

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020 RESEARCH

AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 732410

H2020—ICT—732410

RobMoSys

COMPOSABLE MODELS AND SOFTWARE

FOR ROBOTICS SYSTEMS

DELIVERABLE D7.3

SUSTAINABILITY PLAN

Huáscar Espinoza (CEA), Gaël Blondelle (EFE), Susanne Bieller (EUR), Anna Principato

(TUM)

Ref. Ares(2017)6375644 - 27/12/2017

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 2

Project acronym: RobMoSys

Project full title: Composable Models and Software for Robotics Systems

Work Package: WP 7 - Exploitation

Document number: D7.3

Document title: Sustainability Plan

Version: 1.0

Due date: December 31th, 2017

Delivery date: 22.12.2017

Nature: Report (R)

Dissemination level: Public (PU)

Editor: Huáscar Espinoza (CEA)

Author(s): Huáscar Espinoza (CEA), Gaël Blondelle (EFE), Susanne Bieller (EUR), Anna Principato

(TUM)

Reviewer: Herman Bruyninckx (KUL)

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 3

Executive Summary

This document represents the first annual deliverable of Sustainability Plan (D7.2) for RobMoSys,

as part of work package “Exploitation” (WP7). This deliverable aims at planning the RobMoSys

related activities beyond the end-of-the project.

The main topics of this document are:

1. Background on sustainability concepts, as well as on other community management

aspects.

2. Preliminary strategy for sustainability focused on the RobMoSys open source community,

including a strategy for a sustainable business, quality management, maturity and long-

term longevity of RobMoSys tools and assets.

3. Proposal for the governance of the RobMoSys community, as a first approach to be

validated by key external actors, which includes governance principles and rules, decision

making process, committees, and community tools.

This first version of the Sustainability Plan is focused on establishing the basics and on specifying

a framework for community management and provision of activities for ensuring a strong

sustainability of the RobMoSys results. This scope will be extended in future annual iterations by

adding the feedback from Tier-1 experts coming from the community management world and

taking into account the return of experience of related projects. Workshops with these actors will

start at the second year of the project.

Conclusions of this deliverable are:

 From the early stages of RobMoSys, a strong candidate for the open-source community,

and in particular for hosting the tool assets, has been the Eclipse ecosystem. We must

assess this option and any related mechanism around this option from the second year by

taking into account that the innovation required to advance RobMoSys ecosystem needs

to be driven by the key industrial companies.

 RobMoSys partners expect that the project solutions will evolve in pace with the more

challenging requirements of modern robotics systems and will provide more flexible

extensibility and customization that makes it easier to adopt the tools to the methods and

processes of robotics engineering teams.

 It is also important to note that it is essential to sustain RobMoSys activity in communities

that are outside of the RobMoSys community. In order to make the RobMoSys activity

sustainable after the end of the project it is also necessary to build a dynamic, growing

community around it.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 4

Content

Executive Summary .. 3

Content ... 4

1 Introduction .. 6

1.1 Scope ... 6

1.2 Document Structure ... 6

2 Background ... 8

2.1 Basics of Sustainability ... 8

2.2 Governance Models of a Community ... 8

2.2.1 Traditional classification ... 9

2.2.2 Governance Model depending on the Orientation of the community 10

2.2.3 Governance Model depending on the collaborative entities organization. 10

2.3 Existing Robotic Software Platform Communities ... 11

3 Sustainability Strategy .. 14

3.1 Principles ... 14

3.2 Role of the Community Platform .. 14

3.3 Role of RobMoSys Contributors .. 15

3.4 Industrial Outreach .. 15

4 RobMoSys Community Governance ... 17

4.1 Governance Models ... 17

4.2 Governance Principles and Rules .. 18

4.3 Collaboration Cases ... 18

4.3.1 Develop ... 18

4.3.2 Quality ... 19

4.3.3 Help ... 19

4.3.4 Internationalization .. 19

4.3.5 Support and Dissemination ... 19

4.3.6 Supplementing the License--Contributor Agreements .. 20

4.4 Decision Making Process ... 20

1.1.1 Lazy Consensus .. 20

4.4.1 Voting .. 21

4.5 Committees .. 21

4.5.1 Users ... 21

4.5.2 Contributors ... 22

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 5

4.5.3 Committers ... 22

4.5.4 Project Management Committee .. 23

4.5.5 Project Management Committee Chair .. 23

4.6 Community Tools.. 23

4.6.1 E-Mail distribution lists. .. 23

4.6.2 Internet forums .. 24

4.6.3 Wikis .. 24

4.6.4 Chat Rooms .. 24

4.6.5 Forges .. 25

4.7 Sustainability View per Partner ... 25

4.7.1 Summary of RobMoSys partners View .. 25

4.7.2 Questionnaire feedback ... 25

5 Conclusions ... 30

6 References .. 31

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 6

1 Introduction

RobMoSys is about managing the interfaces between different roles (robotics expert, domain

expert, component supplier, system builder, installation, deployment and operation) and

separating concerns in an efficient and systematic way by making the step change to a set of fully

model-driven methods and tools for composition-oriented engineering of robotics systems.

RobMoSys’s vision is that of an agile, multi-domain, model-driven European robotics software

ecosystem. It will consist of specialised set of players with both vertical and horizontal integration

levels, providing both widely applicable software products and software-related services. This

ecosystem will be able to rapidly address new functions and domains at a fraction of today’s

development costs.

The creation of a sustainable ecosystem is a major objective of the project, but obviously, this is

not something that can be done in a guaranteed or strictly controlled way. However, the more

clever, more open and more reactive the strategy is, the better this goal is to reach. Anyway, the

project partners though will very actively stimulate active involvement of, and controversial

discussions with, a selected variety of different stakeholder groups outside of the consortium of

the project representing both technology-pull (application domains) as well as technology push

(technical capabilities).

Sustainability is directly related to the business opportunities (see Deliverable D7.2 for full details)

to produce RobMoSys artefacts (models, software components and tools). The effects of the

commoditization strategy pursued in RobMoSys must be carefully analysed during the project-

lifetime. Typically, commoditized software is a software nobody pays for (or is not aware to pay for,

as in the case of operating systems). The sustainability of commoditized software directly relies

then on open-source communities, and in more structured way through industrial

foundations/group of interests. Sustainability through the creation of a foundation or group of

interest in existing foundations is being investigated during the project life-time with the final

objective of keep sustaining the community.

This document addresses sustainability issues of the RobMoSys ecosystem, particularly focused

on an open source and open assets strategy. The proposed sustainability strategy and framework

will be incrementally specified and continuously aligned to the exploitation and business strategies.

This deliverable represents the first annual iteration of Sustainability Plan (Deliverable D7.3), as

part of work package “Exploitation” (WP7). It aims at organising and planning the RobMoSys related

activities beyond the end of the project.

1.1 Scope

This first version of the Sustainability Plan is focused on establishing the basics and on specifying

a framework for community management and provision of activities for ensuring a strong

sustainability of the RobMoSys results. This scope will be extended in future annual iterations by

adding the feedback from Tier-1 experts coming from the community management world and

taking into account the return of experience of related projects. Workshops with these actors will

start at the second year of the project.

1.2 Document Structure

The remaining of this document is organised as follows:

• Section 2 provides a background sustainability concepts, as well as on other community

management aspects.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 7

• Section 3 presents a preliminary strategy for sustainability focused on the RobMoSys open

source community, including a strategy for a sustainable business, quality management,

maturity and long-term longevity of RobMoSys tools and assets.

• Section 4 addresses a proposal for the governance of the RobMoSys community, as a first

approach to be validated by key external actors, which includes governance principles and

rules, decision making process, committees, and community tools.

• Section 5 summarises next steps and conclusions.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 8

2 Background

2.1 Basics of Sustainability

Sustainability is the ability to develop and implement technologies/methodologies, which are self-

sustaining without jeopardising the potential for future generation to meet their needs

[Commission 1987]. An open source approach is good for sustainability of a project as it is an

enabler to attract a larger community of developers and adopters, as well as a guarantee that if

the existing developers of a project decide to leave, the code will still be available for the community

to take over the project.

Governance relates to consistent management, cohesive policies, guidance, processes and

decision-rights for a given area of responsibility. The management or governance of an open

source community is directly related to the type of this community and what kind of product or

result it offers to users. It is therefore a critical aspect to be taken into account when creating an

open source community. How the community is managed and the type of licence hold is the key

aspect when talking about open source communities.

An Open Source community is the keystone for the sustainability of a project. If the project

development team is not able to attract and convince people that the code is worth spending time

and resources on testing it, providing feedback, providing patches, and contributing in general,

then a large part of the intrinsic value of Open Source is lost.

In other words, without Maturity, Quality, Cost of Acquisition and Control, the sustainability of the

code is nearly impossible. And vice-versa, a community of adopters, testers, users, extenders of a

technology is a great indicator demonstrating the Maturity, the Quality and the Control of the code.

Metrics: A good way to know if an Open Source project is sustainable and viable, is to check the

activity of its community: number of committers, number of commits, regularity of the releases,

and the quality and quantity of assets built around the project are a great indicator. In other

words, the community is an excellent evaluation metric for a project.

There is a ‘snowball’ effect: a project attracts early adopters with the quality of code, the initial

assets attached to the code like the Getting Started guide, documentation, scientific and technical

papers, first releases, well defined code infrastructure (bug tracking system, continuous testing,

continuous integration, etc.), and the interest of the adopters will do the rest.

2.2 Governance Models of a Community

How an open source project is managed defines the type of community and product that it will

create. It is therefore a critical aspect to put some thought into the suitability of the governance

model of robotics software that RobMoSys wish to adopt or develop.

The governance model can be taken in mind from different points of views. In general terms the

governance can be classified in two different points of view, a centralized one and a de-centralized

one. This classification is sufficient and there is no need for anything else when the object to be

governed is a small piece of software where few people are involved. But when the project gets

bigger the needs of a correct governance model becomes a necessity.

For the fulfilling of the RobMoSys necessity and following this “centralized” - “de-centralized” model,

we can define two main approaches of classification, the Cathedral/Bazaar one and the

Meritocracy/Benevolent-Dictatorship one. These two classifications can be considered at the same

time for the same project, being the first one a general governance approach and the second one

a definition of collaborating roles.

Table 1 provides a general classification of governance models.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 9

Table 1. Community Governance Models: Template

Classification Model

Traditional The Cathedral Model

The Bazaar

Meritocracy

The Benevolent Dictatorship

Depending on the orientation of the

community

Exploration oriented

Utility oriented

Service oriented

Depending on collaborative entities

organization

Enterprise model

Foundational model

Consortium model

2.2.1 Traditional classification

The Cathedral model

The source code is available with each software release, but code developed between releases is

restricted to an exclusive group of software developers. GNU Emacs and GCC are presented as

examples.

The Bazaar model

The code is developed over the Internet in view of the public.

Meritocracy

A meritocratic governance model is, at its most extreme, the one that appears to give control away

to community members in response to their contributions to the project. The Apache Software

Foundation, perhaps the most famous example of a large scale meritocratic community, is very

proud of the fact that they operate with an almost completely flat structure. However, even this

model is designed so that those with control today can decide who gets control tomorrow. In this

way project leaders ensure that only those sharing a common vision and, just as importantly, the

willingness to work towards that shared vision, are given decision making authority. The "flatness"

comes from the fact that once someone has decision making authority they have exactly the same

authority as everyone else. Another aspect to the flatness of a meritocratic project comes from the

fact that decision making responsibilities are usually reserved for those willing and able to

understand and appropriately represent the views of the wider community.

Meritocratic projects often start life as a small number of decision makers, possibly even a single

person, who provide a mechanism for the distribution of control from the dictator to a fully flat

structure in recognition of contribution. Thus even a meritocratic model may look and behave like

a benevolent dictator model in the early days.

The debian Linux distribution is the best example for this governance model.

Benevolent-Dictatorship

In a Benevolent-Dictatorship governance model, Project founders who maintain individual lead

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 10

throughout the entire life of the project are sometimes called 'benevolent dictators'. A benevolent

dictator is responsible for providing the general direction of the project and making the final

decisions when the community is in disagreement. As more and more members join the

community, the benevolent dictator strives to ensure that these decisions are in the best interest

of the project, rather than of any particular individual or institution. A good benevolent dictator

needs to be able to balance any conflicting requirements of the community members.

The Linux Kernel development is the best example for this governance model.

2.2.2 Governance Model depending on the Orientation of the community

One of these classifications, that take in account the previous general subdivision, could be defined

depending on the orientation of the collaboration, having three different governance models:

Exploration Oriented Governance Model

The objective of this kind of collaborative governance model has the main focus on the share of

knowledge and innovation. It's driven by a Cathedral like control, were there is a central and main

control. This governance model defines a community structure that defines a main Project Leader

and the rest of the roles involved play a “reader” role. Examples of this governance models are,

GNU, Perl and the Linux Kernel.

Utility Oriented Governance Model

The objective of this second kind of collaborative governance model has the main focus on the

satisfaction of an individual need. It's driven by a Bazaar like decentralised control, where there

isn't any core or main control point. This governance model defines a community structure that

includes many roles from peripheral developers to passive users. Examples of this governance

models are GNU Linux (parts that is not part of the Linux Kernel).

Service Oriented Governance Model

The objective of this third kind of collaborative governance model has the main focus on the

provision of a stable service. It's driven by a Council-like centralised control. This governance model

defines a community structure that includes a bunch of leaders instead of a unique Project Leader

and there are clearly identified the rest of users that develop systems that provide a concrete

service to the end users. Examples of this governance models are, Apache and PostgreSQL.

2.2.3 Governance Model depending on the collaborative entities organization.

Continuing with these more detailed governance model subdivisions a briefly used classification is

this one:

Enterprise model

In this model the promoter (organization or partnership) decides to lead a project of Free Software

where the Managing Committee will have the following characteristics:

The promoter will maintain the control on the decisions of design and management of the project

naming or integrating the Managing Committee of the Project.

The promoter becomes leader from the beginning of the project, and this one is the unique one

that can yield this position in case of considering opportune to leave the project.

The leader reserves the right to change this model in case he considers it necessary and with the

condition of which he is approved by the Managing Committee of the Community.

Foundational model

The foundational model is oriented to project leaders who pretend trying to maximize the

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 11

contributions that are obtained from the community developers’ collaboration.

The foundational model is based exclusively on the meritocracy for government method. Although

the enormous advantages of this model have already been described in the Free Software

communities’ documentation, it is very important to indicate the possible disadvantages that could

appear for a company that chooses this model, in principle related solely to the government of the

community itself:

The project is ruled totally by the meritocracy, the leadership of the project is not fixed and it can

vary democratically.

The individual developers, as they have the right to vote and representation in the project

government, could become a sufficiently numerous group to become leaders of the project by their

account, whenever they are organized among them to choose a leader, a leader that should be

approved by commission manager of the community

Consortium Model

The consortium model is created for projects that with representation of several companies. The

companies will have to reach an agreement to choose to the Director of the Project as well as the

quotas of being able in the Managing Committee of the Project. Normally this agreement will be

shaped in a contract. The partnership will have to present/display this contract or a document of

organization where the characteristics of the project are transformed so that it is accepted by the

Managing Committee, a binding agreement that will have to be respected so much by the

partnership as by RobMoSys Community, although first it could change the terms of the contract

whenever all the parts reach an agreement and the Managing Committee approves it.

2.3 Existing Robotic Software Platform Communities

The software industry is constantly evolving and is undergoing rapid changes. This is not only

because of the evolution of technologies, but also because these technologies drive a fundamental

shift in how suppliers and buyers are interrelated. It is the transition from traditional supply chains

to a software ecosystem. It is not a simple linear chain anymore, but a complex network of

multilateral relationships. A software ecosystem brings co-innovation as a result of different

businesses interacting within a shared market for software and services, together with

relationships among them. These relationships are frequently underpinned by a common

technological platform and operate through the exchange of information, resources and artefacts.

Well-known examples of communities that are seen as software ecosystems are the Apple iPhone

with its app store and development tools, the Google Android world, the Eclipse IDEs and, of

course, the Web 2.0 technologies which turned the Internet into a platform.

The transition to a software ecosystem also comes with a shift from integration-centric approaches

to a composition-oriented approach. In an integration-centric approach, the focus of an

organization has been on control of the integration process. Due to the high complexity of

nowadays systems, this consequently leads to unacceptable coordination costs - not to speak of

the challenges of cross-department or cross-company coordination. In contrast, the composition-

oriented approach does away with most of the central mechanisms and relies on a number of

principles such as e.g. (i) customers compose their products by selecting from the available

functionality and (ii) components satisfy the independent deployment principles.

Most popular robotic communities include ROS, OROCOS and a domain-specific community for

neuro robotics is HBP, which are discussed here.

ROS

ROS (Robot Operating System) is a collection of tools, libraries, and conventions that aim to simplify

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 12

the task of creating complex and robust robot behavior across a wide variety of robotic platforms.

ROS gained tremendous acceptance within the robotics community over the past years, and it has

been the first time in robotics software that so many adopted a particular framework.

ROS provides hardware abstraction and device drivers, services such as message-passing between

processes (nodes) and tools such as package management and data visualizers. It comes with

libraries that implement commonly-used functionality in sensing, planning and control. ROS does

not provide anything comparable to an IDE which could support the design, implementation and

integration of ROS nodes. Instead, any preferred general purpose IDE (e.g. QtCreator) can be used.

Design and implementation agreements are solely the responsibility of the user and are not tool-

supported. Some user-driven initiatives tried to address this, e.g. RIDE and rxDeveloper. RIDE aims

to “make the creation of ROS controllers from reusable components as easy as possible”. Yet, the

only provided functionality is to launch and to connect ROS nodes. Similar, rxDeveloper provides a

GUI for modifying launch-file parameters of running ROS nodes. This helps in executing the nodes,

but neither in their design nor implementation.

ROS is an example for freedom of choice. What the ROS founders mean by “we do not wrap your

main” is that, among others, they do not want to enforce any architectural design decisions for

developers using ROS. In consequence, each developer uses his own personally preferred

architecture which is then very likely in conflict with those defined by others. This can lead to

confusion as everyone first needs to understand the architectural decisions of each individual

component before being able to reuse them in an own system. A proposed solution is just to

extensively document each ROS component on the ROS portal. However, this does not circumvent

the need to extensively analyse and understand the source code in order to adjust it or to

implement workarounds in order to somehow make components compatible and reusable.

ROS, in line with its overall design philosophy, does not yet give enough structure in an appropriate

format in order to better support separation of roles and separation of concerns. The minimally

required structures are a sound software component model which has to be formalized for use in

model-driven tools in order to support separation of concerns (e.g. to maintain semantics

independently of the OS/middleware mapping), to assist the different roles in conforming to

structures like component life-cycles and to reduce exposed complexity by systematic and

computer-assisted management of variation points.

OROCOS

Orocos-RTT is specifically oriented towards programming and executing component-based

applications on top of Real-Time Operating Systems (RTOS) and relies on lock-free communication

to guarantee a deterministic execution time for all in-process inter-component data exchange.

OROCOS offers a collection of commonly used components in robotic applications through a

library called OCL (Orocos Component Library). For instance, we can find dedicated components

to devices, hardware platforms, motion control and deployment. OROCOS allows also the

integration of user-defined types through what is called typekits to ensure data transfer between

processes or over a network connection. In OROCOS, there is no guidance about the control

architecture to choose. The user is responsible to make his own right choices. Like ROS, OROCOS

has no dedicated IDE but many initiatives like BRIDE4, RobotML5 and oroGen6 provide code

generators from their models to OROCOS. They allow automatic code generation of component

structures, their properties and the communication between them while having a graphical

visualization about the system architecture.

Neuro Robotics Platform (HBP)

HBP is developing a novel strategy for advancing multi-level understanding of the brain, by studying

brain models in the context of realistic sensory inputs and producing realistic (motor) output that

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 13

can be compared to experimental data. This is achieved by connecting the brain models to realistic

virtual (or physical) bodies that are immersed in realistic dynamic environments.

In brain modelling to date, there are two complementary approaches. The first develops top-down

or hypothesis driven models that focus on the functional properties of nervous systems. They

define control architectures and neural network models, possibly trained by deep learning

algorithms, with the aim of solving a particular set of tasks. Examples are the Spaun model

(Eliasmith et al 2012) and control architectures commonly found in cognitive robotics. The second

approach is pioneered by the HBP and consists of digitally reconstructing and simulating neural

circuits or even entire brains of mice, rats and ultimately humans, based on experimental data.

These bottom-up digital reconstructions focus foremost on the structural and dynamical details of

the reconstructed system and regard brain function as an emergent phenomenon.

While many researchers argue in favour of one or the other position, SP10 proposes that the most

productive route is to combine the two approaches: For example, many theories exist for higher-

level brain functions like visual perception, but not all of these theories can be true at the same

time. Some may be appropriate for humans, whereas others may be applicable to cats or rodents.

The only way to separate suitable theories from less suitable ones is to give researchers a tool that

allows them to confront a given theory of brain function with the anatomical and physiological

realities of a particular brain embedded in a concrete body, be it mouse, cat, or human. The

Neurorobotics Platform (NRP) aims to be such a tool, following the time-tested approach of analysis

by synthesis.

The NRP is a powerful integration of models, simulation tools, visualisation environments and

hardware-/software-in-the-loop facilities that allows neuroscientists and roboticists to connect

brain models of different complexity to biological or technical robot bodies, real or virtual, that

operate in complex virtual dynamic environments. The NRP is the only platform worldwide, which

aims at building, operating and monitoring virtual robots of arbitrary complexity and making these

models easily accessible both to neuroscientists and roboticists. It will also enable them to find

“common ground” over using those robots together in simulated (or partly or fully real)

environments, i.e., a basis for the exchange of ideas and concepts. To this date, such common

ground hardly exists.

Since the start of the HBP in 2013, a number of commercial and open competitors have emerged.

This confirms the validity and the importance of our approach. OpenAI Gym is an online platform

to train top-down models in (very simple) virtual environments. A start-up in Barcelona developed

a platform similar to the NRP with regard to our robot programming features, called ROS

Development Studio (http://www.theconstructsim.com/rds-ros-development-studio/) to teach

ROS. NVIDIA is offering a commercial robot simulation platform, called Isaac

(https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/), which is heavily slanted

towards Deep Learning. Another project that shares NRP’s vision to connect brain (or AI) models to

agents in dynamic environments was also launched by Google Deep Mind

(https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/).

However, it uses computer games rather than realistic robot and environment models.

In its scope and ambition, the HBP Neurorobotics Platform is still ahead of its competitors in scope

and ambition. No other platform offers such a unique combination of realistic physics based robot

simulations and multi-scale neural network modelling. Only the NRP is collaborative, open access

and open source. The integration of the NRP into the HBP Collaboratory gives all users access to

an unprecedented amount of data and models that can be used in neurorobotics experiments as

well as access to supercomputing resources in Europe.

http://www.theconstructsim.com/rds-ros-development-studio/
https://www.nvidia.com/en-us/deep-learning-ai/industries/robotics/
https://deepmind.com/blog/deepmind-and-blizzard-open-starcraft-ii-ai-research-environment/

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 14

3 Sustainability Strategy

3.1 Principles

RobMoSys aims at building an open sustainable ecosystem around public, royalty-free and

implementation-driven software platform standards that will ease the development of new robotic

applications in multiple domains. The innovation required to advance RobMoSys methodology and

tools needs to be driven by the key industrial companies. This is why RobMoSys partners believe

that it needs to join an existing industrial platform that guarantees a suitable environment for open

innovation and industrial feedback.

More concretely, there is a set of specific goals to be met by the targeted community:

• Open Innovation: Ensuring the highest levels of productivity, reliability, service, and

performance implies a continuous effort of research and development in robotics software

tools. To cover the largest possible spectrum of stakeholder groups, we envisage to keep a

high degree of openness. Methodological specifications will be open, not just in the sense

of a dissemination with non-proprietary intellectual property rights, but also in the sense

of the human development process required to reach such specifications.

• Industry-friendly Business. As for implementations, we envisage co-existence of both open-

source and proprietary solutions. Obviously, a project with public funding and with an

industrial focus, will push development of industry-grade open-source results. Special

attention to open-source (with so-called “industry-friendly” licenses) is needed to make the

approach accessible and to spread it easily in the community and in the market.

• Rich Tool Ecosystem: The numerous and complex operations required to develop and

maintain robotics systems imply a high level of automation based on mature software

tools. RobMoSys must be connected with a solid ecosystem of software tools providing

support beyond RobMoSys features. This is why, RobMoSys target “harmonisation” of

critical aspects of the various established digital platforms (such as OPC/UA, ROS, etc.), in

particular the interactions between sub-systems, as an essential enabler.

• Long Term Support: The tool chain needs to remain operational for the life cycle of the

robotics products; many domains need more than 10 years, and some need up to 30 years.

Firstly, we will enable “growth” into a bigger ecosystem by helping existing players to

expand through our dissemination and networking activities, and by lowering entry

barriers for new players through productising core functionality, thus growing the overall

market. Secondly, “scalability” means solving bigger problems with equal or reduced costs,

which we achieve, on the one hand, through improved tool-chains, and on the other hand

through model-driven predictable integration. This latter aspect is squarely aimed at the

complexity-from-diversity problem mentioned in the motivation.

• Certification & Tool Qualification: The development of robotics systems must comply with

standards and regulations impacting both the final product and the development process

(certification) and tools used to build them (tool qualification).

RobMoSys partners expect that the project solutions will evolve in pace with the more challenging

requirements of modern robotics engineering teams. RobMoSys solutions needs flexible

extensibility and customization that makes it easier to adopt its tools, methods and processes by

robotics engineering teams.

3.2 Role of the Community Platform

The goals of the potential community platform must be:

• Providing means of collaboration between end user companies.

• Organizing sustainable commercial services and ecosystems around open source models,

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 15

software components and tools.

• Fostering exchanges between academics and industry partners.

• Managing the quality and maturity of tools and components from early research

prototypes through to obsolescence.

• Providing the documents and qualification kits required for certification.

• Recognizing project maturity and company know-how and commitment through a

branding process.

• Ensure long-term longevity of models, software components, and tools since they must last

for a long time.

The idea of joining an existing community is to avoid re-developing community management

aspects but also to connect with other software communities. A lot of very good solutions

answering some industrial needs already exist in open source. But most of the time, specific issues

like durability or certification are not taken into account. In this case, the community platform must

play its part by providing tool components assets, setting up specific support, and coordinating

development and support.

3.3 Role of RobMoSys Contributors

The role of RobMoSys contributors in such a community would be:

• Preparing RobMoSys models, software components and tools to be released/hosted in

open source.

• Operating dedicated code repositories, build chains, test facilities, etc.

• Fostering exchanges between RobMoSys partners and industry partners.

• Proposing RobMoSys tool enhancements (industry-friendly functionalities, new features,

reliability features, tool connectors with other external tools, among others).

• Managing the quality and maturity of RobMoSys tools

• Ensuring open innovation through the sharing of the research, development, and

maintenance efforts as far as possible

• Fostering sustainable commercial services and ecosystems around the RobMoSys tools.

The main goal is to use RobMoSys partner’s technical expertise in the models, software

components and tool platform and comprehensive understanding of the ecosystem challenges, in

an effective way by offering continuous support for industrial players wishing to use these

technologies in a cost-effective way for long-term projects.

3.4 Industrial Outreach

The creation of a sustainable ecosystem is a major objective of the project, but obviously, this is

not something that can be done in a guaranteed or strictly controlled way. However, the more

clever, more open and more reactive the strategy is, the better this goal is to reach. Anyway, the

project partners though will very actively stimulate active involvement of, and controversial

discussions with, a selected variety of different stakeholder groups outside of the consortium of

the project representing both technology-pull (application domains) as well as technology push

(technical capabilities).

This involvement (and thus commitment) of relevant stakeholder groups is “secured” by both, Tier-

1 Experts Workshops and by Third-Party Funding.

Tier-1 Experts Workshops will allow to systematically gather requirements and recommendations

helping project team members to (i) define the specifications of the Open Call, (ii) to monitor and

assess the results of the Open Calls and (iii) to promote strategies for dissemination and

exploitation. Hopefully, they will also lead to some co-development of software. Workshops during

the monitoring phase of Open Calls will also host trial sessions with selected groups of users

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 16

moderated by experts.

Third-Party Funding allows the “influx of knowledge and brains” from a broad set of stakeholders,

so that the project will be able to tap the tremendous potential of the community in a systematic

way. In this way, RobMoSys will be able to successfully “address the open development of

integrated sets of tool chains and building block applications that will support the construction of

complex robotics systems”, which is a major expectation in this Call. The Open Call mechanism

allows to identify the best tools already available, the best modelers and developers to adjust them

and the best application areas to validate the results and establish benchmarks. This will result in

standards to describe robot systems and system building blocks as well as their interaction. The

resulting software architecture will be modular, composable, re-usable and easy to use. Cascade

funding will also solve another burning issue: the access to integrated sets of common tool chains

and real-world test installations to support the development of complex robotics systems.

"One-on-One dissemination", in which some core partners of the project engage in a co-

development effort with selected individual industrial (non-funded) third parties, to help the

company's engineers to adopt the RobMoSys approach and models and code in the context of that

company. The motivations behind this means are (i) less risk for the adopting company, (ii) faster

and more effective dissemination with more direct results, and (iii) more intense feedback for the

RobMoSys partner from industrial reality.

Beyond the project duration. The change of industrial practices is a complex and long process. A

single research project, like RobMoSys, cannot realistically expect to cause a revolution in industrial

robotics processes in a short-term. However, the project is demonstrating a feasibility of the

advocated approach and industrial RobMoSys partners, Tier-1 experts and third-party partners will

be committed to internal dissemination of the outcomes and gradual adoption of both individual

concepts and the entire framework developed by the project.

It should be noted that one of the secondary, but very important, by-products of the project is

establishing of networks between industrial and research, training and consultancy stakeholders.

Combined with exposure of industrial partners to cutting edge concepts and principles this will

naturally facilitate future smaller-scale collaboration that will, in turn, facilitate adoption of

RobMoSys concepts in industrial practices.

The long-term impact of RobMoSys in terms of influencing industrial practices can be facilitated by

a follow-up adoption program. This will be elaborated in future versions of this deliverable (D7.3).

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 17

4 RobMoSys Community Governance

From the early stages of RobMoSys, a strong candidate for the project’s open-source community

was the Eclipse ecosystem and in particular its PolarSys platform, targeting tools for embedded

system development. In this section, we evaluate the PolarSys platform and its governance

framework, as a preliminary baseline to decide if RobMoSys fits well in this community.

4.1 Governance Models

A solution for a multiple participant, multiple product platform, such as RobMoSys, should be

carefully chosen. The RobMoSys ecosystem should be segmented and for each sub-project a

governance model should be written.

If we consider the Eclipse/Polarsys community, RobMoSys would need to be aligned to the Polarsys

Charter (please see the Polarsys Working Group Charter1).

The rules of engagement of the open-source Eclipse model are based on three principles:

• Open: Eclipse is open to all; Eclipse provides the same opportunity to all. Everyone

participates with the same rules; there are no rules to exclude any potential contributors

which include, of course, direct competitors in the marketplace.

• Transparent: Project discussions, minutes, deliberations, project plans, plans for new

features, and other artifacts are open, public, and easily accessible.

• Meritocracy: Eclipse is a meritocracy. The more you contribute the more responsibility you

will earn. Leadership roles in Eclipse are also merit-based and earned by peer acclaim.

Meritocratic projects often start life with a small number of decision makers (at the beginning some

few organizations could be the RobMoSys core partner in Polarsys). Possibly only a single person

in charge of designing or distribution the decision control. However, even having a community with

a minimal structure, it will ensure that the members controlling the strategy in the present will be

ones in charge of identifying the future contributors for the community. This way they ensure a

common vision for the project and a long term strategy. Decision-making responsibilities are

usually reserved for those willing and able to understand and appropriately represent the views of

the wider community. The RobMoSys ecosystem will then move to a fully flat structure (i.e. one in

which decision control is distributed among community members) in recognition of the project’s

contribution (meritocratic governance).

Polarsys governance is based on the following principles:

• Polarsys is a user-driven organization,

• A means to foster a vibrant and sustainable ecosystem of tool components and service

providers,

• A means to organize the community of each project or tool component so that users and

developers define the roadmap collaboratively.

Regarding RobMoSys within Polarsys, some processes that are inherent to RobMoSys evolution will

be adopted and put them into practices so as to run effectively the Polarsys community after the

project ends. Some of these processes will be the communication mechanism such as the mailing

list, forum/discussion guidelines, wiki contribution guidelines. Other important processes to define

will be coding and releasing guidelines, community decision-taking processes and voting

processes. These processes are supported by Polarsys and regulated in the Polarsys Working

Group Charter.

1 : https://www.eclipse.org/org/workinggroups/polarsys_charter.php

https://www.eclipse.org/org/workinggroups/polarsys_charter.php

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 18

4.2 Governance Principles and Rules

In order to participate in Polarsys, one entity must be at least a Solutions Member of the Eclipse

Foundation, have executed the IWG Participation Agreement, and adhere to the requirements set

forth in the Polarsys Working Group Charter.

In order to propose RobMoSys tools and methods to be part of Polarsys, an entity must be a

Committer Member. Committer members are individuals who through a process of meritocracy

defined by the Eclipse Development Process are able to contribute and commit code to Polarsys

projects for which they are responsible. Committers may be members by virtue of working for a

member organization, or may choose to complete the membership process independently.

All Polarsys Members must be parties to the Eclipse Membership Agreement. In the event of any

conflict between the terms set forth in this Polarsys Industry Working Group Charter and the

Eclipse Foundation Bylaws, Membership Agreement, Eclipse Development Process, Eclipse

Industry Working Group Process, or any policies of the Eclipse Foundation, the terms of the Eclipse

Foundation Bylaws, Membership Agreement, process, or policy shall take precedence.

The Intellectual Property Policy of the Eclipse Foundation will apply to all Polarsys activities.

Polarsys will follow the Eclipse Foundation's IP due diligence process in order to provide clean open

source software released under EPL or any other licenses approved by the IWG and the Eclipse

Foundation Board of Directors, such as BSD-like and LGPL.

The Eclipse Foundation Development Process will apply to all Polarsys open source projects. In

particular, the project lifecycle model and review process will be followed by all Polarsys open

source projects.

4.3 Collaboration Cases

In this section the different collaboration cases that might occur in the RobMoSys Community will

be presented.

4.3.1 Develop

In this area we have find different cases that have the aim of making the end application more

efficiency and capable, in a sum, a better application for end users.

Request new feature: Anyone (end users, experienced users, developers, supporters) can request

a new feature that would help the application. Make good suggestions to enhance the system. The

feature could be for anything: security, new functions, architecture efficiency, user interface … This

request would be stored and will follow the developing process.

Program new features: In this case developers accepted by the community or technical users can

develop a feature and submit the implementation to the community where it will follow the

acceptance process.

Port the application to other architecture: Sometimes it is not about new features but making the

application available for other architectures different form the original one. To do this the

developer or developers’ team should be experts on the new architecture at the same time that

they know the application.

Package the applications: A package is a discrete collection of web pages, code, and database tables

and procedures. A developer is in charge of this task, he should follow the Maintainer Process. It is

usual that the developers that code the functions of a package, maintain the package and help

newcomers that are interested in that package.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 19

4.3.2 Quality

Report a bug: Any users could find a bug and should report the finding bugs to do this, users only

need to give information about what has happen with the application when they find the bug.

Reporting the bug is a way of performing the application. Anyway, before reporting a bug, the user

should assure that the bug has not been previously reported.

Complete the information about bugs: This collaboration case is related to the previous one. Many

of the bugs are reported by end users that hardly ever have a technical background. The

collaborator should first assure that it is really a bug and then complete the information, especially

with the test cases that would help to probe the bug solution.

Solve a bug: The bugs are there, no matter they are reported, they will be there until someone solve

them. Collaborator can solve a reported bug or even solve a new bug that hasn't been reported

yet. The solution implementation should follow it

Debug existing features: Before a new release come to general public, not only the new features

have to be implemented but they also must follow a testing period where tester user should use

the application and probe the efficiency of the new features and the integration with other parts

of the application.

Add documentation: The collaborator required technical background and should have knowledge

of the application. This collaboration case will help new developers to understand the application

and make them be ready to develop code for the community.

4.3.3 Help

Write tutorial: Experienced users could help newcomers to get in touch with the application for the

first time or explain how the new features work.

Help users: In open source community there are different communication channels that end users

use to get information about problems they have with the application. In this case the collaborator

should use at least one of the communication channels (distribution lists, IRC channel, forums...)

to help users with their problems. Each channel has a different way to interact so the collaborator

should chose the channels he is comfortable on.

Maintain the application: Collaborator with technical background could help the community by

spotting abandoned/poorly maintained packages and join the maintenance teams. He can also

help triaging bugs related to the application or simplified the procedure to maintain packages.

4.3.4 Internationalization

Translate the applications: The collaborator should write fluently the language he wants to

translate and it is desirable to be an expert user. He should join existing localization teams so he

can help the existing translator or create a new team if the existing teams have not work on the

selected language. He should work as part of team translating or/and revising the work of others.

Translate the documentation. This collaboration case it is often ignored, but is as important as the

one before. The collaborator should keep inform of the work done by teams in change of writing

documentation or tutorials. It is desirable to have technical knowledge as the technical

documentation is hard to translate at the same time as the technical concepts are remain the same

without the technical understanding.

4.3.5 Support and Dissemination

Help development the application public face: To make the project known by others is important,

that way the community start growing and so does the development with the help of new

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 20

developers. To make the community and the project known, the community need collaboration to:

create and maintain the web page, assist to events and conferences where collaborators should

disseminate the objectives and goals of the community...

Donate equipment and services: The community infrastructure needs donations so it will be

available to everyone, no matter where. As the community grown the needs for own infrastructure

are bigger and it’s more difficult to find free infrastructure. Organizations or individuals who want

to support the work could donate equipment or services like hosting, legal consultancy.

Promote the project: Everyone could promote the project. Collaborator should invite others to get

to know the community and what it offers, a short of evangelist. Anyone could make a donation to

help managing the community and so as to pay for not free services. That donation doesn't have

to be always money, it could also be time. The community apart from develops need people with

other skills: legal knowledge to work with licences, carpenters to help with the stands in events.

4.3.6 Supplementing the License--Contributor Agreements

Many open-source projects require that developers wishing to contribute to the project sign an

additional form. Developers must state that they have the right to contribute their source code--

that is, that they own it and that it does not belong to someone else. If the developer works for a

company, the form has the developer state that the company grants the right to use the

contributed code to the project. Note that even developers doing open-source work on their own

time might still need to get approval from their employers because employee agreements often

specify that the company owns anything employees invent.

The form also usually states that the developer grants to the project the right to freely use any

patents and third-party IP used by the contributed code.

Some projects use the form to assign the copyright of the code to the project. Other projects, such

as Open Office, use a joint copyright assignment so that both the project and the contributor retain

full rights to use, modify, and redistribute the copyrighted work.

Developers usually need to sign the form only the first time they contribute code; the form then

applies to any subsequent contributions. Developers are still free to exercise their rights to the

code, but, if they want to participate with the specific project code base, they must sign the form.

If the additional requirements of the contributor agreement form are not acceptable, then a

developer may be motivated to join or create a new project, that is, to fork the project.

4.4 Decision Making Process

In an open source community as the one that RobMoSys is aiming to generate, how decisions are

taken must be clarified. This point describes different mechanisms for this decision making

processes.

Decisions about the future of the project are made through discussion with all members of the

community, from the newest user to the most experienced PMC (see Section 3, Roles section)

member. All project management discussion takes place on the project-contributors mailing list

(occasionally sensitive discussion occurs on a private list, but general project management

discussion always occurs on the public lists).

These are the different activities that describe the process of the decision making.

1.1.1 Lazy Consensus

Decision making is usually a two-step process. Occasionally a third step is required. These steps

are:

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 21

Vote Proposal

Any community member can table an idea for consideration. In order to prompt a discussion about

a new idea, an email is sent to the project contributors. Once the idea has become more concrete

and appears to have a significant level of support within the community it is time to make a

proposal.

Usually, gaining consensus within the community is easy since all community members have a

common set of goals. By the time an idea reaches the proposal stage it is likely to have community

support since it will already have been discussed publicly. However, full community consensus

cannot be assumed at this stage, hence the need for a proposal stage.

In general, as long as nobody explicitly opposes a proposal then it is recognized as having the

support of the community. This is called lazy consensus, that is, those who have not stated their

opinion explicitly have implicitly agreed to the proposal being implemented. The "[Proposal]"

subject tag is used to grab the attention of community members who may have been unable to

participate in the discussion phase. It is an indicator that a project decision is about to be made. It

is this that allows the community to assume that lazy consensus has been reached.

Lazy consensus is a very important concept within the project. It this process that allows a large

group of people to efficiently reach consensus. This efficiency stems from the fact that someone

with no objections to a proposal need not spend time stating their position; furthermore others

need not spend time reading such mails.

The time spent gaining the consensus of the community does not prevent work proceeding on the

idea. People are free to work on the implementation of any idea or proposal whilst the community

examine and discuss it. This process need only be followed for an action that will significantly affect

the project. Smaller actions, such as the addition of an optional feature or the fixing of a reported

bug need no discussion. Contributors are free to action these items. Since this process is only

followed for major activities the time spent reaching consensus is usually considerably less than

the time spent implementing the decision.

4.4.1 Voting

Not all decisions can be made using lazy consensus. Issues such as those that affect the strategic

direction of the project must gain explicit approval in the form of a vote. See the next section for a

discussion of when a vote is needed.

In the case of Eclipse/PolarSys, a super majority approach exists: for actions (i) requesting that the

Eclipse Foundation Board of Directors approve an additional distribution license for Polarsys

projects; (ii) amending the terms of the Polarsys Participation Agreement; (iii) approving or

changing the name of Polarsys; (iv) approving changes to annual member contribution

requirements; any such actions must be approved by no less than two-thirds (2/3) of the

representatives in good standing represented at a Steering Committee meeting at which a quorum

is present.

4.5 Committees

If we select the meritocracy governance model, some typical roles should exist:

4.5.1 Users

Users are community members who have a need for the project. Anyone can be a user, there are

no special requirements. Users are the most important members of our community, without them

the project is nothing.

Discussion Proposal
occassionally

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 22

4.5.2 Contributors

Contributors are community members who contribute in concrete ways to the project.

Contributions can take many forms, such as those outlined below and in the above section on

users. Anyone can become a contributor. There is no expectation of commitment to the project,

no specific skill requirements and no selection process.

Contributors will already be performing actions as a user (see above) but will also find themselves

doing one or more of the following:

• supporting new users (users are often the best people to support new users)

• reporting bugs

• identifying requirements

• Graphics and web design

• programming

• assisting with project infrastructure

• writing documentation

• fixing bugs

• adding features

As contributors gain experience and familiarity with the project they may find that making such

contributions becomes easier. As a contributors profile and commitment increases they may be

nominated for committer ship, as described in the next section.

4.5.3 Committers

Committers are community members who have shown that they are committed to the continued

development of through the project ongoing engagement with the project and its community.

Committer ship allows contributors to more easily carry on with their project related activities by

giving them direct access to the projects resources. That is, they can make changes directly to

project outputs rather than having to submit changes via patches.

This does not mean that a committer is free to do what they want. Actually they have no more

authority over the project than a contributor (although they do have a "binding vote", see the

section on Decision Making below). Instead it means that they have shown themselves to be valued

members of the community with a healthy respect for the projects aims and objectives. Their work

continues to be reviewed by the community and it must be accepted by the community before it

will be included in a release. However, this approval is sought after the contribution is made, rather

than before.

This is known as a commit-then-review process. It is more efficient to allow trusted people to make

direct contributions as the majority of those contributions will be accepted by the project. We

employ various communication mechanisms to ensure that all contributions are reviewed by the

community as a whole; however, there is no need to detail them here. By the time you are invited

to become a committer you will have been guided through the use of our various tools as a user

and then contributor.

Anyone can become a committer; there are no special requirements other than to have shown

they are willing and able by participating as a contributor. Typically a committer will need to show

they have an understanding for the project, its objectives and its strategy. They will also have

provided valuable contributions to the project over a period of time.

New committers can be nominated by any existing committer. Once nominated there will be a vote

by the Project Management Committee (see below). Committer voting is one of the few activities

that happen on the private management list of the project. The reason it occurs in private is to

allow Project Management Committee members to freely express their opinions about a nominee

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 23

without having to do so in public where it may embarrass someone. Once the vote has been held

the aggregated voting results are published on the public mailing list. The nominee is entitled to

request an explanation for any "no" votes against them regardless of the outcome of the vote. This

explanation will be provided by the Project Management Committee Chair (see below) and will be

anonymous and constructive in nature.

Nominees may refuse their appointment as a committer. However, to do so is unusual as the

project does not expect any specific time or resource commitment from its community members.

The role of committer is intended to allow people to contribute to the project more easily; it is not

intended to tie them into the project in any formal way.

A committer who shows an above average level of contribution to the project, particularly with

respect to the strategic direction and long term health of the project may be nominated to become

a member of the Project Management Committee, this role is described below.

4.5.4 Project Management Committee

The Project Management Committee (PMC) of the project consists of those individuals identified

as "Project owners" on the development site. The PMC has additional responsibilities to ensure the

smooth running of the project. PMC members are expected to review code contributions,

participate in strategic planning, approve changes to the governance model and manage the

copyrights within the project outputs.

Being a member of the Project Management Committee does not give significant authority over

other members of the community, although it is the PMC who vote on new committers and make

decisions when community consensus cannot be reached. The PMC also has access to the projects

private mailing list and its archives. This list is used for sensitive issues (such as votes for new

committers and legal matters that cannot be discussed in public), but is never used for project

management or planning.

Membership of the PMC is by invitation from the existing PMC members. A nomination will result

in discussion and then a vote by the existing PMC members. PMC membership votes are subject

to consensus approval of the current PMC members.

4.5.5 Project Management Committee Chair

The PMC Chair is a single individual, voted for by the PMC members. Once someone has been

appointed chair they remain in that role until they choose to retire.

The PMC Chair has no additional authority over other members of the PMC. The role is one of

coordinator and facilitator. The chair is expected to ensure all governance processes are adhered

to.

The PMC Chair also has the casting vote in the event of an inability of the project to reach consensus

or the required number of votes when a vote is called.

4.6 Community Tools

One of the key aspects for a successful RobMoSys community is the necessity of proper

communication tools.

4.6.1 E-Mail distribution lists.

The most usual and used way of communication between all the members of an Open Source

community is an e-list, or an electronic mail distribution list.

An electronic mailing list (sometimes written as a list or e-list) is a special usage of email that allows

for widespread distribution of information to many Internet users. It is similar to a traditional

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 24

mailing list - a list of names and addresses - as might be kept by an organization for sending

publications to its members or customers, but typically refers to four things: a list of email

addresses, the people ("subscribers") receiving mail at those addresses, the publications (e-mail

messages) sent to those addresses, and a reflector, which is a single e-mail address that, when

designated as the recipient of a message, will send a copy of that message to all of the subscribers.

4.6.2 Internet forums

As they are very similar to the distribution lists, distribution lists can be mapped as forums items

in a tree-like hierarchy model, they play a key role in the communication process of an Open Source

community.

Originally modelled after the real-world paradigm of electronic bulletin boards of the world before

Internet was born, internet forums allow users to post a "topic" for others to review. Other users

can view the topic and post their own comments in a linear fashion, one after the other. Most

forums are public, allowing anybody to sign up at any time.

Forums can contain many different categories in a hierarchy according to topics and subtopics.

Current successful services have combined new tools with the older newsgroup and mailing list

paradigm to produce hybrids.

4.6.3 Wikis

A wiki invites all users to edit any page or to create new pages within the wiki Web site.

Wiki promotes meaningful topic associations between different pages by making page link creation

almost intuitively easy and showing whether an intended target page exists or not.

A wiki is not a carefully crafted site for casual visitors. Instead, it seeks to involve the visitor in an

ongoing process of creation and collaboration that constantly changes the Web site landscape.

A wiki enables documents to be written collaboratively, in a simple mark-up language using a web

browser. A single page in a wiki website is referred to as a “wiki page”; whiles the entire collection

of pages, which are usually well interconnected by hyperlinks, is "the wiki". A wiki is essentially a

database for creating, browsing, and searching through information.

Inside an Open Source community a wiki page can be used for many different things, but the

facilitation of the documentation is obvious, bug tracking, all kind of enumerations of “to-Do”'s, etc.,

can easily be managed by the.

4.6.4 Chat Rooms

In an Open Source like community, Chat Rooms can be used for the everyday development process,

as a direct knowledge sharing procedure, deeper conversations with any of the involved participant

in any related domain of the project, etc. This chat room, if used, makes participants fell closer to

the project, to each other and it's very positive for the development of the project.

Or it can play a key role in a concrete moment of the development process in an efficient meeting

point of as many participants as needed for talk and adopt a concrete solution for a given problem.

Internet Relay Chat (IRC) and other on-line chat technologies allow users to join chat rooms and

communicate with many people at once, in a public way. Users may join a pre-existing chat room

or create a chat room about any topic. Once inside, you may type messages that everyone else in

the room can read, as well as respond to messages from others. Often there is a steady stream of

people entering and leaving. Whether you are in another person's chat room, or one you've created

yourself, you are generally free to invite others on-line to join you in that room. Instant messaging

facilitates both one-to-one (communication) and many-to-many interaction.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 25

4.6.5 Forges

Many of the communication tools that have been shown here and other for developing purposes

can be recompiled in a forge. It's a way to have all the tools manage in one place and could increase

the dissemination of a project. The largest open source forge is Sourceforge with more than

230,000 software projects hosted and more than 2 million users registered.

4.7 Sustainability View per Partner

4.7.1 Summary of RobMoSys partners View

All the RobMoSys partners agree on joining an existing community or foundation to maintain the

RobMoSys ecosystem. It seems to be more effective to establish a working group within an existing,

well established foundation that has already a reputation and is known in a certain user group.

Most of the RobMoSys partners agrees that the most suitable community would be Eclipse. Since

the creation of the first Eclipse Working Groups (the IoT Working Group and PolarSys), the Eclipse

Foundation has accumulated lot of experience in creating such an ecosystem with different level

of collaboration on technology and on the development of the ecosystem.

It is important to make an explicit distinction between different RobMoSys assets: (i) models, (ii)

software components, i.e. code that realises the models, and (iii) tools. Tools can help the

transformation from (i) into (ii). It is not necessary that all three are hosted in one single community.

While there is a huge advantage of putting (iii) inside existing communities like Eclipse, there are

advantages to have (i) and (ii) not in the same host. This is something we must assess in the planned

workshops with RobMoSys stakeholders and Tier-1 experts.

It is also important to note that it is essential to sustain RobMoSys activity in communities that are

outside of the RobMoSys community. In order to make the RobMoSys activity sustainable after the

end of the project it is also necessary to build a dynamic, growing community around it.

4.7.2 Questionnaire feedback

In this section, we present a summary of the sustainability views per RobMoSys partner.

Partner HSU

Type of

Organization

HSU is at first “Research & Education”, in particular within RobMoSys.

However, HSU is also a “Tool and Service Provider” and a “Software

Developer” as we provide free prototypical Open Source Tooling for

Model-Driven Software Engineering (SmartSoft, SmartMDSD) as well as

free prototypical Open Source software components for service robotics

applications.

Most appropriate

sustainability

model

Not yet clear and currently under discussion. At least, for the Eclipse-

based SmartMDSD toolchain of HSU with its RobMoSys conformant

extensions, it can make sense to relate it to the Eclipse foundation.

Partner COMAU

Most appropriate

sustainability

model

Industrial (Robotics).

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 26

Most appropriate

sustainability

model

Working group inside an existing foundation Eclipse, Linux Foundation,

etc. (direct funding, with different levels of membership fees).

Partner ECL

Type of

Organization

Open Source Foundation.

Most appropriate

sustainability

model

The privileged model for the Eclipse Foundation will be the creation of an

Eclipse Working Group.

Since the creation of the first Eclipse Working Groups (the IoT Working

Group and PolarSys), the Eclipse Foundation has accumulated lot of

experience in creating such an ecosystem with different level of

collaboration on technology and on the development of the ecosystem.

We think that this experience will help RobMoSys create a successful

ecosystem around the technologies.

Partner KUL

Type of

Organization

Research & Education.

Most appropriate

sustainability

model

Probably, any of the above. As an university/research institution, the

major form of sustainability of RobMoSys activity is with follow-up funded

projects and initiatives, with the aim to improve or add models and

functionalities to the RobMoSys software baseline. A possible turnover

can be generated by the creation of innovative university spin-off, aiming

to deliver (i) educational services, such as training of the existing tools, (ii)

consultancy support to interested third-parties and (iii) development of

models, functionalities and configurations for specific, advanced

application scenarios.

Once again, the main idea is to have models and a software baseline that

supports those completely open and free-of-charge. Instead, application-

dependent configurations can be developed upon third-parties requests

by means of one (or more) RobMoSys “experts”, under specific

agreements case by case. In this way, RobMoSys “experts” (aka, RobMoSys

community) are motivated to maintain and further developing the

RobMoSys approach, since it makes the application design and support

affordable in their business model, whether it is an university/research

institution or a company.

To this end, a private foundation with membership fees or any other form

that prevent the models (and tools that support those) to be visible by

parties not in the RobMoSys consortium will not be compliant with the

above-mentioned sustainability strategy.

Partner CEA

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 27

Type of

Organization

Research & Education.

CEA is a Research and Technology Organization. Two laboratories of CEA

are involved in RobMoSys project:

• The Interactive Robotics Lab (LRI) is specialized originally in remote

handling for operations in hazardous environments (nuclear,

underwater applications), the LRI has now a large part of its activities

devoted to manufacturing. The laboratory has an historical

background in robotics for Healthcare applications including assistive,

surgical robotics and rehabilitation robotics. One part of the

laboratory’s activities dedicates to field robotics essentially for

agricultural applications. Its main research foci carry on human robot

collaboration (co-working). The technological researches cover

mechatronics and the conception of actuators for the design of

innovative robotics systems, robot control, supervision and user

assistances (force, haptic, vision, graphic, immersive feedback) aiming

at an efficient human robots collaboration in all domains of

applications. In RobMoSys, LRI plays the role of user of the RobMoSys

approach.

• The Model Driven Engineering Lab (LISE) federates research on

software and systems engineering, with a special focus on the design

and validation of complex, critical system and software over the

project life cycle. Cyber-physical System design activities are anchored

to a general model-driven engineering platform: Papyrus an Eclipse-

based open source UML-compliant software design suite. In

RobMoSys, LISE plays a role of method and technology provider of the

RobMoSys approach.

Most appropriate

sustainability

model

Sustainability of RobMoSys activity requires:

• An appropriate and accessible structure to host RobMoSys shared

results and allowing their evolutions;

• Economically viable structure (costs sharing);

• Accessibility by the different categories of the robotics community;

A working group in an existing foundation (equivalent to Polarsys within

the Eclipse foundation) could be a first an easy to setup sustainability

model. In that context CEA LIST will contribute to the group by

participating to the RobMoSys meta-models evolutions and by providing

parts of its Papyrus4Robotics toolchain.

It is important to note that it is essential to sustain RobMoSys activity in

communities that are outside of the Eclipse community. Different natures

of infrastructure like Digital Innovation Hubs could also be good

candidates.

Partner EUnited

Type of

Organization

EUnited does not really fit well in any of the proposed categories. As an

industry association, our main task is to support our member companies,

which are robot manufacturers (mainly industrial, but also a few service

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 28

robotics companies) as well as component manufacturers.

Our focus is pretty much on industrial robotics.

Most appropriate

sustainability

model

The effort to found an own foundation within the runtime of RobMoSys

that can work immediately self-sufficient is quite large. To find enough

members to support such a foundation from the beginning to work

sustainable might even not be feasible and would negatively impact to

outcome of the whole project.

We would see a working group within the DIH network skeptical, as they

are just about to be installed. It is a relatively new tool in the EC

framework, we do not know about sustainability of the DIHs yet (What

happens if after 3 years EC decides to opt for an alternative?). DIHs do

not have a track record yet.

It seems to be more effective to establish a working group within an

existing, well established foundation that has already a reputation and is

known in a certain user group.

This is just our preference from the proposed option. We would not

actively oppose any other of the given option, if they find a majority

amongst RobMoSys Consortium members. We will do our best to support

the establishment of the final solution, however it will look like. In our

case, this would most likely be active promotion in the robotics

community and convince companies to join and support RobMoSys after

the funded period.

Partner PAL

Type of

Organization

Industrial (Robotics).

Most appropriate

sustainability

model

Components will be available publicly with an open source license, but

only the ones that meet the quality requirements will be accessible to the

membership through fees.

Partner Siemens

Type of

Organization

Industrial. Tool and Service Provider. Software developer.

Siemens “Corporate Technology” creates new market opportunities

through interdisciplinary forefront work on promising technological fields

and transfers the achieved results in close collaboration with the

operative business units into innovative products.

Most appropriate

sustainability

model

Working group inside an existing foundation Eclipse, Linux Foundation,

etc. (direct funding, with different levels of membership fees)

Partner TUM

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 29

Type of

Organization

Research & Education.

Most appropriate

sustainability

model

Due to the proliferation of Digital Innovation Hubs and topic-focused

platforms, it does not make sense to set up yet another network striving

for self-sustainability (for instance with membership fees). There is a high

risk at present that the proliferation of (uncoordinated) initiatives

contribute to the fragmentation of the community (and the software

users) rather than to contribute to reduce this. As RobMoSys will be

cross-sectional, joining forces with other initiatives like DIH and platforms

is the best approach. And the topic group can play a key role in this.

On the other hand, the plan of having a foundation set up after the

runtime of the project – either on its own right or as a joint venture with

existing foundations seems to be a good approach for us which does not

conflict with any of the initiatives undertaken on a European level right

now. At the end of the project, the community may not be big enough yet

to support a private foundation by its own. Therefore, it may be a better

solution to start a working group inside an existing foundation (Eclipse, as

the project member) and benefit from the larger community, which can

partially also adopt the developments of RobMoSys.

In order to make the RobMoSys activity sustainable after the end of the

project it is necessary to build a dynamic, growing community around it.

The experiments funded via the open calls can be a solid base to form it.

However, support is needed to make the community grow and thrive.

Of course, cooperation with any DIH networks will be of utmost

importance and has to be a part of the responsibilities of the organization

managing the community.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 30

5 Conclusions

Deliverable D7.2 presents the first version of the Sustainability Plan for the RobMoSys ecosystem.

This first iteration is focused on establishing the basics and on specifying a framework for

community management and provision of activities for ensuring a strong sustainability of the

RobMoSys results. This scope will be extended by using the feedback of Tier-1 experts coming from

the community management world workshops through workshops organised in the upcoming

years.

We presented the main principles behind the sustainability of software platforms under open

source schemes, as well as the main strategic decisions to guarantee the evolution and maturity of

the RobMoSys assets (models, software components and tools). This report summarises efforts to

draw the interest of open-source communities in the project, by ensuring the availability of means

for interaction with and collaboration between the community members through required

communications means, and by providing helpfulness and support required to build and maintain

the community.

From the early stages of RobMoSys, a strong candidate for the open-source community, and in

particular for hosting the tool assets, has been the Eclipse ecosystem. We must assess this option

and any related mechanism around this option from the second year by taking into account that

the innovation required to advance RobMoSys ecosystem needs to be driven by the key industrial

companies.

RobMoSys partners expect that the project solutions will evolve in pace with the more challenging

requirements of modern robotics systems and will provide more flexible extensibility and

customization that makes it easier to adopt the tools to the methods and processes of robotics

engineering teams.

 ROBMOSYS D7.3 H2020—ICT—732410

22.12.2017 PAGE 31

6 References

[Commission 1987] Commission, B., Our common future, Chapter 2: Towards sustainable

development. World Commission on Environment and Development (WCED). Geneva: United

Nation, 1987

