

THIS PROJECT HAS RECEIVED FUNDING FROM THE EUROPEAN UNION’S HORIZON 2020

RESEARCH AND INNOVATION PROGRAMME UNDER GRANT AGREEMENT NO. 732410

H2020—ICT—732410

RobMoSys

COMPOSABLE MODELS AND SOFTWARE

FOR ROBOTICS SYSTEMS

DELIVERABLE 6.4:

REPORTS OF EXPERTS WORKSHOPS

Sara Tucci (CEA)

Ref. Ares(2017)6375632 - 27/12/2017

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 2 31.12.2017

Project acronym: RobMoSys

Project full title: Composable Models and Software for Robotics Systems

Work Package: [WP 6]

Document number: 6.4

Document title: Reports of experts workshops

Version: [1.0]

Due date: [December 31th, 2017]

Delivery date: 31.12.2017

Nature: [Report (R)]

Dissemination level: [Public (PU)]

Editor: [Sara Tucci (CEA)]

Author(s): Sara Tucci (CEA)

Reviewer: [Dennis Stampfer (HSU)]

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 3 31.12.2017

Executive Summary

This report summarizes the content of the first Expert Workshop held in Frankfurt the 7th‐8th of

February 2017.

This is the first workshop of a series of Expert Workshops we set along the project lifetime to gather

all the possible insights and knowledge (mainly from near communities and industrial

representatives) to (i) evaluate best‐practices established in near and mature domains and (ii) identify

current showstoppers that could arise in the robotics domain. This understanding is necessary to

make sure that Open Calls will be prepared to provide concrete answers to the community, to finally

overcome identified showstoppers and secure broad adoption.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 4 31.12.2017

Content

Executive Summary .. 3

Content ... 4

1 Introduction .. 5

2 Experts Contributions .. 6

2.1 Saddek Bensalem: a formal framework for system design ... 6

2.2 Arne Hamann: Essential Analysis and QoS management .. 10

2.2.1 Essential Analysis for Functional Domains ... 10

2.2.2 QoS management and link between composition and certification 11

2.3 Jan Broenink : Multi‐Paradigm Modelling for Cyber‐Physical Systems 12

2.4 Jurgen Bock: Industry 4.0 as paradigm of digitally connected components. 15

2.4.1 Background: The I4.0 component and the reference model....................................... 15

2.4.2 Interaction model and message‐based communication .. 17

2.4.3 OPC‐UA ... 18

2.4.4 Composition of Industry 4.0 components .. 18

2.4.5 Semantics and Vocabularies .. 19

2.4.6 QoS management ... 19

2.4.7 Tooling .. 19

3 Current design methodologies assessment .. 19

4 Synthesis on recommendations for RobMoSys ... 23

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 5 31.12.2017

1 Introduction

This is the first workshop of a series of Expert Workshops we set along the project lifetime to gather

all the possible insights and knowledge (mainly from near communities and industrial

representatives) to (i) evaluate best‐practices established in near and mature domains and (ii) identify

current showstoppers that could arise in the robotics domain. This understanding is necessary to

make sure that Open Calls will be prepared to provide concrete answers to the community, to finally

overcome identified showstoppers and secure broad adoption.

For this first workshop, the Consortium invited experts, from relevant related domains, with a strong

scientific background in the design of complex and critical systems, namely:

• Arne Haman (Bosch) from automotive and embedded systems

• Jan Broenink (University of Twente) mechatronic/cyber physical systems – hybrid simulation

• Saddek Bensalem (Verimag) cyber physical systems – formal methods

• Jurgen Bock (Kuka) Industrie 4.0 – ontologies, semantic technologies

To prepare the workshop, each Expert discussed in an individual teleconference with the Consortium

the general objectives of RobMoSys and the particular mission we were about to give to them. In

order to set the context, the Consortium presented the following questionnaire:

“What is the aim of RobMoSys? RobMoSys envisions an integrated approach built on top of the

current code‐centric robotic platforms, by applying model‐driven methods and tools. RobMoSys will

enable the management of the interfaces between different robotics‐related domains in an efficient

and systematic way according to each system’s needs. RobMoSys aims to establish Quality‐of‐Service

properties, enabling a composition‐oriented approach while preserving modularity. RobMoSys will

drive the non‐competitive part of building a professional quality ecosystem by encouraging the

community involvement. RobMoSys will elaborate many of the common robot functionalities based

on broad involvement of the community via two Open Calls. These are the topics we would like to

hear your opinion on:

‐ How do you deal with composition and which are your priorities?

‐ How do you make sure that different vocabularies in connected components semantically

match?

‐ How do you manage the link between composition and certification?

‐ How do you deal with quality‐of‐service properties (extra‐functional properties) and how do

you make sure quality‐of‐service is right?

‐ How do you assess good practices and what kind of metrics do you apply?

‐ What is still missing?

‐ In the different steps of the process, which one do you think is the hardest part & how would

you solve it or absolutely not solve it?”

In the first part of this report (Experts Contributions) we summarize the contribution of each expert:

the content of the presentation the expert made the first day. The second part (Current design

methodologies assessment) presents the output of the second day: each expert was asked to fill a

table pointing out several aspects and pain‐points of presented design approaches. The third part of

the report (Synthesis on recommendations for RobMoSys) summarizes the general

recommendations of the experts.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 6 31.12.2017

2 Experts Contributions

2.1 Saddek Bensalem: a formal framework for system design

Saddek Bensalem presented principles and concepts related to rigorous system design. Saddek

pointed out that reactive systems are increasingly important in modern computing systems:

embedded systems, cyber‐physical systems, mobile systems, web‐services. They are hard to design

due to unpredictable and subtle interactions with the environment, emergent behaviors, etc. Robots

are a class of Cyber‐Physical Systems.

System design is facing several difficulties, mainly due to our inability to predict the behavior of an

application software running on a given platform. Other difficulties stem from current design

approaches, often empirical and based on expertise and experience of design teams. Naturally,

designers attempt to solve new problems by reusing, extending and improving existing solutions

proven to be efficient and robust. This favors component reuse and avoids re‐inventing and re‐

discovering designs. Nevertheless, on a longer‐term perspective, this may also be counter‐productive:

designers are not always able to adapt in a satisfactory manner to new requirements. Moreover, they

a priori exclude better solutions simply because they do not fit their know‐how.

Limitations of V‐like models of traditional Systems Engineering processes can also be observed in this

context. Indeed, V‐like models:

1. assume that all the system requirements are initially known, can be clearly formulated and

understood.

2. assume that system development is top‐down from a set of requirements. Nonetheless,

systems are never designed from scratch; they are built by incrementally modifying existing systems

and by component reuse.

3. consider that global system requirements can be broken down into requirements satisfied by

system components. Furthermore, it implicitly assumes a compositionality principle: if components

are proven correct with respect to their individual requirements, then correctness of the whole system

can be inferred from correctness of its components.

4. rely mainly on correctness‐by‐checking (verification or testing)

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 7 31.12.2017

To overcome limitations of current approaches, a novel rigorous approach for system design is then

needed, promoting the following principles:

‐ Separation of Concerns

‐ Component‐based approach

‐ Semantic Coherence

‐ Correct‐by‐construction;

while rising three Grand Challenges:

‐ Marrying Physicality and Computation. We need theory and models encompassing

continuous and discrete dynamics to predict the global behavior of a system interacting with its

physical environment. The development of application software and its implementation must take

into account constraints from: the physical resources and the physical environment of the system.

‐ Component‐based Design. We need theory, models and tools for the cost‐effective building

of complex systems by assembling heterogeneous components

‐ Adaptivity. Systems must provide a service meeting given requirements in interaction with

uncertain environments. Uncertainty can be characterized as the difference between average and

extreme system behavior. Non‐determinism of physical environments increases uncertainty.

and meeting the following objectives:

‐ Productivity. This can be achieved by system design flows providing high level domain‐

specific languages for ease of expression, allowing reuse of components and the development of

component‐based solutions, integrating tools for programming, validation and code generation.

‐ Performance. The design flow must allow the satisfaction of extra‐functional properties

regarding optimal resource management. This means that resources such as memory, time and

energy are first class concepts encompassed by formal models. Moreover, it should be possible to

analyze and evaluate efficiency in using resources as early as possible along the design flow. Design

space exploration should be promoted to resolve choices such as reducing parallelism (through

mapping on the same processor), reducing non‐determinism (through scheduling), fixing parameters

(quality, frequency, voltage).

‐ Correctness. This means that the designed system meets its specifications. Ensuring

correctness requires that the design flow relies on models with well‐defined semantics. The models

should consistently encompass system description at different levels of abstraction from application

software to its implementation. Correctness can be achieved by application of verification techniques.

To meet these objectives model‐based and component‐based design should be merged in a

uniform formal framework with the following characteristics:

‐ Adopt a model‐based design. Model‐based design means that software and system

descriptions used along the design flow are based on a single semantic model. This is essential for

maintaining the overall coherency of the flow by guaranteeing that a description at step n meets

essential properties of a description at step n ‐ 1. This means in particular that the semantic model is

expressive enough to directly encompass various types of component heterogeneity arising along the

design flow.

‐ Adopt a component‐based approach. Component‐based design promotes composability and

compositionality principles. The key issue is how to build systems from a set of given atomic

components (behavior) that meet a given property. This is a hard problem. Nevertheless, it is

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 8 31.12.2017

important to have a framework for tackling this problem and decomposing it into simpler problems.

That is to have a construction methodology.

Build a component C satisfying a given property P, from

1. C0 a set of atomic components modeling behavior

2. GL ={gl1, …, gli, …} a set of glue operators on component

Glue operators:

‐ model mechanisms used for communication and control such as protocols, controllers, buses.

‐ restrict the behavior of their arguments.

The formal framework should offer a minimal set of constructs and principles for guaranteeing

correctness by construction, such as decomposition and flattening as depicted in Figure 1.

Figure 1: Decomposition and Flattening

The framework enjoys a generalization of associativity. Any n‐ary glue operator is the composition of

binary glue operators ‐ This is very important for systems with dynamically changing structure. Dually,

hierarchically structured components can be flattened – single glue operator applied to the atomic

components. To achieve flattening some composition operation on glue is needed.

Component‐based construction is based on two important properties, namely composability and

compositionality. Composability is about composing components without breaking their properties

after composition. Composability guarantees preservation of a component property across

integration.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 9 31.12.2017

Figure 2: Composability

Compositionality allows deduction of the composed global properties from its component

properties; this property enables correctness‐ by‐construction.

Figure 3: Compositionality

To make an example Figure 4 shows two kind of compositions. The first one is a composition in

which the composed components satisfy a certain property (no deadlock), and the property is

preserved at the level of the composite component thanks to a proper operator. In the second

composition, components do not satisfy any deadlock‐free property, but the composite satisfies a

Mutex property thanks to a Mutual Exclusion operator.

Figure 4: Examples of Compositions and Related Properties

‐ The formal framework should also be expressive enough to encompass heterogeneity of

execution (synchronous and asynchronous components); interaction (function call, broadcast,

rendez‐vous); abstraction levels (hardware, middleware, application software).

‐ The formal framework should as well provide automated support for efficient

implementation on given platforms and automated support for validation and performance analysis

following the design flow suggested in Figure 5.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 10 31.12.2017

Figure 5: Design Flow

2.2 Arne Hamann: Essential Analysis and QoS management

Arne Hamann pointed out that model driven methods are key to boost design efficiency and

confidence. What makes model‐driven methods fundamental is their suitability to compose

functionalities on system level and then derive/predict system‐level properties. However, finding the

right models & abstractions is extremely hard and requires in‐depth domain knowledge. Many bad

examples are out there, which lead to the bad reputation of model based methods, like for instance

using UML for modelling software. UML models often either lack a meaningful level of abstraction or

lack clear semantics. UML models are, therefore, perceived to be only of little help by many software

engineers.

2.2.1 Essential Analysis for Functional Domains

In order to deal with composition and issues on an underlying ontology supporting meaningful

semantic connection among components, the suggestion here is to refer to morphological and

essential system analysis1. These tools give help identifying right abstractions and concepts with

respect to a given functional domain.

Essential Analysis (Figure 7) systematically decomposes the overall problem space according to

discrete “situations” in the system context. The objective is to identify sub‐problems called system

modes that can be solved independently. The obtained system modes can be used as blueprint to

structure the implementation in later development stages. In the final implementation this

automatically leads to the separation of control flow and the data flow. The decomposition of the

problem space and the identification of system modes is based on a light‐weight formalisation of

system knowledge, i.e. a compact and unambiguous specification. This approach allows to check two

fundamental properties during system design:

• Completeness: all possible states in problem space have been analysed

• Consistency: each part of the problem space belongs exactly to one system mode

Obviously, the decomposition of the functional domain can be carried out only through a dialogue

between the System Expert that has a specific domain knowledge and the Methodologist that has a

specific knowledge about the method. Essential analysis (including consistency and completeness

checks) can be performed thanks to a tool proposed by ETAS2.

1 https://en.wikipedia.org/wiki/Morphological_analysis_%28problem‐solving%29

Essential System Analysis ‐ Stephen M. McMenamin, John F. Palmer, 1984
2 Available solution in the Embedded/Control Systems domain is the Scode tool by ETAS:

https://www.etas.com/download‐

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 11 31.12.2017

Figure 6: Essential Analysis Method

2.2.2 QoS management and link between composition and certification

The key factor to correct manage QoS and certification issues for the expert is the separation of

concerns between function and implementation. This aspect is also corroborated by the method

suggested for the functional domain (see previous section), which of course can be used only if

function and implementation are distinguished in the overall design process. Once again separation

of concerns is of primary importance since SW components are often polluted by implicit assumptions

that only hold for a specific target platform / middleware. More concretely the separation of concerns

principle can be successfully pursued developing implementation‐agnostic specifications, i.e.

developing applications against Abstract Interfaces that are guaranteed on the target platform by

Platform Specific Implementations.

In the context of QoS management those Abstract Interfaces usually rely on tailored platform

mechanism matching specific Models of Computation, i.e. they explicitly refer to an execution

model. Another important aspect is that the Abstract Interfaces must expose stable unambiguous

semantics including non‐functional properties. Obviously, to be useful in practice, the Abstract

Interfaces must be verifiable and efficiently implementable.

Example 1. Logical Execution Time

The Logical Execution Time (LET) paradigm (Figure 7) decouples logical timing structure from

physical execution resulting in portability, composability and deterministic communication between

concurrent functional units. The LET paradigm solves the problem of software distribution on multi‐

core platforms and represent a strong‐base argument for certification3.

Figure 7: Logical Execution Time

center/files/products_RTA_Software_Products/Whitepaper_SCODE_2016_12_19.pdf
3 Derler et al.: Simulation of LET Models in Simulink and Ptolemy Monterey. Workshop 2008: Foundations of

Computer Software. Future Trends and Techniques for Development pp 83‐92.

Context

Functional

Domain

System

Expert
Analyst

…

Analysis

Tool

Problem Decomposition

Formalized System

Knowledge

Guaranteed Completeness &

Consistency

Context 1

System
Invariant /

Mode 1

Context n

System
Invariant /

Mode n

Structured discussion between

System Expert (context, requirements, system approach)

Analyst (method competence)

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 12 31.12.2017

Example 2. Reservation-based Scheduling

In robotics, most approaches are agnostic to OS mechanisms laying below the middleware layer, so

that temporal behaviour is accidental and difficult (or impossible) to predict. As a matter of fact,

standard scheduling approaches used in the embedded systems domain (such as Rate Monotonic

Scheduling) are not adequate for robotic applications with dynamic resource requirements, leading

to strongly varying or unknown response times. In the current state of practice, system integration

in robotics is often achieved by drastic overprovisioning of computational resources. While such an

approach is adequate for research prototypes, product engineering must rely on more systematic

approaches leading to provably guaranteed temporal properties (for cost and certification reasons).

Reservation‐Based Scheduling (RBS) naturally extends the LET paradigm to the execution

management domain. RBS represents a comprehensible abstraction for handling computing

resources enabling composability. With RBS, processor capacity is viewed as a quantifiable resource

that can be reserved like physical memory. A task receiving a fraction U (<1) of the processor capacity

behaves as if it were executing alone on a U times slower processor. Composability is achieved by

temporal isolation: an application has access to reservation regardless of the other application

executed in the system. Interestingly RBS can be dimensioned for average case (avoiding worst‐case

design) while improving overall utilization (no idling of cores like with time‐triggered approaches).

Figure 8: Reservation Based‐Scheduling using the example of the Constant Bandwidth Server (CBS)4

RBS allows to develop applications independently and integrate them at the end, since reasoning

about functional and non‐functional properties is possible before integration. This leads to a huge gain

in productivity and a string base for certification.

2.3 Jan Broenink : Multi‐Paradigm Modelling for Cyber‐Physical Systems

Robots can be viewed as a specific class of Cyber‐Physical Systems, where the total system (cyber and

physical) must be integrally treated and where safety aspects are relevant. The combination among

the physical design (mechanical and electrical) and the cyber part (control software) must be handled

properly, taking into consideration that after the transformation of signals to data a communication

network is in general involved (Networked CPS). To handle such complexity a multi‐paradigm

modelling is proposed. Different kind of models must be then used to treat the total system. Used

models differentiate each other in terms of modelling principles and Models of Computation. In the

realm of Discrete Event models for instance different types of models can be found such as State

Machine‐like models, Process diagrams (block diagrams‐like) and hardware description formalisms.

Discrete Time models can either consider fixed Time Events or Variable Time Events. Other aspects

define the model of computation such as the Communication model i.e. asynchronous (buffer) vs

4 Luca Abeni, Giorgio Buttazzo : Integrating multimedia applications in hard real‐time systems, Real‐Time

Systems Symposium (RTSS), 1998.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 13 31.12.2017

synchronous (rendezvous) and the level of synchronicity between calculations (asynchronous vs

synchronous).

Figure 9: Combined Modelling

Figure 9 shows the different modelling paradigms chosen for the different parts of a cyber‐physical

system, ranging from Discrete Event (DE) to Continuous Time (CT).

Figure 10 specifies the combination of models used for the different activities involved in the design

process. The software architecture (I‐a), includes logic for decisions (sequence control) and strategy

algorithms (supervisory). To model a software architecture Discrete Event/Time modelling is used,

e.g. finite state machines for decisions and software modules (data‐flow) for strategy algorithms.

Control algorithms (I‐b) endows a tighter notion of real‐time, so that Discrete Time is used for loop‐

control algorithms and Continuous Time is used for plant modelling. These models are used in

combination for verification and simulation (II) before software implementation synthesis (III).

Figure 10: Combined Modelling and Design Process

Jan Broenink presents his specific choice for models, targeting graphical languages:

‐ Cyber part relies on a graphical representation of Communicating Sequential Processes

(gCSP). One of the fundamental features of CSP is that it can serve as a notation for describing

concurrent and communicating processes at different levels of abstraction, using different

communication models as for instance Rendezvous communication.

‐ Physical part relies on Bond graphs. A bond graph is a graphical representation of a physical

dynamic system. It allows the conversion of the system into a state‐space representation.

Both graphical representations are similar to a block diagram or signal‐flow graph; with the major

difference that the arcs in bond graphs represent bi‐directional exchange of physical energy, while

those in block diagrams and signal‐flow graphs represent directional flow of information.

Several modelling principles

DE DT DE RL CT

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 14 31.12.2017

Models are then support for a concurrent design flow where software, electronics, control and

mechanics design run concurrently.

Figure 11: Concurrent Design Flow

The models are then refined step‐wise

1. Architecture and Dynamic Behavior

2. Model‐based control‐law design

3. Software, functional co‐simulation and real‐time specification/simulation of the

implementation

4. First‐time right realization

While the importance of models is undeniable, it is important to make a distinction between

languages vs techniques/methods vs tools to correctly use them during the design flow.

Formalisms/Languages are instruments to exploit models: they provide expressiveness to write down

models (syntax and semantics). Techniques, pertaining to the realm of model‐driven engineering

techniques, fall into two main categories: transformation techniques to transform models (expressed

in a given formalism) to other models (possibly expressed in a different formalism) and techniques to

give insights or retrieve information captured by the models. Methods have a larger scope than

techniques, they pertain to reasoning frameworks or design approaches (e.g. the BIP framework

presented by Saddek Bensalem). Tools, finally, support methods and implements techniques.

Decoupling techniques/methods from tools allows focusing on methods instead of getting lost in

tools implementation.

The link between languages and so‐called meta‐models is of paramount importance. A meta‐model

is a model of models, i.e. a meta‐model defines the language used to write a model. A meta‐model

indeed specifies rules for checking the correctness of models and represents a basis for tools,

specifically for editors and compilers. Common ground between different meta‐models can be found

in meta‐meta‐models (a meta‐model conforms to a meta‐meta‐model), while transformations

between models are ruled by a transformation among corresponding meta‐models.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 15 31.12.2017

Figure 12: Models Pyramid and Model transformations

2.4 Jurgen Bock: Industry 4.0 as paradigm of digitally connected components.

Industry 4.0 (I4.0) is a term coined in Germany to refer to the fourth industrial revolution. This is

understood as the application of concepts such as Internet of Things (IoS), Cyber‐physical Systems

(CPS), the Internet of Services (IoS) and data‐driven architectures in the real industry.

2.4.1 Background: The I4.0 component and the reference model

The Reference Architecture Model for Industry 4.0 (RAMI 4.0 describes fundamental aspects of the

Industry 4.0: it illustrates the connection between IT, manufacturers/plants and product life cycle

through a three‐ dimensional space. Each dimension shows a particular part of these worlds divided

into different layers as depicted in Figure 13. Left vertical axis represents IT perspective which is

comprised of various layers such as business, functional, information, etc. These layers correspond to

the IT way of thinking where complex projects are decomposed into smaller manageable parts. In the

left hand, horizontal axis is displayed the product life cycle where Type and Instance are distinguished

as two main concepts. The model allows the representation of the data gathered during the entire life

cycle. Along with the right hand horizontal axis the location of the functionalities and responsibilities

are given in the hierarchical organization. The model broadens the hierarchical levels of IEC 62264 1

by adding the Product or a workpiece level at the bottom, and the Connected World goes beyond the

boundaries of the individual factory at the top.

Figure 13: The reference model of Industrie 4.0

A component is a basic concept in Industry 4.0. It is used as a model for representing the properties of

real objects in a production environment connected with virtual objects and processes (a CPS system).

It is comprised of two foundational elements: one or more assets and Administrative Shell

surrounding the assets (Figure 14).

Refers to Refers to

Conforms to Conforms toExecutes

Reads Writes

Transformation engine Target model

Target metamodelTransformation
definition

Source metamodel

Source model

MM

m T(m)T

IMMD
T

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 16 31.12.2017

Figure 14: I4.0 component

An I4.0 component can be a production system, an individual machine, an assembly inside a machine

or a software platform. Indeed, I4.0 component can be on different hierarchy levels (product, field

device, …, enterprise, connected world). A basic prerequisite is that I4.0 components are able to

communicate and understand each other for cooperation scenarios. To this end I4.0 components need

to have self‐X properties (starting off with self‐description) and need to interact. Implementation of

interaction is often based on OPC‐UA concepts.

Figure 15: I4.0 components interaction

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 17 31.12.2017

2.4.2 Interaction model and message‐based communication

I4.0 components shall be able to interact with each other following an interaction model Figure 16.

Within this model, we can find a set of typical interaction patterns, namely:

• Identification

• Negotiation of security measures

• Request for a task (is a particular task executable?)

• Negotiation of a task

• Order and execution of a task

• Report of errors

Figure 16: Interaction model5

The point‐to‐point communication is message‐based. Both base ontology and domain specific

ontologies are considered. Base ontology provides a vocabulary for message format description

while the domain ontology provides a vocabulary for message content description.

5 Bock, J.; Diedrich, C.; Hänisch, R.; Kraft, A.; Neidig, J.; Niggemann, O.; Pethig, F.; Reich, J.; Schulz, T.; Vollmar, F. & Vialkowitsch, J.

Weiterentwicklung des Interaktionsmodells für Industrie-4.0-Komponenten Plattform Industrie 4.0, 2016

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 18 31.12.2017

Figure 17: Message‐based Communication5

2.4.3 OPC‐UA

OPC‐UA is often the preferred choice to implement communication between I4.0 components. OPC‐

UA has a client‐server architecture, but a publish‐subscribe architecture is currently under

specification. One of the fundamental concepts in OPC UA is information modelling that can be used

to describe the component (provide a structured access to data and methods). The semantics of

information models is not formal, but there are companion standards that describe common

structures for information models in specific domains or for specific purposes (e.g. Companion

Standard “Device Integration” for field devices). OPC UA offers various services, such as security and

discovery services.

2.4.4 Composition of Industry 4.0 components

Assets can be arranged freely (Figure 18); different composition patterns might be possible.

Composition must obey to the following rules:

• Components to be composed should be Industry 4.0 components

• The Asset Administration Shell should be a standardized interface

• There should be an interaction model for Industry 4.0 components

• Asset Administration Shells can contain sub‐models and are thus flexible

• Sub‐models can be used for various composition‐related aspects, e.g. self‐description,

negotiation (QoS, tasks, etc.)

• The implementation should be based on OPC UA

The priority to start off with Asset Administration Shells based on OPC UA and subsequently

implement sub‐models.

Figure 18: Composition of assets and components

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 19 31.12.2017

2.4.5 Semantics and Vocabularies

The asset administration shell (AAS) is a generic interface to anything that has a value (asset) for an

owner. Every AAS provides a basic set of information about the asset. An added value is only

generated if the basic set of data is extended with domain specific data. Therefore, in the header of

the AAS a statement is made that the AAS supports a specific model.

In a first step, semantics will be based on shared vocabularies. Current parameters and states are

provided by “properties”, more precisely, by property value statements. Every property is defined in

a dictionary, e.g., ecl@ss or Common Data Dictionary (CDD). In these dictionary, it is actually defined

what for example a “pipe diameter” is.

Expressive formal semantics is currently missing but AAS offer a way to incorporate expressive formal

semantics: Messages in an interaction model can refer to externally declared properties, e.g. in

eCl@ss, or more expressive ontologies. At implementation level this is immediately reflected through

OPC UA information models linking to expressive ontologies, OWL, etc.

Currently, different groups are looking for domain specific properties (e.g., drive engineering) in order

to insert them into dictionaries like ecl@ss.

2.4.6 QoS management

Let a formal description for QoS be part of the Asset Administration Shell through the definition of a

sub‐model, then use the interaction model in combination with the sub‐model to negotiate QoS

properties.

2.4.7 Tooling

While the AAS specification is pretty advanced, tools are not yet available.

3 Current design methodologies assessment

In this section, we report the assessment that each expert provided on current development

methodologies. The assessment pertains to the methodologies presented by each expert. For each

methodology, the consortium asked for potential risks in applying the methodology, current pain‐

points, the focus and priorities covered, the suggested good practices, tooling and what in the opinion

of the expert are bad practices. Recommendations for the RobMoSys projects are then presented in

the last column.

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 20 31.12.2017

Figure 19: Saddek Bensalem's Assessment

Figure 20: Jan Broenink’s Assessment

Risks Pain
Points

Priorities Bad practices/wasted time Good Practices Tools Recommendations

SADDEK

Verifica
tion
comple
xity

State
space
explosio
n

‐ Correct‐
by‐
construct
ion
Design

‐ Composa
bility
rules

Existing development
methodologies are of limited
interest for systems. They
prescribe only general
principles and fail to provide
rigorous support and
guidance.

Correctness‐by‐checking
contributes to trustworthiness
but it is limited to
requirements that can be
formalized and checked
efficiently (mainly verification
of functional properties for
application software). For the
same reasons, its application
to optimization requirements
is limited to the validation of
scheduling and resource
management policies on
abstract system models.

‐ Component/m
odel‐based
design

‐ Compositional
Verification

‐ Assume‐
Guarantee
approach

‐ Incremental
Verification

‐ Model checking
is applied only
to medium size
systems when
it is possible to
make
automated
proofs or when
the cost of
faults is high.

‐ BIP
framew
ork

‐ Metrop
olis
Framew
ork

Putting Correctness‐by‐Construction
into Practice:
‐ Horizontal correctness: the

construction process of component C
is bottom‐up. Increasingly complex
composite components are built
from atomic components by using
glue operators. Two principles can be
used in this process to obtain a
component meeting P: property
enforcement and property
composability.

‐ Vertical correctness, we need to
develop component‐refinement
tools to allow downstream
movement in the abstraction
hierarchy from application software
modeled in the chosen component
framework.

‐ The requirement to deal with a small
number of types of components is
essential for the formalization of the
composition rules between
components. Frameworks with a
large number of types of
components are badly amenable to
formalization.

Risks Pain Points Priorities Bad practices/wasted
time

Good Practices Tools Recommendations

JAN

Unbalanced solutions

due to unawareness of
capabilities and
restrictions of
computing resources

Not appreciating /

understanding the
value of composition /
architecture from a
reusability point of
view.

Application experts
and component
providers still have
difficulty
understanding each
other.

Vocabulary / ontology;

Explain stacks /
concerns such that
both application
experts and
component providers

can understand each
other and benefit from
each other;

Provide instruments to
let roboticists get
benefit from the

above

Ignore the effect of

implementations (i.e.
non‐idealness of
computers / networks).

Ignore the viewpoint of
the roboticists whose

focus is primary on
computation

Use declarative models:

Bond Graphs,
Communicating
Sequential Processes in
my case

Verification and Co‐

simulation, especially
during design.

Step‐wise refinement as
design “guide”

gCSP model checker /

co‐simulation

20‐sim for bond‐graph
models and control law
design.

Automatic code
Generation from block
diagrams

Execution lib providing
concurrent execution

ROS etc, DDS

Separate the language, and

methods from the Tools

Push way of working as:
Model declarative; Refine
stepwise; Automatically
generate procedural code;

Verify / Co‐simulate during
design…

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 21 31.12.2017

Risks Pain Points Priorities Bad
practices/wasted
time

Good Practices Tools Recommendations

ARNE

Artificial
Complexity

Demonstrator
driven
implementation,
lack of systematic
engineering
practices following

predefined
structures

Reuse/portability
of SW

components not
widely recognized
as design goals in
robotics

SW components
implemented with
implicit
assumptions
which are only
true on specific
platforms (e.g.
ROS) � SW
components not

portable among
target platforms

No separation of
concerns: SW

component
implementations
are overly complex
because they
cannot assume

any guarantees
(e.g. QoS) from
the underlying
platform

Missing link (or
mutual ignorance)
between function
and performance

Consistent vocabulary
of the different
domains, the
structuring of the
motion stack serves
as guiding example

Right Abstractions
e.g. Abstract Machine

Interfaces to handle
QoS attributes on
application level.
Thereby most
importantly,

abstractions for
handling
computational /
communication
resources

Definition of the
computational model
on system level (i.e.
how and when do

components
exchange data, when
are computations
executed, etc.)

Definition of end‐to‐
end timing
constraints for cause‐
effect‐chains
spanning multiple SW
components

Configuration and
variability of SW
components (context:
using a generic
component in the
context of different
robots)

Safety handling

Models with non‐
adequate
abstraction level:
e.g. Code
Generation from
UML models (too
concrete), Boxes
and Lines (too
unconcrete)

Non‐constructive
approaches (too
many iterations)

Approaches by‐
passing
architectural
patterns (e.g.
complex drivers in

AUTOSAR)

Morphological
method to
structure a
functional domain

Logical Execution
Time for
composability and
portability on

communication
level
(good 4
certification)

Reservation Based
Scheduling
Schemes for
composability on
computational

level
(good 4
certification)

Methodology

driven structured
engineering
approaches such
as AUTOSAR in
automotive
(freedom from
choice)

Declarative
models including
methods/tools to
derive procedural
realizations

GALS structure on
system level.
Ignore “minor”
coupling effects
on functional level
to derive flexible
implementation
with sufficient
degrees of
freedom:
“approximate
refinement”.

Essential
Analysis
Tool

LITMUS^R
T as
backbone
for
execution

container

Tool for
specifying
cause‐

effect‐
chains: as
link
between
the

functional
domain and
the
execution
domain

Real‐time
analysis
tools like
SymTA/S,
Inchron

Ask to extension to
existing implementations
e.g. LINUX extension for
RBS

Developed concept
should be technology
agnostic but show cased
using concrete

technology like ROS,
ROS2.0

Different aspects in the
call should be illustrated

with concrete problems
(cf. end‐2‐end latency
with CFS vs RBS)

Prefer declarative

approaches over
procedural approaches,
since the former better
supports composability

Search for executable
models (i.e. defining clear
computational models)
on component level.

Ask explicitly for
quantitative evaluation of
the proposed
method/tool/approach
compared to the current
state of practice (i.e.
show the benefit)

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 22 31.12.2017

Figure 21: Arne Hamann's Assessment

Risks Pain Points Priorities Bad
practices/wasted
time

Good Practices Tools Recommendations

ARNE

Artificial
Complexity

Demonstrator
driven
implementation,
lack of systematic
engineering
practices following

predefined
structures

Reuse/portability
of SW

components not
widely recognized
as design goals in
robotics

SW components
implemented with
implicit
assumptions
which are only
true on specific
platforms (e.g.
ROS) � SW
components not

portable among
target platforms

No separation of
concerns: SW

component
implementations
are overly complex
because they
cannot assume

any guarantees
(e.g. QoS) from
the underlying
platform

Missing link (or
mutual ignorance)
between function
and performance

Consistent vocabulary
of the different
domains, the
structuring of the
motion stack serves
as guiding example

Right Abstractions
e.g. Abstract Machine

Interfaces to handle
QoS attributes on
application level.
Thereby most
importantly,

abstractions for
handling
computational /
communication
resources

Definition of the
computational model
on system level (i.e.
how and when do

components
exchange data, when
are computations
executed, etc.)

Definition of end‐to‐
end timing
constraints for cause‐
effect‐chains
spanning multiple SW
components

Configuration and
variability of SW
components (context:
using a generic
component in the
context of different
robots)

Safety handling

Models with non‐
adequate
abstraction level:
e.g. Code
Generation from
UML models (too
concrete), Boxes
and Lines (too
unconcrete)

Non‐constructive
approaches (too
many iterations)

Approaches by‐
passing
architectural
patterns (e.g.
complex drivers in

AUTOSAR)

Morphological
method to
structure a
functional domain

Logical Execution
Time for
composability and
portability on

communication
level
(good 4
certification)

Reservation Based
Scheduling
Schemes for
composability on
computational

level
(good 4
certification)

Methodology

driven structured
engineering
approaches such
as AUTOSAR in
automotive
(freedom from
choice)

Declarative
models including
methods/tools to
derive procedural
realizations

GALS structure on
system level.
Ignore “minor”
coupling effects
on functional level
to derive flexible
implementation
with sufficient
degrees of
freedom:
“approximate
refinement”.

Essential
Analysis
Tool

LITMUS^R
T as
backbone
for
execution

container

Tool for
specifying
cause‐

effect‐
chains: as
link
between
the

functional
domain and
the
execution
domain

Real‐time
analysis
tools like
SymTA/S,
Inchron

Ask to extension to
existing implementations
e.g. LINUX extension for
RBS

Developed concept
should be technology
agnostic but show cased
using concrete

technology like ROS,
ROS2.0

Different aspects in the
call should be illustrated

with concrete problems
(cf. end‐2‐end latency
with CFS vs RBS)

Prefer declarative

approaches over
procedural approaches,
since the former better
supports composability

Search for executable
models (i.e. defining clear
computational models)
on component level.

Ask explicitly for
quantitative evaluation of
the proposed
method/tool/approach
compared to the current
state of practice (i.e.
show the benefit)

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 23 31.12.2017

Figure 22: Jurgen Bock's Assessment

4 Synthesis on recommendations for RobMoSys

In this section, we provide a synthesis of the Experts recommendations relevant for the RobMoSys

Project.

A first aspect pertains to the nature of the models employed. From experts’ recommendations, we

can derive the following conclusions:

• Prefer declarative models (including methods/tools to derive procedural realizations) over

procedural models since declarative models better support composability;

• Definition of a model of computation (MoC) on system level, i.e. how and when do

components exchange data, when are computations executed, etc. The use of a MoC enables

verification and co‐simulation during design.

• Enable refinements to allow downstream movement in the abstraction hierarchy. GALS

(Globally Asynchronous and Locally Synchronous) is a paradigm on system‐level allowing refinements

with a certain degree of freedom towards implementations.

• Small number of types of components in order to manage the formalization of

composition/composability rules and properties.

A second aspect is related to good practices to employ during the development process:

• Put correctness by construction into practice supporting both bottom‐up construction

(component built out of atomic components) and top‐down approaches (refinements) via

composition rules and step‐wise correct refinement of components

Risks Pain Points Priorities Not Relevant Bad

practices/waste
d time

Good Practices Tools Recommendations

JURGEN

Being too
abstract for
system
integrators, end

users,
component
providers, …, to
transfer into real
systems

Currently it’s a
difficult ongoing
discussion, on
where and how

the asset
administration
shell is being
implemented.
There should be

a distinction
between the
role, type,
instance, and
real physical

asset of any I4.0
component.
Strictly speaking,

the role “robot
with properties

123, type “KUKA
KR6”, instance
“KUKA KR6 with
S/N 987”, and the
real physical

robot, are three
assets, but do
they all need
administration
shells? (These
are ongoing
discussions in
I4.0 consortia
and projects.)

Detailed
specification and
implementation of
the Asset

Administration Shell

Base Ontology for
interactions
(Messages)

Abstract
communication
primitives

Semantic
interoperability
Coordination

(interaction models
specified as state

machines)

Safety and security

Real‐time (in
many higher
level
coordination

tasks)

Lower levels
(Hardware,
OS, Exec.

Cont.) might
not have to
be seen as
I4.0
components,

as they are
managed by
the asset

providers

Trying to be too
disruptive on the
shopfloor (legacy
systems) will not

be accepted

Quickly get to
the point of
having an
implementation

(with
quantifiable
analysis)

Agreeing on a

particular
standard
toolchain is
essential (e.g.
OPC UA in

Industry 40)

OPC UA
(SDKs and
software
stacks),

tools for
authoring
OPC UA
informatio
n models

(e.g.
UaModelle
r)

Tools for

creating /
configurin
g I4.0

concepts,
e.g. AAS,

Interaction
Manager,
etc.

Focus on small and
concrete use cases

(concrete use case

requested!)

 ROBMOSYS 6.4 H2020—ICT—732410

PAGE 24 31.12.2017

• Push verification and co‐simulation activities during design; use model‐checking only on small

models, composable/incremental verification

• Push the concept of concurrent design (e.g. mechanical, electronical, software)

• Handle safety and security aspects as soon as possible and not as an afterthought

A third aspect pertains to tooling

• Separate the language from the methods and from the tool

• Agree on a standard tool‐chain and a common vocabulary for interoperability: at least syntax,

better to have semantic interoperability

• Make use of tooling to formalize and assess the structuring of domain knowledge: low

dependency/overlapping between concepts

Final remarks have been also provided for use‐cases

• Focus on small and concrete use cases

• Developed concepts should be technology agnostic but show‐cased using concrete

technology (e.g. real OS, middleware, etc.)

• Provide assessments to show the benefit of the concept/method/tool with respect to current

state of the art

