the interaction with related structures around the component model (such as e.g. the
definition of communication services and the binding to different middlewares). These structures are described
below in separate pages. An interesting point is that RobMoSys by purpose does not aim at one huge meta-
model that covers all robotics aspects at once. Instead, RobMoSys foresees the definition of modeling views
that cluster related modeling concerns in dedicated views, while at the same time connecting several views in
order to be able to define model-driven tooling that supports the design of consistent overall models and to

http://robmosys.eu/wiki-sn-03/modeling:composition-structures:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:tier1
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/_media/modeling:composition-tier1-detail.png
https://robmosys.eu/wiki-sn-03/modeling:views:start

communicate the design intents to successive developer roles and successive development phases. In this sense,
composition does not only apply to designing robotics software but is also applied to designing the modeling
tools, thus making them easily extensible and composable.

Are you new to model-driven engineering? Find introduction literature in the Frequently Asked Questions.

Overview of RobMoSys composition structures

The figure below provided an overview of the RobMoSys composition structures (i.e. the RobMoSys
Metamodels). Each block in the figure represents a separate Metamodel that is individually described in a
separate page (see below). There are high-level relations between the metamodels that are depicted with the
uses keyword.

The next pages individually describe the RobMoSys metamodels in a human-readable notation using the
general definitions of block-port-connector. There is a straightforward way to transform this representations
using a dedicated modeling technology as described here.

Each metamodel (presented next) addresses two main modeling needs namely structure and interaction.
Structure defines the structural relations (such as has-a and contains) between the individual model elements.
Structure can often be directly translated into a modeling technology such as Ecore. Interactions define the
important interaction relations (using port, connector and connects) between specific model elements. In
contrast to structure, interactions are often transformed into software APIs (e.g. through code generation) and
must not always be visible on model level.

http://robmosys.eu/wiki-sn-03/modeling:composition-structures:start 2019-01-31

https://robmosys.eu/wiki-sn-03/faq
https://robmosys.eu/wiki-sn-03/_media/modeling:composition-structures:compositionstructuresoverview.png
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:realization_alternatives

List of Metamodels

Robotic Behavior Metamodel
Communication-Object Metamodel
Communication-Pattern Metamodel
Component-Definition Metamodel
Deployment Metamodel
Cause-Effect-Chain and its Analysis Metamodels
Platform Metamodel
System Service Architecture and Service Fulfillment Metamodels
Service-Definition Metamodel
Skill Definition Metamodel
Skill Realization Metamodel
System Component Architecture Metamodel

See also:

RobMoSys Views

modeling:composition-structures:start · Last modified: 2017/08/04 10:55
http://www.robmosys.eu/wiki-sn-03/modeling:composition-structures:start

http://robmosys.eu/wiki-sn-03/modeling:composition-structures:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:views:start

RobMoSys Wiki
http://www.robmosys.eu

Basic Modeling Principles

What is "Modeling"?

“Modelling” is at the core of the RobMoSys ambition and approach, and the project has identified these five
complementary levels in model formality:

1. Models for human discussions: such models must provide guidance to discussions between humand
developers, and hence result in more and more harmonized interpretations of the relevant entities and
relations.

2. Models for human software documentation: only when the mentioned “level 1.” harmonization has
matured in a community, one can expect software to be developed whose meaning and behaviour are
well understood by all developers in that community.

3. Models for software tools and standards: the harmonization has reached a level of maturity where the
explanation in a standards document, and the availability of a reference implementation that conforms to
the standard document, suffice to let everyone use software artefacts based on the standard with
unambiguous interpretations. Hence, support from software tools becomes realistic, or even mandatory
as the major pragmatic way of software development in a broader community.

4. Models for verification and validation: the standardisation has been formalized so far that the
meaning and behaviour of software artefacts can be checked automatically.

5. Models for run-time dialogues between machines: the formalization and its automatic checking has
become (1) efficient enough to be used at runtime by the robots themselves, and (2) rich enough so that
the machines can set up added-value cooperations themselves via dialogues, or can configure, adapt and
explain their own behaviour, with only minor human interaction.

The project's pragmatic focus is on levels 2. and 3., but it does keep 4. and 5. in mind in every discussion and
decision about how and what to put in a model. Note that levels can overlap to some extend.

The aim of RobMoSys is to cover the modeling levels with functional tooling. This include adequate code-
grounding (where applicable) to actually use the models in real-systems (e.g. code-generation towards
frameworks, executable components, analysis tools, etc.).

Meta-Models, Modeling Languages, and Models

There is a subtle relationship between the (meta-)models, the actual modeling languages and the concrete
models. This relationship is depicted in the figure below.

http://robmosys.eu/wiki-sn-03/modeling:principles 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu

A modeller (i.e. a modeling-tool user who creates models) always works with a concrete syntax. This syntax
can be textual, graphical, tabular or any combination thereof. The concrete syntax (sometimes also called
notation) is defined by (i.e. it conforms to) the modeling language. The concrete syntax of a modeling
language is independent of the abstract syntax of an actual meta-model. However, the structure of the
modeling language must adhere to the structures defined in a meta-model. In most cases, it makes sense to
first specify the meta-model, then to generate a modeling language out of the meta-model and then to adjust
only the syntax of the modeling language (without affecting the structure). A model created by the modeller is
typically only a representation for the in-memory model that uses the abstract syntax. The abstract syntax is
also used to serialize the models in order to make them persistent.

Finally, the model itself is an abstract representation of the actual system (which can be either software,
hardware or any combination thereof). Often, it makes sense to package the model with the related
software/hardware parts and to ship them together as a so called modeling twin.

Are you new to model-driven engineering? Find introduction literature in the Frequently Asked Questions.

Ecore-OWL language-bridge

There is a relation between meta-models and ontologies that can be bridged as described here
[http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html].

http://robmosys.eu/wiki-sn-03/modeling:principles 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:modeling-syntax.png
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/faq
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html
https://robmosys.eu/wiki-sn-03/_media/modeling:ecoreowlbridge.jpg

This image is borrowed from twouse.blogspot.de [http://twouse.blogspot.de/2010/08/owl-ecore-language-
bridges.html]

The strength of ontologies is the representation of knowledge with extensible structures. Moreover, ontologies
allow reasoning on knowledge and the inference of further knowledge. The strength of meta-models is the
definition of clear and unambiguous structures. This is particularly useful to represent physical entities and
physical properties of the real-world. There are robotics use-cases where in some cases ontologies and in other
cases meta-models can be preferred. Therefore it is reasonable to allow using both of them in combination,
rather than restricting the usage of only one of them in isolation.

modeling:principles · Last modified: 2018/10/05 08:49
http://www.robmosys.eu/wiki-sn-03/modeling:principles

http://robmosys.eu/wiki-sn-03/modeling:principles 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:ecoreowlbridge.jpg
http://twouse.blogspot.de/2010/08/owl-ecore-language-bridges.html

RobMoSys Wiki
http://www.robmosys.eu

RobMoSys Views
Roles in the Ecosystem come with specific views. The benefit of a view to a role is to present only what is
relevant for the role's responsibility, thereby hiding the complexity that is not relevant for that role, but is still
relevant for the whole system in the end. The system in the end consists of many concrete models based on the
RobMoSys Composition Structures. These elements are contributed by roles that work through views and
interact such that the contributed elements are composable to form a system. As a result, the individual role can
focus on its responsibility and expertise alone, while working decoupled from other roles. This is enabled by
the RobMoSys Composition Structures.

Each role that participates in the ecosystem uses a dedicated view to focus on its responsibility and
expertise.

The concept of “views” groups basic primitives of the RobMoSys composition strucures. A view is related to a
role and establishes the link between primitives in the RobMoSys composition strucures and the RobMoSys
roles.

A role has a specific view on the system at an adequate abstraction level using relevant elements only. A view
is not only in the sense of a perspective where one only sees a part of the system but does not see the rest, even
if it is there. Instead, a view shows an excerpt of the whole system that can be viewed independently of the
other parts. These other parts might even not exist at the time of having the view on the system, because it is
composed to other parts to form the complete system later.

http://robmosys.eu/wiki-sn-03/modeling:views:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-03/_detail/general_principles:ecosystem:roles-ecosystem.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

Example: Consider a closed book. The view of a front cover is a certain perspective on the book. Even though
only the front cover is visible, the whole book is lying there. The book also consists of its pages and the back
cover which are not visible, even if they are there. It, however, makes perfect sense to only look at the back
cover of a book, its content pages or even the individual chapters separately (an excerpt of the book) as both
the front page and the back page can be designed differently (separation of roles) and then be put together.

List of Views

(alphabetical order)

Communication Pattern View
Component Development View
Execution Container View
Performance View
Service Design View
System Configuration View

Deployment View
Service Architecture View
Service Fulfillment View
…

Views in relation to composition structures and roles

http://robmosys.eu/wiki-sn-03/modeling:views:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/modeling:views:views.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:views:execution_container
https://robmosys.eu/wiki-sn-03/modeling:views:performance-view
https://robmosys.eu/wiki-sn-03/modeling:views:service_design
https://robmosys.eu/wiki-sn-03/modeling:views:system-configuration-view

Links Between Views: Example 1

The figure below illustrates the link between several views. The Modeling Twin is handed over between one
view to the next. There is no strict order in the sense of a strictly order value chain. Instead, the interactions
form a network of collaborating roles consisting of various bilateral interactions between suppliers and
consumers.

Links Between Views: Example 2

The figure below illustrates an example where two views are connected by a third view. The service
architecture can serve as a blueprint for system configuration.

http://robmosys.eu/wiki-sn-03/modeling:views:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:views:structures-views-roles.png
https://robmosys.eu/wiki-sn-03/modeling:principles:modeling-twin
https://robmosys.eu/wiki-sn-03/_detail/modeling:views:views-many-connected-views-example.png?id=modeling%3Aviews%3Astart

See also

Views in the RobMoSys Glossary
Views in RobMoSys Composition Structures
Views in the PC domain analogy
Roles in the Ecosystem

modeling:views:start · Last modified: 2018/06/14 10:32
http://www.robmosys.eu/wiki-sn-03/modeling:views:start

http://robmosys.eu/wiki-sn-03/modeling:views:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/modeling:views:views-link-between-service-architecture-and-sysconfig.png?id=modeling%3Aviews%3Astart
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:pc_analogy:start
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles

RobMoSys Wiki
http://www.robmosys.eu

Component Development View
The component developer view clusters elements of the Component Metamodel that are relevant to the
Component Supplier.

The component development view (shown in the figure below) needs to be rich enough and provide sufficient
structures such that this model can serve as a consistent baseline for all the successive development steps (such
as e.g. system composition/configuration) that rely on proper component models. At the same time, the
component development view should avoid definition of too many low level details that are more related to
internal knowledge that is not required for supporting composition with respect to the surrounding models. In
this way, the component development view always is a trade-off between providing enough structures where
needed and leaving enough design freedom for the internal realization.

The only interaction point of a component with other components is through services. Therefore, a component
can specify several provided and/or required services. A special kind of service is the behavior-interface which
is used by the behavior coordination layer to coordinate this component at run-time (i.e. to set propper
configurations, to activate/deactivate certain component modes, etc.). Therefore, the behavior-interface
interacts with the component's internal parameter structure and the component's lifecycle state automaton
which also defines the component-specific run-time modes.

The component's services interact within a component with Activities and the component's Lifecycle. The
component's Lifecycle affects the lifelines of services and the activation/deactivation of Activities.

Regarding a component's Services, as long as the component is initializing (during start-up) or as long as a
component is in a fatal-error mode, then the provided services might be physically available but not ready to
properly offer a service (i.e. not able to answer query requests).

The next component-internal structural element is an Activity, which is an abstract representation of a task (or
http://robmosys.eu/wiki-sn-03/modeling:views:component_development 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/_detail/modeling:views:component-development-view.png?id=modeling%3Aviews%3Acomponent_development

more precisely of a thread). An activity wraps a functional block which by itself is passive and only gets active
by the execution environment of its parent Activity. This is an effective decoupling of the design and
implementation of functional parts within a component and the execution of the functions. This even allows
configuration of the execution characteristics for individual functions even after the component has been fully
implemented and shipped to e.g. a system builder and without affecting the component's internal
implementation.

As mentioned above, it is important that a structural model provides enough details that are required to
communicate the structural knowledge of a component to other developer roles as well as to provide a sound
foundation for the later development steps. In this respect, it is equally important to mention which parts have
been omitted on purpose in order not to intermix the responsibilities and concerns that become relevant in later
development steps. The most important parts that have been omitted on purpose are: (1) the mapping of
services to a particular communication middleware (which is the responsibility of another developer role) (2)
the mapping of Activities to a particular execution container such as Windows/Linux threads, or QNX/RTAI
real-time threads (again a responsibility of another developer role) and (3) the definition of the services by
themselves (which might be the responsibility of domain experts).

modeling:views:component_development · Last modified: 2017/05/31 12:00
http://www.robmosys.eu/wiki-sn-03/modeling:views:component_development

http://robmosys.eu/wiki-sn-03/modeling:views:component_development 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start

RobMoSys Wiki
http://www.robmosys.eu

Communication Pattern View
The communication pattern view clusters elements of the communication pattern metamodel that defines a
fixed and stable set of recurring communication semantics.

This set of recurring communication semantics is defined for the robotics domain independent of an underlying
communication middleware which can be flexibly selected in another development phase.

The communication patterns consist of an internal and external view of the component interface. The external
view is defined by the behavior of the communication pattern itself. References therefore are provided in
Communication-Pattern Metamodel.

While the API of the internal component view can be implemented manually such that the behavior of the
communication patterns is ensured, this implementation requires a lot of knowledge about the internal behavior
of the communication patterns and the middleware abstraction level. Hence, RobMoSys uses the existing C++
open-source reference specification of the API derived from the SmartSoft framework
[https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp]. Using the existing API
specification increases independence of the component's internal business logic from the different framework
implementations, each based on a specific middleware solution. Besides, the existing API is well time-tested
over the past 10 years, which saves a lot of efforts of redefining this API.

RobMoSys Tooling Support

In the SmartSoft World, the component internal interface is defined here
[https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp]

See also

Communication-Pattern Metamodel

http://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/_detail/modeling:views:communication-pattern-view-robmosys.png?id=modeling%3Aviews%3Acommunication_pattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp
https://github.com/Servicerobotics-Ulm/SmartSoftComponentDeveloperAPIcpp
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern

modeling:views:communication_pattern · Last modified: 2018/06/06 15:01
http://www.robmosys.eu/wiki-sn-03/modeling:views:communication_pattern

http://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Execution Container View
The Execution Container View shows the mapping from platform independent models (such as components
and services) into concrete platforms (i.e. Operating Systems and Communication Middlewares).

A component (see Component Metamodel) is at first independent of an actual execution environment. The
actual mapping towards a communication middleware and an operating system (OS) is done in a later
development step (such as e.g. the deployment step). For example, during the deployment phase of component
to a specific platform, an accordingly used operating system and communication middleware become known
which can then be mapped to the so far independent component.

At this point an Activity becomes a certain implementation of a thread (such as e.g. a Windows thread or an
RTAI real-time thread). Also, the actual marshaling (i.e. the serialization technique for the communicated data
structures) and the used communication environment are selected. This should not affect the possible functional
constraints of a component and different communication middlewares should be usable (as long as there are no
specific constraints such as e.g. a specific real-time requirements for communication, which then should be

http://robmosys.eu/wiki-sn-03/modeling:views:execution_container 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/_detail/modeling:views:executioncontainerstructureview.png?id=modeling%3Aviews%3Aexecution_container

complied with).

modeling:views:execution_container · Last modified: 2017/06/22 10:36
http://www.robmosys.eu/wiki-sn-03/modeling:views:execution_container

http://robmosys.eu/wiki-sn-03/modeling:views:execution_container 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Service Design View
The service design view clusters elements of the Service Metamodel that are relevant to the Service Designer.

A service definition (shown on the left in the figure) comprises of a selection of a communication pattern and a
selection of a communication object. A communication object is a data structure that is communicated between
a service provider and a service requestor. The exact direction of communication is defined by the
communication pattern (see also Communication Pattern View). The communicated data structure is
independent of the underlying communication middleware that is linked in another development phase as
explained in the preceding section above.

modeling:views:service_design · Last modified: 2017/06/02 10:53
http://www.robmosys.eu/wiki-sn-03/modeling:views:service_design

http://robmosys.eu/wiki-sn-03/modeling:views:service_design 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/_detail/modeling:views:service-design-view.png?id=modeling%3Aviews%3Aservice_design
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern

RobMoSys Wiki
http://www.robmosys.eu

Metamodels
The RobMoSys metamodels are the RobMoSys Composition Structures.

List of metamodels:

Robotic Behavior Metamodel
Communication-Object Metamodel
Communication-Pattern Metamodel
Component-Definition Metamodel
Deployment Metamodel
Cause-Effect-Chain and its Analysis Metamodels
Platform Metamodel
System Service Architecture and Service Fulfillment Metamodels
Service-Definition Metamodel
Skill Definition Metamodel
Skill Realization Metamodel
System Component Architecture Metamodel

modeling:metamodels:start · Last modified: 2017/07/20 14:28
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:start

http://robmosys.eu/wiki-sn-03/modeling:metamodels:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system

RobMoSys Wiki
http://www.robmosys.eu

Robotic Behavior Metamodel
The Robotic Behavior Metamodel is one part of the RobMoSys Composition Structures that is responsible for
specifying the overall run-time behavior of a robot acting in real-world environments.

The Robotic Behavior Metamodel defines structures for modeling task-plots of a robot (see figure below).
Task-plots define sequences of tasks required to achieve certain goals at run-time. Each task itself can contain
another task-plot. This introduces hierarchy into the task-plot modeling where high level tasks (such as e.g.
making-coffee) are refined into lower level tasks (such as e.g. approach the kitchen, operate the coffee machine
and bring the coffee back to the customer). At the lower end of the abstraction hierarchy, tasks eventually
operate (i.e. to coordinate and configure) according software components that do the actual “work” of a task. In
this sense, tasks are passive, they just delegate the work to components in the system and await the results (i.e.
success or failure). The interaction between task-plots and components is over skills. In this sense, a skill
abstracts the technical coordination interface of a component and makes it accessible for task-plots. A skill by
itself might “inject” additional task-plots. This feature is particularly useful for modeling alternative behaviors
in case of contingencies in the overall behavior. For example, a skill commanding a navigation component to
approach a room might get the result that the navigation component failed to do so (e.g. due to a blocked
hallway). In this situation, the according skill might inject an alternative strategy, namely to first go to another
location and to try the current task later (or whatever other strategy might be appropriate here).

A service robot is a physical entity that needs to cope with the physical constraints of the real-world. For
instance, actions of the robot, once performed, might be irreversible and always can fail. This also means that at
each point in time, the control hierarchy on the robot must be clear. Simply speaking, a robot cannot decide in
parallel to go to left and to right at the same time (for most of the robots, this is physically impossible). In

http://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:behavior-metamodel.png

consequence, there is typically only one entity on each robot that is responsible for executing the robotic
behavior models namely the sequencer (see this page [http://www.servicerobotik-ulm.de/drupal/?q=node/86] for
further details on sequencing).

For the interaction between the behavior model and the software components in a system, the robot behavior
uses the “Master-Behavior-Interface”. Each component in the system by default implements the counter part
“Slave-Behavior-Interface” (not displayed in the figure). Therefore, the robot-behavior depends on the system-
component-architecture for the interaction with the according component-instances.

One existing realization of the robotic behavior meta-model is SmartTCL [http://www.servicerobotik-
ulm.de/drupal/?q=node/84]. SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] conforms to the
above presented meta-model and can be used as an initial software baseline already now.

See next:

Deployment Metamodel

See also:

System Component Architecture Metamodel
Task Composition
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)

modeling:metamodels:behavior · Last modified: 2018/06/04 13:42
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior 2019-01-31

http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/84
https://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

RobMoSys Wiki
http://www.robmosys.eu

Deployment Metamodel
The Deployment Metamodel (see figure below) is part of the overall RobMoSys Composition Structures. This
meta-model links (i.e. interfaces between) the three meta-models, namely System Component Architecture,
Platform and Robotic Behavior.

The main concerns of this meta-model are to define artefacts and to assign them to selected targets. This meta-
model is inspired by the UML deployment model. There are two artefact types namely component-artefacts
and robotic-behavior-artefacts. Component-artefacts represent typically the precompiled binary form of
component-instances (including generated ini-files and start scripts). The robotic-behavior-artefact is the
physical representation of the robotic-behavior model (often this is an interpretable model).

Depending on the used modeling tool, the deployment meta-model could also be connected with the actual
deployment action that copies the component and robotic-behavior artefacts to the according target platforms.
However, this is a matter of tooling and is independent of the deployment meta-model as such.

See also:

Platform Metamodel
System Component Architecture Metamodel
Robotic Behavior Metamodel

modeling:metamodels:deployment · Last modified: 2017/06/20 11:29
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:deployment

http://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:deployment-metamodel.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:platform
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior

http://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

System Service Architecture and Service
Fulfillment Metamodels
The System Service Architecture Metamodel is a particularly useful meta-model for System Architects. This
meta-model allows the definition of service-based reference architectures for specific (sub-)domains on Tier 2.
This meta-model depends on service-definitions and itself can be used to check “conformance” of a system-
component-architecture to this service-based reference architecture. Checking this conformance is one of the
main concerns of the service-fulfillment meta-model (see the following section below).

The System Service Architecture Metamodel specifies service-wishes which are component-independent
definitions of service-requirements for a set of systems. Moreover, links between service-wishes specify
component-independent inter-service dependencies (i.e. a service-wish might depend on the existence of
another service-wish).

For example, a set of recurring services for a navigation stack (such as localization, mapping, path-planning,
obstacle-avoidance, etc.) can be specified in advance independent of a concrete system and independent of
concrete implementations in software components. In addition, it can be specified that a path-planning service
typically depends on the existence of a localization service which itself depends on a mapping service, etc.

In addition, a service-wish can instantiate several service-properties which allow definition of specific Quality-
of-Service (QoS) attributes. Examples for such attributes can be found here.

Please note, that the definition of service-based reference architectures seldom defines all services of one
concrete system. Instead, a service-based reference architectures typically defines only the recurring services
for (or from) a set of systems.

http://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_architect
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:system-service-architecture-metamodel.png
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start#exampleservice-based_composition_approach

Service Fulfillment Metamodel

The Service Fulfillment Metamodel maps the service-wishes from a system-service-architecture (see above)
with the provided-service-instances from a system-component-architecture. This mapping of service-wishes to
provided-service-instances is called service-fulfillment. This is a powerful meta-model that allows definition of
domain-specific de-facto standard architecture and thus considerably increases reuse of recurring specifications
and at the same time fosters competition on implementation level (conforming to modeled reference
architectures).

While the Service Fulfillment Metamodel directly depends on the two meta-models “System Service
Architecture” (see above) and “System Component Architecture”, the order of usage of these two models is not
strict. For instance, an existing (i.e. fully specified) system-component-architecture can be used to check
whether it conforms to a later (or independently) defined system-service-architecture. Or, a specified system-
service-architecture can be used upfront to select conforming components (from a component repository) for a
current (i.e. new) system-component-architecture under development. Of course, all the intermediate options
are also possible with partial specifications of system-service-architectures and system-component-architectures
with intermediate checking of conformance.

An interesting option for this meta-model is to use constraint solvers to automatically pre-select existing
component-definitions from a component repository according to the specified system-service-architecture.
This is a powerful mechanism that considerably improves efficiency in designing new systems.

See next:

System Component Architecture Metamodel

See also:

Service-Definition Metamodel

Acknowledgement

This document contains material from:

Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]
Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging

http://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:service-fulfillment-metamodel.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2
https://mediatum.ub.tum.de/?id=1362587

the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:service-architecture · Last modified: 2018/06/08 15:52
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture

http://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Skill Realization Metamodel
The skill realization metamodel is work in progress. We are currently refining it; please check back later.

See also

Skill Definition Metamodel
Component-Definition Metamodel
Behavior Developer
Component Supplier

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process

http://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/modeling:metamodels:skill-realization-metamodel.png?id=modeling%3Ametamodels%3Askill-realization
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://mediatum.ub.tum.de/?id=1362587

driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

modeling:metamodels:skill-realization · Last modified: 2018/12/20 13:41
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization

http://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization 2019-01-31

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

System Component Architecture Metamodel
The System Component Architecture Metamodel depends on the Component-Definition Metamodel as part of
the RobMoSys Composition Structures.

The System Component Architecture Metamodel (see figure below) is the platform-independent specification
of a software system consisting of instantiated components. This means that selected component-definitions are
instantiated and initially wired (i.e. connected). Please note, that at this point individual components can still be
distributed over (i.e. deployed to) different target platforms (i.e. PCs) without affecting this model.

An instantiated component also instantiates its (internal) structures such as the definition of parameters and the
component's provided/required services. By instantiating parameters, it is possible to define system-specific
and application-related parameter values (i.e. parameter refinement) that differ from the default parameter
values in the original component-definition. It is important to notice that a component-instance cannot
instantiate any structures that have not been defined in the component-definition (base-model). Moreover, all
the required services of a component-definition also need to be instantiated within the derived component-
instance. This can be easily supported by modeling tools that can pre-generate component-instance models
(using so called proposal-providers) out of selected component-definitions. This is an important functional
constraint that allows checking that each required service also is connected to an according provided service of
another component-instance in the system. Finally, a Connection defines initial wiring between provided and
required services of different components. It is worth mentioning that this initial wiring can be dynamically
changed at run-time (if needed) using the dynamic wiring pattern.

At this point, it is also worth mentioning that at the moment a system is built from components as basic building
blocks. In future versions of this meta-model the hierarchical definition for systems-of-systems (i.e. composite
components) will be introduced. Composite components will be introduced as an extension to the current meta-

http://robmosys.eu/wiki-sn-03/modeling:metamodels:system 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:system-metamodel.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern

model that allows building systems out of sub-systems which again can be built out of yet other sub-systems
and so forth.

See next:

Deployment Metamodel

See also:

Component-Definition Metamodel

modeling:metamodels:system · Last modified: 2017/06/22 11:41
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:system

http://robmosys.eu/wiki-sn-03/modeling:metamodels:system 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component

RobMoSys Wiki
http://www.robmosys.eu

Service-Definition Metamodel
The Service-Definition Metamodel is one of the core composition structures of RobMoSys.

A Service allows interaction (i.e. regular exchange of information) between software components. A Service
consists of service-properties (defined in an external metamodel) and a communication-pattern-usage. The
communication-pattern-usage selects a certain Communication Pattern with a pattern-specific selection of
according number of communicated data-structures (i.e.Communication Objects).

The service-definition is used as a base meta-model for component-definition and for service-architecture. The
relation between these three service-related meta-models form a service triangle (see the example of a Service
Triangle).

Views of a Service

A service can be graphically represented as a port of a component (just like in UML). However, depending on
the current role-specific view with an according level of abstraction, a service “port” can reveal additional
details that are not visible (i.e. hidden/encapsulated) for another role. The more detailed view enrolls additional
internal structures of the port and the port itself might appear as a block for that role (see figure below). This is
a useful pattern to provide different levels of abstraction, each adequate for the according developer role (with
certain responsibilities and concerns).

This pattern can be applied recursively, where the ports of the currently more detailed view can again contain
additional internal structures (not visible for the current role). For instance, a the “external” port of a service
(see orange block on the right in the figure below) provides sufficiently detailed and stable communication
semantics between interacting components (defined through a selected Communication Pattern). Second, the
“internal” port of a service provides a clear API towards implementation within a component (also defined as
part of the Communication Pattern). Third, the “bottom” port of a service provides a generic middleware
abstraction layer that allows using any general purpose communication middleware without affecting the
communication semantics (see Communication Objects).

http://robmosys.eu/wiki-sn-03/modeling:metamodels:service 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:service-definition-metamodel.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start#exampleservice-based_composition_approach
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject

References:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

See next:

Component-Definition Metamodel

See also:

Communication-Pattern Metamodel
Communication-Object Metamodel
Service-Based Composition (Service Triangle)
Service Design View

modeling:metamodels:service · Last modified: 2017/07/18 17:08
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:service

http://robmosys.eu/wiki-sn-03/modeling:metamodels:service 2019-01-31

https://robmosys.eu/wiki-sn-03/_media/modeling:principles:ports-become-blocks.png
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/modeling:views:service_design

RobMoSys Wiki
http://www.robmosys.eu

Cause-Effect-Chain and its Analysis Metamodels
The Cause-Effect-Chain meta-model and the according Analysis Metamodel are two parts of the overall
RobMoSys Composition Structures. See also Architectural Pattern for Stepwise Management of Extra-
Functional Properties and Managing Cause-Effect Chains in Component Composition.

The main concern in these meta-models is to specify application-specific (often non-functional) system
properties. This is considered as an important aspect in RobMoSys, which is however sparsely addressed in
robotics research. One of the core publications that addresses this issue for a narrowed problem domain,
namely for designing causal dependencies and overall end-to-end delays in a system, can be found here:

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]
Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]

This publication also provides an initial version of a meta-model that is used as first version in RobMoSys for
addressing the overall problem domain.

An open-source reference implementation of according model-driven tooling (see above figure) is publicly
available within the sourceforge git repository [https://sourceforge.net/p/smart-robotics/smartmdsd-
v3/ci/master/tree/]. Further information thereto can be found here [http://www.servicerobotik-ulm.de/drupal/?
q=node/83].

http://robmosys.eu/wiki-sn-03/modeling:metamodels:performance 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://mediatum.ub.tum.de/?id=1362587
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
https://sourceforge.net/p/smart-robotics/smartmdsd-v3/ci/master/tree/
http://www.servicerobotik-ulm.de/drupal/?q=node/83

Later versions of the initial meta-model will be extended throughout the run-time of the RobMoSys project to
address a broader problem domain.

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:performance · Last modified: 2018/06/08 15:53
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:performance

http://robmosys.eu/wiki-sn-03/modeling:metamodels:performance 2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Communication-Pattern Metamodel
The RobMoSys communication patterns define the semantics in which software components exchange data
over Services, e.g. via one-way “send”, two-way “request-response”, and publish/subscribe mechanisms on a
timely basis or based on availability of new data. RobMoSys defines communication patterns to enable
composability of services and components.

The general concept of a communication pattern originates from [Schlegel2004] where it is described in the
context of the SmartSoft Framework in 2004. Since that, the there described communication patterns have been
extended by several activities and have proven to be of generic use (see e.g. [UCM]). RobMoSys adopts a set
of existing communication patterns (see below) that have proven to be relevant. For their definition, the wiki
provides specific pointers to existing external documentation.

It is important to have a fixed set of a few communication patterns that efficiently support composition through
unambiguous communication semantics and clearly defined communication interfaces. In addition, the
mapping to different communication middlewares becomes possible over a generic middleware abstraction
layer that is part of each communication pattern.

The communication pattern metamodel is depicted below. The name of an individual pattern (middle row of
elements in the figure, e.g. send, query, push) refers to its definition in an external document as described in
the remainder of this page.

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:communication-pattern-metamodel.png

Component Communication Patterns

The four communication patterns (see table below) define the basic set of recurring communication semantics
that proved to be sufficient for all robotics use-cases related to inter-component communication at the service
level (for service level, see Separation of Levels and Separation of Concerns).

Pattern
Name

Interaction Model Description Definition

Send Client/Server One way communication [Schlegel2004, pp. 85-88]

Query Client/Server Two way request/response [Schlegel2004, pp. 88-96]

Push Publisher/Subscriber 1-n distribution [Schlegel2004, pp. 96-99]

Event Publisher/Subscriber 1-n asynchronous condition
notification

[Schlegel2004, pp. 103-
112]

The figure below provides a schematic overview of the communication semantics.

Coordination and Configuration Patterns

The four coordination and configuration patterns (see table below) provide recurring semantics that proved to
be sufficient for robotics use-cases related to behavior coordination (coordination of software components at
the lower / skill level of the robotic behavior by the sequencing layer; for layers in robotic behavior
coordination see Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)).

Pattern
Name

Interaction
Model

Description Definition

Parameter Master/Slave Run-time configuration of components, see
[Stampfer2016]

see [Lutz2014],
[Lutz2017]

State Master/Slave Lifecycle management and mode (de-)activation see [Schlegel2011]

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:patternsemmantics.png
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior

Dynamic
Wiring

Master/Slave Run-time connection re-wiring see [Schlegel2004,
p. 11]

Monitoring Master/Slave Run-time monitoring and introspection of
components [Stampfer2016]

see [Lotz2011]

Pattern
Name

Interaction
Model

Description Definition

Each component in a system should by default implement the slave part of each of the four patterns. In
addition, there is typically one specific component per system that implements the master part of the patterns
and that is responsible to centrally coordinate the robot behavior (the sequencer, see Architectural Pattern for
Task-Plot Coordination (Robotic Behaviors) and for Component Coordinationfor further details).

Parameter

The Parameter pattern allows run-time configuration of components. The following links provide further
details:

Parameter Definition [http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s03.html]
Parameter Usage in a Component [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameters]

State

The state management of a component is one of the central patterns for run-time
coordination of components. On the one hand, state management is about the
generic lifecycle state-automaton (see figure on the right) that each component
implements by default and that allows coordinated handling of the component's
start-up and shutdown procedures as well as the component's fatal-error mode. In
addition, component's individual run-time modes can be specified as explained in
the following reference:

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State
Management of a Component”, in Technical Report 2011/01, Hochschule
Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]
Coordinating Activities and Life Cycle of Software Components
Coordinating Activities and Life Cycle of Software Components
[https://robmosys.eu/wiki/composition:component-activities:start]

Dynamic Wiring

Dynamic Wiring is used to increase run-time robustness and flexibility by dynamically changing the wiring
between components. Additional details can be found here:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]

Monitoring

Run-time Monitoring and Introspection of components is an important aspect in robotics that requires
dedicated interaction mechanisms. The following reference provides details of a concrete realization:

Alex Lotz, Andreas Steck, and Christian Schlegel. “Runtime Monitoring of Robotics Software
Components: Increasing Robustness of Service Robotic Systems”, in International Conference on
Advanced Robotics (ICAR '11), Tallinn, Estonia, June 2011. IEEE-Link

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern 2019-01-31

https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s03.html
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s03s02.html#UsingToolchain_ComponentDevelopmentView_CompModeling_CompParameters
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:lifecycle.png
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-03/composition:component-activities:start
https://robmosys.eu/wiki/composition:component-activities:start
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736

[http://ieeexplore.ieee.org/document/5174736/?tp=&arnumber=5174736]

RobMoSys Tooling Support

Tooling Support by the SmartSoft World

The SmartSoft World is fully conformant to the RobMoSys communication patterns. The mapping of
communication patterns in the SmartSoft World is described in

Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in
Technical Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF
[http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]

The SmartMDSD Toolchain allows to use RobMoSys compliant communication patterns and also is an
example of how to realize their metamodel with Ecore.
The SmartTCL [http://www.servicerobotik-ulm.de/drupal/?q=node/84] language conforms to the
RobMoSys composition structures and can be used for Robot Behavior Coordination
[http://www.servicerobotik-ulm.de/drupal/?q=node/86].
See also Conformance of SmartSoft to RobMoSys composition structures

See Also

Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Component Coordination
Communication Pattern View
Service-Definition Metamodel
Component Metamodel

References

[Schlegel2004] Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic
Environments: An Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
[Stampfer2016] D. Stampfer, A. Lotz, M. Lutz und C. Schlegel, „The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software,“
in Journal of Software Engineering for Robotics (JOSER), 2016, pp. 3-19. Link
[http://joser.unibg.it/index.php/joser/article/view/91]
[UCM] Object Management Group (OMG). Unified Component Model for Distributed, Real-Time and
Embedded Systems RFP (UCM). Document number: mars/2013-09-10. Sept. 2013. LINK
[http://www.omg.org/cgi-bin/doc?mars/2013-09-10].
[Lutz2017] Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems:
Bridging the Gap between Software- and Behavior-Models,” 2017. (unpublished work)

modeling:metamodels:commpattern · Last modified: 2018/06/29 14:31
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
http://www.servicerobotik-ulm.de/drupal/?q=node/84
http://www.servicerobotik-ulm.de/drupal/?q=node/86
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start#conformance_to_robmosys_composition_structures
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/modeling:views:communication_pattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://joser.unibg.it/index.php/joser/article/view/91
http://www.omg.org/cgi-bin/doc?mars/2013-09-10

RobMoSys Wiki
http://www.robmosys.eu

Component-Definition Metamodel
A Component-Definition Metamodel is one of the core composition structures of RobMoSys.

The Component Metamodel (shown in the figure below) combines two complementary concerns namely
structure and interaction. Individual blocks define the main entities of a component (including the component
root element itself, highlighted with the yellow background color). For specifying structure, the blocks are
connected using either the contains or the has-a relation (as defined in block-port-connector). For specifying
interaction, the blocks are additionally connected using dedicated ports, connectors and connections (as also
defined in block-port-connector). Moreover, two blocks (highlighted with the gray background color and
dashed border-line) represent model elements that are defined in a separate metamodel (described in the next
pages).

A component contains one Parameter structure, one Lifecycle state automaton and has-a Behavior
Interface. The Parameter structure can be a Metamodel (or a DSL) by itself and the Behavior Interface
allows run-time coordination and configuration from a higher robotics behavior coordination layer (see

JOSER20161) for further details on both elements). The Lifecycle state automaton coordinates the different
operational modes of a component. Some generic modes are for example Init, Shutdown and Fatal-Error (see

TR20112) for more details).

http://robmosys.eu/wiki-sn-03/modeling:metamodels:component 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/modeling:principles:block-port-connector
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:componentmetamodel.png

The next core element of a Component is the Activity which is an abstract representation of a thread. A
Component can define several Activities (depending on the component-internal functional needs). An Activity
is independent of a certain thread realization and can be later mapped to a certain implementation by the
selection of an according target platform. Moreover, an Activity provides a wrapper for the Functions. This is
important for gaining control over execution characteristics of a component. This also considerably increases
the flexibility (i.e. adjustability) of the component with respect to adapting the component to the different
needs of various (at this point even unforeseen) systems.

A Function represents a functional block that can be designed using any preferred engineering methodology.
From the component's internal point of view, a Function needs to be integrated into an Activity in order not to
prematurely define any computational models that are not really relevant from the local functional point of
view but might considerably restrict the compositionality of this component in different systems (see

SIMPAR20163) for an example). In some cases, a Function might need to interact with specific hardware
devices (such as e.g. sensors or actuators).

The last element of a Component is a Service. A Component can have several required and/or provided
Services. A Service is the only allowed interaction point of a component to interact with other (not yet known)
components. The definition of a service is described in a separate metamodel. Moreover, a Function interacts
with the component's services over the surrounding Activity only. Again, this is important to gain control over
execution characteristics as argued above.

See next:

System Service Architecture Metamodel
System Component Architecture Metamodel

See also:

Service-Definition Metamodel
Communication-Pattern Metamodel
Component Development View

References

1)

Dennis Stampfer, Alex Lotz, Matthias Lutz, Christian Schlegel. “The SmartMDSD Toolchain: An Integrated
MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”. In Journal of
Software Engineering for Robotics (JOSER 2016), Link [http://joser.unibg.it/index.php/joser/article/view/91]
2)

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State Management of a Component”, in
Technical Report 2011/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]
3)

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-Driven
Development with a Model-Based Performance Analysis”. In IEEE International Conference on Simulation,
Modeling, and Programming for Autonomous Robots (SIMPAR 2016). San Francisco, CA, USA, 2016. DOI
[https://doi.org/10.1109/SIMPAR.2016.7862392]

modeling:metamodels:component · Last modified: 2018/06/15 08:39
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:component

http://robmosys.eu/wiki-sn-03/modeling:metamodels:component 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service-architecture
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
http://joser.unibg.it/index.php/joser/article/view/91
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://doi.org/10.1109/SIMPAR.2016.7862392

RobMoSys Wiki
http://www.robmosys.eu

Platform Metamodel
The Platform Metamodel (see figure below) is one part of the overall RobMoSys Composition Structures. It
defines the target platforms on the robot where the software components are later deployed to. The here
described metamodel has no direct relation to the Digital Platform as described in the glossary. Please note that
the current version of the Platform Metamodel is reduced to the most basic elements that are sufficient for
deploying and executing software components. However, further versions of this metamodel might be
extended to reveal additional details.

The two core elements of the platform meta-model are the targets and the network-connections. A target is
basically a PC on the robot. Each target (i.e. a PC) has several CPUs and can have several network-interfaces.
In addition, a target can use a specific communication-middleware (optionally with a middleware-specific
naming-service). A network-connections links two network-interfaces and requires (as a constraint) that both
connected targets use the same communication-interface (otherwise the components from the two targets
would not be able to communicate).

See also:

Deployment Metamodel

modeling:metamodels:platform · Last modified: 2018/06/08 09:09
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:platform

http://robmosys.eu/wiki-sn-03/modeling:metamodels:platform 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/glossary
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:platform-metamodel.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:deployment

http://robmosys.eu/wiki-sn-03/modeling:metamodels:platform 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Communication-Object Metamodel
Communication Objects define data structures that are communicated through services between components.
The definition of communication objects requires primitive data types such as Int, Double, String, etc. and
complex data types (i.e. composed data types). The figure below shows a simple metamodel of communication
objects. A fully fledged communication objects modeling language that conforms to this metamodel is the
SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html].

Typically, communication middlewares such as e.g. CORBA or DDS provide an Interface Definition Language
(IDL) that allows specification of communication structures. RobMoSys requires a middleware-independent
language. The SmartSoft communication object DSL [http://www.servicerobotik-ulm.de/toolchain-
manual/html/ch02s02s02.html] provides a fully fledged Xtext-based language that is compliant to the metamodel
in the figure above and that can be used already now for the definition of services.

At some point the communication object needs to be serialized (i.e. marshalled) into a middleware-specific
representation. The following references provide details for how this can be achieved for a CORBA-based and
a message-based middlewares:

Christian Schlegel. “Navigation and Execution for Mobile Robots in Dynamic Environments: An
Integrated Approach”. Dissertation. University of Ulm, 2004.PDF [http://www.hs-
ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf]
Christian Schlegel and Alex Lotz, “ACE/SmartSoft - Technical Details and Internals”, in Technical
Report 2010/01, Hochschule Ulm, Germany, ISSN 1868-3452, 2010. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf]
Dennis Stampfer, Alex Lotz, Matthias Lutz, and Christian Schlegel. “The SmartMDSD Toolchain: An
Integrated MDSD Workflow and Integrated Development Environment (IDE) for Robotics Software”.
In Journal of Software Engineering for Robotics, Special Issue on Domain-Specific Languages and
Models for Robotic Systems, Vol 7, No 1 (2016). Link [http://joser.unibg.it/index.php/joser/article/view/91]

See next:

Communication-Pattern Metamodel
Service-Definition Metamodel

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:comm-object-metamodel.png
http://www.servicerobotik-ulm.de/toolchain-manual/html/ch02s02s02.html
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
http://www.hs-ulm.de/users/cschlege/_downloads/phd-thesis-schlegel.pdf
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2010-ISSN-1868-3452.pdf
http://joser.unibg.it/index.php/joser/article/view/91
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service

modeling:metamodels:commobject · Last modified: 2018/06/15 08:40
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:commobject

http://robmosys.eu/wiki-sn-03/modeling:metamodels:commobject 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Skill Definition Metamodel
A skill provides access to functionalities realized by components for robotics behavior development. Skills lift
the level of abstraction from functional and service to a skill abstraction level, being usable from a task
abstraction level for robotics behavior development.

Skill definitions define the interface of skills on Composition Tier 2. Skills are realized on Tier 3 next to the
component providing the required functionality, following a skill definition. Separating skill definitions and
skill realizations enables the replacement and the composition of components (providing the same skill) and
decouples the component from the behavior developer and the technology used to realize robotics behavior
development. Skill definitions and skills are grouped in sets to model their semantic cohesion.

A skill definition as the interface of a skill contains input and output attributes of a primitive type (int, bool ,
etc.) and return a result (SkillResult). The sum of all contained SkillResults models the possible results a skill
could evaluate to. Each SkillResult maps to either SUCCESS or ERROR and contains an additional value to
provide further result details (e.g. ERROR and “Path Blocked” for a moveto Skill).

See also
Separation of Levels and Separation of Concerns
Skill Realization Metamodel
Component-Definition Metamodel
Behavior Developer
Component Supplier

Acknowledgement
http://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/_detail/modeling:metamodels:skill-definition-metamodel.png?id=modeling%3Ametamodels%3Askill-definition
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

modeling:metamodels:skill-definition · Last modified: 2018/12/20 13:40
http://www.robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition

http://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition 2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Composition in an Ecosystem

RobMoSys adopts a composition-oriented approach to system integration that
manages, maintains and assures system-level properties, while preserving
modularity and independence of existing robotics platforms and code bases, yet
can build on top of them.

Introduction to Composition in an Ecosystem
We illustrate composition by:

Skills for Robotic Behavior
Task-Level Composition for Robotic Behavior
Service-based composition of software components
Composition of algorithms
Managing Cause-Effect Chains in Component Composition
Coordinating Activities and Life Cycle of Software Components

composition:start · Last modified: 2018/12/19 11:20
http://www.robmosys.eu/wiki-sn-03/composition:start

http://robmosys.eu/wiki-sn-03/composition:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/bricks-300.png?id=composition%3Astart
https://robmosys.eu/wiki-sn-03/composition:introduction
https://robmosys.eu/wiki-sn-03/composition:skills:start
https://robmosys.eu/wiki-sn-03/composition:task:start
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/composition:algorithms:start
https://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/composition:component-activities:start

RobMoSys Wiki
http://www.robmosys.eu

Introduction to System Composition in an
Ecosystem
RobMoSys adopts a composition-oriented approach to system integration that manages, maintains and assures
system-level properties, while preserving modularity and independence of existing robotics platforms and code
bases, yet can build on top of them. System Composition is the action or activity of putting together a service
robotics system from existing building blocks (e.g. software components) in a meaningful way, flexibly
combining and re-combining them depending on the application's needs.

Composition is about the management of the interfaces between different roles (participants in an
ecosystem) in an efficient and systematic way.
Composition is about guiding the roles via superordinate composition-structures.
Composition is about explicating and managing properties.
Composition is about the right levels of abstraction.
Composition is about access restriction and views for roles.

We operationalize architectural patterns and composition such that properties of system-of-systems become
known in order to build trust in the system under development.

System composition puts a focus on the new whole that is created from existing parts rather than on making
parts work together only by glueing them together: the whole still consists of its parts, they do still exist as
entities and are thus still exchangeable. This is in contrast to integration.

Software components, for example, that are subject to composition shall be taken as-is (and only configured on
model level within predefined configuration boundaries). Software components thus have to be built with this
intention right from the beginning. The context in which they will later be composed is unknown, which puts
special requirements on their composability and the overall workflow.

Composition is about guiding the roles via superordinate composition-structures. It is about adhering to a
composition structure, thus gaining immediate access to all other parts that also adhere to this (same) structure.
In contrast, integration is about building adapters between (all) parts or even modifying the parts themselves.

System Integration

A distinction between integration and composition can be drawn by the effort (see 1)): the ability to readily

http://robmosys.eu/wiki-sn-03/composition:introduction 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:start
https://robmosys.eu/wiki-sn-03/_detail/building-blocks-and-systems.png?id=composition%3Aintroduction

combine and recombine composable components distinguishes them from integrated components, which are
modified with high effort to make them work with others, essentially by writing adapters. The integrated part
amalgamates with the whole (i.e. the whole becomes one part, individual parts blend together, as red and green
water will mix), thus making it hard to remove or exchange individual parts from the whole. If they are
removed, it requires new adapters/adjustments.

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

1)

Mikel D. Petty and Eric W. Weisel. “A Composability Lexicon”, in Proc. Spring 2003 Simulation
Interoperability Workshop, March 2003, Orlando, USA.

composition:introduction · Last modified: 2018/06/08 15:52
http://www.robmosys.eu/wiki-sn-03/composition:introduction

http://robmosys.eu/wiki-sn-03/composition:introduction 2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Skills for Robotic Behavior
Robotics behavior coordination is the composition and coordination of functionalities (other terms: basic
capabilities, skills, etc.) to realize a task a robot should perform. A robotic behavior realizing a logistics task
would for example use the robots functionalities to move itself and to manipulate things to realize an order
picking task. To do so, the robotic behavior needs (on the lower end) to deal with the coordination of the
software components of the system that provide the functionality.

To allow for composition and to enable the separation of roles, robotics behavior blocks can be separated into
different levels of abstraction: skill and task. While tasks describe how a robot does something in an abstract
and independent manner, a skill provides access to functionalities realized by components for the usage within
tasks. Skills therefore lift the level of abstraction from functional and service to a skill abstraction level, being
usable from a task abstraction level for robotics behavior development.

The following sections describes the big picture how the separated roles will collaborate for robotics behavior
development (see the following figure as well):

Skill Definition - Domain Experts (Tier 2)

The separation of the skill definition, modeling the interface and the skill realization enables the replacement
and the composition of components (providing the same skill) and decouples the component from the Behavior
Developer and the technology used to realize robotics behaviors on task level. The role of the Domain Expert

http://robmosys.eu/wiki-sn-03/composition:skills:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/_detail/composition:skills:skill-big-picture.png?id=composition%3Askills%3Astart

therefore is able to define skill definitions modeling the interface of skills on tier 2, not yet deciding how a skill
is realized. As a result, the skill definition is any component that realizes it.

Skill Realization - Component Developers (Tier 3)

The skill definitions modeled by the Domain Experts are used by the role of the Component Developer to
realize the coordination of its component, making the components functionality accessible for behavior
coordination. The role of the Component Developer is decoupled from the role of the Behavior Developer and
can realize the components functionality and the skill according to the skill definition only.

Behavior Development - Robotics Behavior Developer (Tier 3)

The role of the Robotics Behavior Developer is able to realize the behavior tasks (abstraction level) using the
skill definitions as interface to the functionalities later provided by the components. In case the behavior is
developed for a known system the list of available skills can be received from the system digital data sheet,
provided by the role of the System Builder.

Skill Usage at Run-Time

To make use of existing skills (see system digital data sheet), a task level behavior coordination approach can
use existing skills via a run-time skill interface. This enables the usage of different behavior coordination
approaches without the need to realize the skills (accessing the components, lifting the level of abstraction)
over and over again.

An example realization of the interface can be seen within the software component “ComponentSkillInterface”
and is accessible via a json based protocol. The interface is kept lightweight and by purpose without
RobMoSys communication patterns in order to enable the simple integration with existing infrastructure. It is
realized using plain sockets or zeromq JSON communication.

The protocol is straight forward and can be sketched as follows. For further details see the software component
ComponentSkillInterface [https://github.com/Servicerobotics-Ulm/ComponentRepository/ComponentSkillInterface].

Push Skill for Execution

{ "msg-type" : "push-skill" , "id" : <ID>, "skill" : { "name" : "<SKILLNAME>", "skillDefinitionFQN" : "<SKILL FQN>", "in-attribute" : { "<ATTRIBUTE>" : <VALUE> }, "out-attribute" : { "<ATTRIBUTE>" : <VALUE> }}}

Skill execution result-msg:

{ "msg-type" : "skill-result" , "id" : <ID> , "result" : { "result" : "<SUCCESS|ERROR>", "result-value" : "<VALUE>" }}

Abort Skill

Abort current skill:

{ "msg-type" : "abort-current-running-skill" }

{ "msg-type" : "abort-current-running-skill-result", "result" : "<SUCCESS|ERROR>"}

Abort skill:

{ "msg-type" : "abort-skill", "id" : 2 }

{ "msg-type" : "abort-skill-result", "id" : 2, "result" : "SUCCESS"}

Optional Information Query

http://robmosys.eu/wiki-sn-03/composition:skills:start 2019-01-31

https://github.com/Servicerobotics-Ulm/ComponentRepository/ComponentSkillInterface

{ "msg-type" : "query" , "query" : { "type" : "<INFORMAION TO QUERY>" }}

RobMoSys Modeling Support

Skill Realization Metamodel
Skill Definition Metamodel
Component-Definition Metamodel
Behavior Developer
Component Supplier
Service Designer
Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Separation of Levels and Separation of Concerns
Ecosystem Organization

The system-related parts of skills are yet to be documented.

RobMoSys Tooling Support

The following page demonstrates how skills modeled using the SmartMDSD Toolchain: Support of Skills for
Robotic Behavior

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

composition:skills:start · Last modified: 2018/12/20 13:50
http://www.robmosys.eu/wiki-sn-03/composition:skills:start

http://robmosys.eu/wiki-sn-03/composition:skills:start 2019-01-31

https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-realization
https://robmosys.eu/wiki-sn-03/modeling:metamodels:skill-definition
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:behavior_developer
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:component_supplier
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:service_designer
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:skills:start
https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Coordinating Activities and Life Cycle of Software
Components
The coordination of software components at run-time and the run-time management of the component's
internal resources are fundamentally important for designing robust and efficient systems. Therefore,
RobMoSys specifies a generic component lifecycle that can be extended by component-specific operation
modes (see the technical report below for further technical details).

The component lifecycle (see figure on the right) is a generic state automaton
that every component has by default and that manages the initialization, shutdown
and operation of a component in a uniform way. This lifecycle does not require a
detailed metamodel as it is the same for every component and thus is an implicit
part of the Component-Definition Metamodel (see the “Lifecycle” element in the
component metamodel). The lifecycle is defined here:

Christian Schlegel, Alex Lotz and Andreas Steck, “SmartSoft - The State
Management of a Component”, in Technical Report 2011/01, Hochschule
Ulm, Germany, ISSN 1868-3452, 2011. PDF [http://www.zafh-
servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf]

Moreover, every component can specify individual operation modes (see
Component Development View) which can be dynamically (de-)activated at run-
time to manage the component's internal activities and thus the component's
functional resource consumption. There is an interesting relation between the component's operation modes,
services and functions. The component's operation modes interface between the component's internal
functions (implemented within relevant activities) and the component's services. Each operating mode
activates related activities and thus functions. As activities are responsible for generating data for related
services, activating a certain operating mode indirectly activates respective services. Deactivating a certain
operation mode means that one or several related activities are deactivated (i.e., each deactivated activity
stops before its next execution cycle until this activity gets activated again). This is a uniform mechanism to
dynamically manage the component's resources at run-time in a consistent way without violating the
component's internal implementation.

Overall, the management of the component's lifecycle and the management of the component's operation
modes is an important part of the component's coordination interface (see Coordination and Configuration
Patterns). Several robotic frameworks such as SmartSoft and RT-Middleware support this component lifecycle
directly and other frameworks such as ROS are currently working on the implementation of a similar
component lifecyle under the term Managed nodes [http://design.ros2.org/articles/node_lifecycle.html].

Example Use-Case

The Gazebo/TIAGo/SmartSoft Scenario consists of several components each implementing at least the generic
component lifecycle as described above. This already allows coordinated startup (i.e., initialization) and
shutdown (i.e., destruction) of these components. During regular operation, each component at least has two
regular opertion modes:

http://robmosys.eu/wiki-sn-03/composition:component-activities:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/_media/modeling:metamodels:lifecycle.png
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
http://www.zafh-servicerobotik.de/dokumente/ZAFH-TR-01-2011-ISSN-1868-3452.pdf
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:metamodels:commpattern#coordination_and_configuration_patterns
http://design.ros2.org/articles/node_lifecycle.html
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

Neutral: all the component's internal activities are in a standby state
Active: all the component's internal activities are activated and operational

At runtime, only one of these modes can be active at a time and switching between them is possible at any
time. The Neutral mode is reserved for the inactive (i.e., passive) state of a component. This means that a
component might by fully started and ready to deliver a service but is within a standby mode and does not
consume its specific resources. Switching into the Active mode means that the component wakes up an
continuously delivers its service(s). These two modes are the default operation modes of a component which
covers the majority of all use-cases.

In some cases, it is reasonable to have a more detailed definition of the Active mode (i.e., if a component can
have several partial activation of its internal functionalities). For example, the component
“SmartMapperGridMap” from the Gazebo/TIAGo/SmartSoft Scenario provides two main functionalities,
namely to build long-term maps and update local grid maps. For coordinating these two functionalities, this
component provides (besides of the default “Neutral” mode) the following three operation modes (instead of
the generic “Active” mode):

BuildCurrMap: for updating only the current (local) map
BuildLtmMap: for building the long-term map
BuildBothMaps: for building and updating both maps (highest resource demands)

These modes enable the robot to dynamically coordinate the amount of resources a component consumes
depending on the current situation and the task a robot is performing. Switching into the Neutral mode is
always possible for each component in situations where this component is not used in a system. In this way, it
is not necessary to completely kill a component (if currently not needed) and start it again (if needed again)
which is typically more time-consuming than just switching between respective component's operation modes.

Concrete models for these component examples are presented and discussed in the Example for Coordinating
Activities and Life Cycle of Software Components using the SmartMDSD Toolchain.

RobMoSys Modeling Support

Component Development View
Component-Definition Metamodel

The operation mode in the component-definition metamodel is modeled via the lifecycle metamodel which is
yet to be described.

RobMoSys Tooling Support

The following page demonstrates how concrete operating modes are modeled in existing navigation
components using the SmartMDSD Toolchain: Example for Coordinating Activities and Life Cycle of
Software Components using the SmartMDSD Toolchain

composition:component-activities:start · Last modified: 2018/05/24 15:43
http://www.robmosys.eu/wiki-sn-03/composition:component-activities:start

http://robmosys.eu/wiki-sn-03/composition:component-activities:start 2019-01-31

https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start
https://robmosys.eu/wiki-sn-03/modeling:views:component_development
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:component-activities:start

RobMoSys Wiki
http://www.robmosys.eu

Service-based Composition
The service-based composition approach is an example to illustrate the use of the composition tiers. Below is
the illustration that corresponds to the role descriptions. The service-based composition approach uses service-
definitions as central architectural element for composition of software components. We call the links between
service definition, service wish, and service with fulfillment the “service triangle”.

RobMoSys Modeling Support

Composition Structures
Component Definition Metamodel
Service Definition Metamodel

RobMoSys Tooling Support

Support for Service-based Composition by the SmartMDSD Toolchain

See also

Architectural Pattern for Service Definitions
http://robmosys.eu/wiki-sn-03/composition:service-based-composition:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/_detail/composition:service-based-composition:service-based-composition-approach.png?id=composition%3Aservice-based-composition%3Astart
https://robmosys.eu/wiki-sn-03/modeling:composition-structures:start
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:service
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:service-composition:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:service_definitions

Acknowledgement

This document contains material from:

Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

composition:service-based-composition:start · Last modified: 2018/06/14 17:06
http://www.robmosys.eu/wiki-sn-03/composition:service-based-composition:start

http://robmosys.eu/wiki-sn-03/composition:service-based-composition:start 2019-01-31

http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

RobMoSys Wiki
http://www.robmosys.eu

Managing Cause-Effect Chains in Component
Composition
Composition can be found everywhere in a system and consider different aspects of that system. There is a
general distinction between vertical composition (as e.g. demonstrated by the Service-based Composition)
and horizontal composition. This wiki page describes an example of horizontal composition using “Cause-
Effect Chains”.

While vertical composition addresses the combination of parts at different levels of abstraction (see
Separation of Levels and Separation of Concerns), horizontal composition focuses on the combination of parts
at the same level of abstraction. One example for the latter kind of composition is the definition of the so
called Cause-Effect Chains for the purpose of refining specific system-level, performance-related, and non-
functional properties. The following reference provides further details of this topic:

Alex Lotz, Arne Hamann, Ralph Lange, Christian Heinzemann, Jan Staschulat, Vincent Kesel, Dennis
Stampfer, Matthias Lutz, and Christian Schlegel. “Combining Robotics Component-Based Model-
Driven Development with a Model-Based Performance Analysis.” In: IEEE International Conference on
Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR). San Francisco, CA, USA,
Dec. 2016, pp. 170–176. LINK [http://dx.doi.org/10.1109/SIMPAR.2016.7862392]

In brief, the management of “Cause-Effect Chains” addresses the problem of combining different models of
computation such as e.g. Synchronous Data-Flow (SDF)
[https://ptolemy.berkeley.edu/publications/papers/87/synchdataflow/], and Petri Net
[https://en.wikipedia.org/wiki/Petri_net]. That is, individual components typically specify parts of the overall,
system-level models of computation by the definition of activities (i.e., the threads of that component). As the
component should be used in different systems and different systems often require different models of
computation, this component needs to be configured differently for each individual system so that a required
model of computation is realized. Therefore, the activities of individual components are configured in a
system so that the interaction of activities from different components are either directly linked (i.e., in a trigger
relation) or loosely coupled (i.e., registers semantics). The constraint of a direct link is then mapped onto a
related scheduling strategy (which depends on the capabilities of the used operating system).

http://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/composition:service-based-composition:start
https://robmosys.eu/wiki-sn-03/general_principles:separation_of_levels_and_separation_of_concerns
http://dx.doi.org/10.1109/SIMPAR.2016.7862392
https://ptolemy.berkeley.edu/publications/papers/87/synchdataflow/
https://en.wikipedia.org/wiki/Petri_net

There is a relation between the System Component Architecture Metamodel (see also the System Builder Role
and the System Configuration View) and the Cause-Effect Chain and its Analysis Metamodels (see also the
Performance Designer Role and the Performance View). The figure above shows an illustration of models that
demonstrate this relation. In particular, the Cause-Effect Chain metamodel (an example model is sketched in
the lower half of the figure) removes component-boundaries by purpose to hide model-details that are not
relevant for that modeling view. This results in a directed graph consisting of activity nodes (the orange blocks
in the lower half of the figure) and abstract communication links. Consequently, an existing System
Component Architecture model can be transformed into a Cause-Effect Chain model which again is enriched
by further details related to refining the links between the activity nodes (i.e., specifying whether the links are
loosely coupled or directly linked).

Moreover, the Component Definition meta-model enables the modeling of components with activities so that a
component can be fully implemented and supplied to different system builders. The selected level of details of
a Component Definition meta-model leaves the relevant aspects related to the specification of models of
computation open for later configuration in different systems. As a result, existing components can be flexibly
instantiated in different systems (conforming to the System Component Architecture Metamodel) and the
configuration of components can be adjusted (conforming to the Cause-Effect-Chain and its Analysis
Metamodels) without violating the component's internal implementation so that overall system-level
requirements such as end-to-end delay demands, and CPU load requirements are satisfied for the current
system under development. This management of Cause-Effect Chains is one of the leading examples for
horizontal composition, providing a general mechanism that can be applied for other aspects of a system in a
similar way.

Example Use-Case for Managing Cause-Effect Chains

The figure below shows an example system derived from the Gazebo/TIAGo/SmartSoft Scenario consisting of
http://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:componentstotaskchains.svg.png?id=composition%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:system_builder
https://robmosys.eu/wiki-sn-03/modeling:views:system-configuration-view
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/general_principles:ecosystem:roles:performance_designer
https://robmosys.eu/wiki-sn-03/modeling:views:performance-view
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:component
https://robmosys.eu/wiki-sn-03/modeling:metamodels:system
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/baseline:scenarios:tiago_smartsoft

navigation components altogether providing collision-avoidance and path-planning navigation functionality.
This example is used in the following to discuss different aspects related to managing cause-effect chains
which are again related to managing performance-related system aspects.

The example system in the figure above consists of five navigation components, from which two are related to
hardware devices (i.e., the Pioneer Base and the SICK Laser) and the other three components respectively
implementing collision-avoidance (i.e., the CDL component), mapping and path-planning. As an example, two
performance-related design questions are introduced in the following with the focus on discussing the
architectural choices and the relevant modeling options:

1. How fast can a robot react to sudden obstacles taking the current components into account?
2. How often does the robot need to recalculate the path to its current destination (thus reacting to major

map changes)?

RobMoSys Modeling Support

Cause-Effect-Chain and its Analysis Metamodels

RobMoSys Tooling Support

The following page discusses the concrete models of this example using the SmartMDSD Toolchain:
Example Use-Case for Managing Cause-Effect Chains in Component Composition using the
SmartMDSD Toolchain

See also:

Architectural Pattern for Stepwise Management of Extra-Functional Properties

composition:cause-effect-chain:start · Last modified: 2018/05/24 10:30
http://www.robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start

http://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start 2019-01-31

https://robmosys.eu/wiki-sn-03/_detail/composition:cause-effect-chain:navigationexamplequestion.png?id=composition%3Acause-effect-chain%3Astart
https://robmosys.eu/wiki-sn-03/modeling:metamodels:performance
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:start
https://robmosys.eu/wiki-sn-03/baseline:environment_tools:smartsoft:smartmdsd-toolchain:cause-effect-chain:start
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:stepwise_management_nfp

http://robmosys.eu/wiki-sn-03/composition:cause-effect-chain:start 2019-01-31

RobMoSys Wiki
http://www.robmosys.eu

Task-Level Composition for Robotic Behavior
Below is an example of how tasks can be composed for Robotic Behavior
It shows how tasks and skills can be composed flexibly
Several tasks can be composed to be executed in sequence or in parallel (horizontal composition)
A task can be refined with other tasks (vertical composition): Abstract tasks are refined to more concrete
tasks.
Refinement of tasks may be static or dynamic

Static: The tasks and eventually the order is known. E.g. making coffee always involves
approaching the machine, putting a cup into the machine, pressing the button, etc.
Dynamic: The tasks and the order are not known in advance (i.e. to be solved by symbolic
planning): E.g. it is not known what is the best way to clean up the table after customers left
(what order, what to stack into each other, what to carry at once/first/next/last, etc.)

Skills will finally translate to configurations of one or more components (lower right). E.g. moving the
manipulator requires to configure the component for collision-free manipulation-planning in a certain
environment and the manipulator component to move along these collission-free trajectories.
Grasp cup relies on the existence of a task “recognize-object” which is later bound to “recognize-cup”.
There are constraints that have to be maintained during the execution of a task, for example: the robot is
not moving while manipulating.
There are results of a task that effect execution of other tasks, even after the current task was finished.
For example, grasping a cup means that the cup still is in the gripper after the execution is done.

See also

Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
Architectural Pattern for Component Coordination
Robotic Behavior Metamodel

http://robmosys.eu/wiki-sn-03/composition:task:start 2019-01-31

https://robmosys.eu/wiki-sn-03/start
http://www.robmosys.eu
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/_detail/composition:task:task_composition.png?id=composition%3Atask%3Astart
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:robotic_behavior
https://robmosys.eu/wiki-sn-03/general_principles:architectural_patterns:component-coordination
https://robmosys.eu/wiki-sn-03/modeling:metamodels:behavior

Acknowledgement

This document contains material from:

Lotz2018 Alex Lotz, "Managing Non-Functional Communication Aspects in the Entire Life-Cycle of a
Component-Based Robotic Software System", Dissertation, Technische Universität München, München
2018. [https://mediatum.ub.tum.de/?id=1362587]
Lutz2017 Matthias Lutz, “Model-Driven Behavior Development for Service Robotic Systems: Bridging
the Gap between Software- and Behavior-Models,” 2017. (unpublished work)
Stampfer2018 Dennis Stampfer, "Contributions to System Composition using a System Design Process
driven by Service Definitions for Service Robotics". Dissertation, Technische Universität München,
München, Germany, 2018. [http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-
1399658-1-2]

composition:task:start · Last modified: 2018/06/26 11:30
http://www.robmosys.eu/wiki-sn-03/composition:task:start

http://robmosys.eu/wiki-sn-03/composition:task:start 2019-01-31

https://mediatum.ub.tum.de/?id=1362587
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20180425-1399658-1-2

	RobMoSys Wiki
	RobMoSys Wiki
	Technical Material for the Second Open Call
	Glossary and FAQ
	Your Role in the RobMoSys Ecosystem
	General Principles
	Tier 1: Modeling Foundations
	Tier 2: Examples of Domain Models
	Tools and Software Baseline
	Tooling
	Tutorials and Documentation
	Usable Domain models, Components, and Systems

	Composition in an Ecosystem
	Pilot Skeletons: Demonstrating the RobMoSys Approach
	Other Approaches in the RobMoSys Context
	Community Corner

	RobMoSys Wiki
	Changelog
	January 30th
	January 25th
	January 18th, 2019
	December 13, 2018
	November 30, 2018
	October 5, 2018
	July 5, 2018
	June 29, 2018
	June 8, 2018
	May 30, 2018
	May 2nd, 2018
	March 2nd, 2018
	August 21st, 2017
	August 1st, 2017
	June 23rd, 2017
	June 13st, 2017
	June 6st, 2017
	June 1st, 2017
	May 29th/31st, 2017
	May 3rd, 2017

	RobMoSys Wiki
	RobMoSys Glossary
	General Terms
	Ecosystem
	Digital Platform
	System Composition (Activity)
	System Integration (Activity)
	Composability
	Compositionality
	Component
	Service
	System
	System-of-systems
	Architecture
	Extra-Functional Properties
	Synonyms

	Modeling Twin
	View
	Engineering Model
	Activity (in a RobMoSys software component)
	Mission (Level)
	Task (as in task plot for robotic behavior or as in task level)
	Synonyms

	Skill (Level)
	Service (Level)
	Function (Level)
	Execution Container (Level)
	Operating System and Middleware (Level)
	Hardware (Level)
	SmartSoft / The SmartSoft World
	Communication Pattern

	General Principles
	Separation of Roles
	Separation of Concerns
	Freedom OF choice vs. freedom FROM choice
	Architectural Pattern
	Objectives for Architectural Patterns

	Block, Port and Connector

	Concerns
	Computation (Concern)
	Communication (Concern)
	Coordination (Concern)
	Configuration (Concern)
	Cross-Cutting Concern
	Example

	Roles
	Acknowledgement
	References

	RobMoSys Wiki
	Technical Material for the Second Open Call
	Quick General Links
	RobMoSys Tooling and Tutorials
	RobMoSys Building Blocks and Software Components
	Pilots (industrial case studies) and Pilot Skeletons
	Domain of Mobile Robot Navigation
	Domain of Manipulation
	Digital Data Sheet
	Mixed-Port Component
	Cause-Effect-Chains
	OPC UA
	Model-Based Safety Analysis
	Tasks, Coordination, Skills: Robotic Behavior
	Need Help?

	RobMoSys Wiki
	Community Corner
	RobMoSys Wiki
	Using the YARP Framework and the R1 robot with RobMoSys
	Introduction
	In the Context of RobMoSys User-Stories
	Technical Details
	Components in the System
	Further Information

	Current State and Roadmap
	Discussion
	Acknowledgements
	See Also

	RobMoSys Wiki
	Benchmarking in the RobMoSys Ecosystem
	What is benchmarking?
	What is Plug&Bench ?
	How to benchmark an autonomous robot?
	What does Plug&Bench add to RobMoSys?
	Are there any example benchmark models?
	Acknowledgements

	RobMoSys Wiki
	Safety Assessment of Robotics Systems Using Fault Injection in RobMoSys
	eITUS Demonstrator in the context of RobMoSys User Stories
	Acknowledgements

	RobMoSys Wiki
	Dealing with Metrics on Non-Functional Properties in RobMoSys (RoQME ITP)
	Introduction
	Goal of RoQME in the context of RobMoSys
	What RoQME provides

	This demonstration is in the Context of RobMoSys User-Stories
	Technical Details
	System Component Architecture
	Metrics Component
	The RoQME Model for the Experiment
	Non-Functional Properties:
	Contexts:
	Observations:

	Description of the Story
	Visualization
	Simulation and benchmarking

	Current State and Roadmap
	Discussion
	Acknowledgements
	See also
	Related Publications

	RobMoSys Wiki
	Robotic Behavior in RobMoSys using Behavior Trees and the SmartMDSD Toolchain (MOOD2be ITP)
	Introduction
	Demonstration: building task-level coordinators using Behavior Trees
	Demonstration is in the Context of RobMoSys User-Stories
	Technical Details
	Previous demonstration (June 2018)
	Skill Modeling by the SmartMDSD Toolchain
	System Component Architecture

	Current State and Roadmap
	Discussion
	Acknowledgements
	See also

	RobMoSys Wiki
	General Principles
	RobMoSys Wiki
	Analogy: The PC Domain
	Configuration, Composition, and Integration
	Configuration
	Composition
	Integration (in contrast to composition)

	Ecosystem Example: Graphics Cards
	What Enables Composition in the PC Domain?
	Views
	Decoupling supply and use
	IP is still flexible
	Flexible composition Combinations and alternatives

	RobMoSys Composition Tiers in the PC Domain
	Data Sheets and The Modeling Twin

	RobMoSys Wiki
	Architectural Patterns
	Introduction
	Template for an Architectural Pattern
	Context
	Problem
	Solution
	Optional: Discussion
	Optional: Example(s)

	List of Architectural Patterns
	Further Candidates for Architectural Patterns

	RobMoSys Wiki
	Architectural Pattern for Stepwise Management of Extra-Functional Properties
	Context
	Problem
	Solution
	Example
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Software Components
	Context
	Problem
	Solution
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Communication
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Task-Plot Coordination (Robotic Behaviors)
	Context
	Problem
	Solution
	Discussion
	Acknowledgement

	RobMoSys Wiki
	Architectural Pattern for Component Coordination
	Context
	Problem
	Solution
	Discussion
	See also
	Acknowledgement

	RobMoSys Wiki
	Separation of Levels and Separation of Concerns
	About the Levels
	On the number and separation of levels
	Example: Levels
	The individual Levels
	Mission (Level)
	Task (Level)
	Skill (Level)
	Service (Level)
	Function (Level)
	Execution Container (Level)
	Operating System and Middleware (Level)
	Hardware (Level)

	Acknowledgement

	RobMoSys Wiki
	Ecosystem Organization
	Composition Tiers
	Tier 1: Composition-Structure – Meta-Structure
	Elements on this tier
	Examples of roles on this tier
	See also

	Tier 2: Robotics-Domain-Specific Structures – Robotics Domain Models
	Examples of elements on this tier
	Examples of roles on this tier

	Tier 3: Ecosystem Content
	Examples of elements on this tier
	Examples of roles on this tier

	RobMoSys Modeling Support
	RobMoSys Tooling Support
	See also
	Acknowledgement

	RobMoSys Wiki
	Roles in the Ecosystem
	List of Roles
	Roles in Context of Composition Tiers
	See also

	RobMoSys Wiki
	System Builder
	RobMoSys Wiki
	Service Designer
	Acknowledgement

	RobMoSys Wiki
	Performance Designer
	RobMoSys Wiki
	Component Supplier
	RobMoSys Wiki
	Behavior Developer
	RobMoSys Wiki
	System Architect
	RobMoSys Wiki
	Technical User Stories
	Composable commodities for robot navigation with traceable and assured properties
	Description of building blocks via model-based data sheets
	Replacement of component(s)
	Composition of components
	Quality of Service
	Determinism, e.g. for robot navigation
	Free from hidden interference
	Management of Non-Functional Properties
	Gap between design-time assumptions and run-time situation
	System analysis tools
	Task modeling for task-oriented robot programming
	Safety

	RobMoSys Wiki
	Tier 2: Examples of Domain Models
	RobMoSys Wiki
	Flexible Navigation Stack
	Obstacle Avoidance Level
	Geometrical Path Planning Level
	Topological Path Planning Level
	Flexibility in the Navigation Stack
	The navigation stack components and services
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Mobile Manipulation Stack
	The mobile manipulation stack components and services
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	RobMoSys Model Directory
	Tier 2 Domain Models
	Tier 3 Component Models
	Tier 3 Systems
	Explanation/Legend
	Status Descriptions
	Vendor Index
	Tooling

	RobMoSys Wiki
	Pilot Skeletons: Demonstrating the RobMoSys Approach
	RobMoSys Wiki
	Modular Education Robot Pilot
	RobMoSys Wiki
	Flexible Assembly Cell Pilot
	RobMoSys Wiki
	Assistive Mobile Manipulation Pilot
	RobMoSys Wiki
	Intralogistics Industry 4.0 Robot Fleet Pilot
	Available RobMoSys Software Baseline
	Pilot Roadmap
	Usage of this Pilot

	RobMoSys Wiki
	Human Robot Collaboration for Assembly Pilot
	RobMoSys Wiki
	Tools and Software Baseline
	Tooling
	Tutorials and Documentation
	Usable Domain models, Components, and Systems

	RobMoSys Wiki
	Roadmap of Tools and Software
	See also

	RobMoSys Wiki
	Gazebo/TIAGo/SmartSoft Scenario
	Available Baseline: Gazebo/TIAGo with the SmartMDSD Toolchain v3
	See also

	RobMoSys Wiki
	The SmartSoft World
	Conformance to RobMoSys Composition Structures
	Separation of Levels and Concerns in SmartSoft
	Robotics Behavior in SmartSoft
	SmartSoft Terminology
	Communication Object
	Communication Pattern
	Framework
	Quality of Service

	Further Resources
	Selected Publications

	RobMoSys Wiki
	Support for Service-based Composition
	RobMoSys Wiki
	SmartMDSD Toolchain Support for the RobMoSys Ecosystem Organization
	Support for Composition Tier 1
	Support for Composition Tier 2
	Support for Composition Tier 3

	RobMoSys Wiki
	Support of Skills for Robotic Behavior
	Definition of Skills - Tier 2
	Realization of Skills - Tier 3 (Component Developer)
	Examples
	Robot Navigation Examples: moverobot
	Intralogistics i4.0 Robot Fleet Pilot

	See also
	Acknowledgement

	RobMoSys Wiki
	Support for the Flexible Navigation Stack
	Ready-to-run Example: Tiago
	Available Software Components in the SmartSoft World
	The Flexible Navigation Stack with FESTO Robotino3

	RobMoSys Wiki
	Support for Coordinating Activities and Life Cycle of Software Components
	Example Use-Cases for Component Operation Modes

	RobMoSys Wiki
	Support for Managing Cause-Effect Chains in Component Composition
	Example Use-Case for Managing Cause-Effect Chains
	The component development view
	The system-configuration view
	The performance view
	Performance Analysis based on SymTA/S
	Video

	Tooling Migration Status
	Acknowledgement

	RobMoSys Wiki
	The SmartMDSD Toolchain
	Getting Started and Download
	Tutorials and HowTo's
	RobMoSys Support and Use Cases
	Available Building Blocks and Models

	RobMoSys Wiki
	Papyrus4Robotics
	Presentation
	Realization and tools
	Conformance to the RobMoSys structures
	Separation of Levels and tool coverage
	Platform workbenches in the context of RobMoSys
	Resources

	RobMoSys Wiki
	RoQME Plugins for the SmartMDSD Toolchain
	Description
	Features
	Relation to other RobMoSys Tools
	Further Resources

	RobMoSys Wiki
	Getting Started With Papyrus4Robotics
	Installation
	Running an Example
	The Example Explained
	Introduction
	Domain Expert (Tier 2)
	Component Suppliers (Tier 3)
	AcmeMapper
	EmcaPlanner

	System Builder (Tier 3)
	Conclusions

	Do It Yourself
	Connect ComponentInstance Items

	RobMoSys Wiki
	Groot
	Description
	Features
	Relation to other RobMoSys Tools
	Further Resources
	RobMoSys Wiki
	BehaviorTree.CPP
	Description
	Features
	Relation to other RobMoSys Tools
	Further Resources

	RobMoSys Wiki
	Other Approaches in the RobMoSys Context

	RobMoSys Wiki
	OPC Unified Architecture (OPC UA)
	See also
	Acknowledgement

	RobMoSys Wiki
	General Purpose Modeling Languages and Dynamic-Realtime-Embedded domains
	RobMoSys Wiki
	Tier 1: Modeling Foundations

	RobMoSys Wiki
	Preliminary Ecore implementation of ER and BPC meta-models
	Entity-Relation (ER) meta-model
	Block-Port-Connector (BPC) meta-model
	Eclipse/Ecore implementation of ER and BPC meta-models

	RobMoSys Wiki
	Roadmap of MetaModeling
	See also

	RobMoSys Wiki
	Tier 1 in Detail
	The levels of Tier 1
	Hierarchical Hypergraphs and Entity-Relation Model
	Block-Port-Connector
	RobMoSys Composition Structure

	Initial Structures and Evolvement of Tier 1

	RobMoSys Wiki
	Scientific Grounding
	Hierarchical Hypergraph
	Entity-Relation Model
	Natural modelling levels of abstraction

	Formalization
	Hierarchical Hypergraph
	Entity-Relation Model
	Basic set of standard relations for linking different levels of abstraction

	References
	RobMoSys Wiki
	Block-Port-Connector
	See next

	RobMoSys Wiki
	Modeling Twin
	See also

	RobMoSys Wiki
	RobMoSys Structures: Realization Alternatives
	Example 1: Using Ecore
	Example 2: Using UML/SysML Profiling

	RobMoSys Wiki
	RobMoSys Composition Structures
	Overview of RobMoSys composition structures
	List of Metamodels

	RobMoSys Wiki
	Basic Modeling Principles
	What is "Modeling"?
	Meta-Models, Modeling Languages, and Models
	Ecore-OWL language-bridge

	RobMoSys Wiki
	RobMoSys Views
	List of Views
	Views in relation to composition structures and roles
	Links Between Views: Example 1
	Links Between Views: Example 2
	See also

	RobMoSys Wiki
	Component Development View
	RobMoSys Wiki
	Communication Pattern View
	RobMoSys Tooling Support
	See also

	RobMoSys Wiki
	Execution Container View
	RobMoSys Wiki
	Service Design View
	RobMoSys Wiki
	Metamodels
	RobMoSys Wiki
	Robotic Behavior Metamodel
	RobMoSys Wiki
	Deployment Metamodel
	RobMoSys Wiki
	System Service Architecture and Service Fulfillment Metamodels
	Service Fulfillment Metamodel
	Acknowledgement

	RobMoSys Wiki
	Skill Realization Metamodel
	See also
	Acknowledgement

	RobMoSys Wiki
	System Component Architecture Metamodel
	RobMoSys Wiki
	Service-Definition Metamodel
	Views of a Service

	RobMoSys Wiki
	Cause-Effect-Chain and its Analysis Metamodels
	Acknowledgement

	RobMoSys Wiki
	Communication-Pattern Metamodel
	Component Communication Patterns
	Coordination and Configuration Patterns
	Parameter
	State
	Dynamic Wiring
	Monitoring

	RobMoSys Tooling Support
	Tooling Support by the SmartSoft World

	See Also
	References

	RobMoSys Wiki
	Component-Definition Metamodel
	References

	RobMoSys Wiki
	Platform Metamodel
	RobMoSys Wiki
	Communication-Object Metamodel
	RobMoSys Wiki
	Skill Definition Metamodel
	See also
	Acknowledgement

	RobMoSys Wiki
	Composition in an Ecosystem

	RobMoSys Wiki
	Introduction to System Composition in an Ecosystem
	System Integration

	RobMoSys Wiki
	Skills for Robotic Behavior
	Skill Definition - Domain Experts (Tier 2)
	Skill Realization - Component Developers (Tier 3)
	Behavior Development - Robotics Behavior Developer (Tier 3)
	Skill Usage at Run-Time
	Push Skill for Execution
	Abort Skill
	Optional Information Query

	RobMoSys Modeling Support
	RobMoSys Tooling Support
	Acknowledgement

	RobMoSys Wiki
	Coordinating Activities and Life Cycle of Software Components
	Example Use-Case
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Service-based Composition
	RobMoSys Modeling Support
	RobMoSys Tooling Support
	See also
	Acknowledgement

	RobMoSys Wiki
	Managing Cause-Effect Chains in Component Composition
	Example Use-Case for Managing Cause-Effect Chains
	RobMoSys Modeling Support
	RobMoSys Tooling Support

	RobMoSys Wiki
	Task-Level Composition for Robotic Behavior
	See also
	Acknowledgement

