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Executive Summary 

This report summarizes the content of the first Expert Workshop held in Frankfurt the 7th‐8th of 

February 2017.  

This is the first workshop of a series of Expert Workshops we set along the project lifetime to gather 

all the possible insights and knowledge (mainly from near communities and industrial 

representatives) to (i) evaluate best‐practices established in near and mature domains and (ii) identify 

current showstoppers that could arise in the robotics domain. This understanding is necessary to 

make sure that Open Calls will be prepared to provide concrete answers to the community, to finally 

overcome identified showstoppers and secure broad adoption. 
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1 Introduction 

This is the first workshop of a series of Expert Workshops we set along the project lifetime to gather 

all the possible insights and knowledge (mainly from near communities and industrial 

representatives) to (i) evaluate best‐practices established in near and mature domains and (ii) identify 

current showstoppers that could arise in the robotics domain. This understanding is necessary to 

make sure that Open Calls will be prepared to provide concrete answers to the community, to finally 

overcome identified showstoppers and secure broad adoption. 

For this first workshop, the Consortium invited experts, from relevant related domains, with a strong 

scientific background in the design of complex and critical systems, namely: 

• Arne Haman (Bosch) from automotive and embedded systems 

• Jan Broenink (University of Twente) mechatronic/cyber physical systems – hybrid simulation 

• Saddek Bensalem (Verimag) cyber physical systems – formal methods 

• Jurgen Bock (Kuka) Industrie 4.0 – ontologies, semantic technologies 

To prepare the workshop, each Expert discussed in an individual teleconference with the Consortium 

the general objectives of RobMoSys and the particular mission we were about to give to them. In 

order to set the context, the Consortium presented the following questionnaire:  

 

“What is the aim of RobMoSys? RobMoSys envisions an integrated approach built on top of the 

current code‐centric robotic platforms, by applying model‐driven methods and tools.   RobMoSys will 

enable the management of the interfaces between different robotics‐related domains in an efficient 

and systematic way according to each system’s needs. RobMoSys aims to establish Quality‐of‐Service 

properties, enabling a composition‐oriented approach while preserving modularity. RobMoSys will 

drive the non‐competitive part of building a professional quality ecosystem by encouraging the 

community involvement. RobMoSys will elaborate many of the common robot functionalities based 

on broad involvement of the community via two Open Calls.   These are the topics we would like to 

hear your opinion on:  

‐ How do you deal with composition and which are your priorities? 

‐ How do you make sure that different vocabularies in connected components semantically 

match? 

‐ How do you manage the link between composition and certification? 

‐ How do you deal with quality‐of‐service properties (extra‐functional properties) and how do 

you make sure quality‐of‐service is right? 

‐ How do you assess good practices and what kind of metrics do you apply? 

‐ What is still missing? 

‐ In the different steps of the process, which one do you think is the hardest part & how would 

you solve it or absolutely not solve it?”  

 

In the first part of this report (Experts Contributions) we summarize the contribution of each expert: 

the content of the presentation the expert made the first day. The second part (Current design 

methodologies assessment) presents the output of the second day: each expert was asked to fill a 

table pointing out several aspects and pain‐points of presented design approaches. The third part of 

the report (Synthesis on recommendations for RobMoSys) summarizes the general 

recommendations of the experts. 
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2 Experts Contributions 

2.1 Saddek Bensalem: a formal framework for system design 

Saddek Bensalem presented principles and concepts related to rigorous system design. Saddek 

pointed out that reactive systems are increasingly important in modern computing systems: 

embedded systems, cyber‐physical systems, mobile systems, web‐services. They are hard to design 

due to unpredictable and subtle interactions with the environment, emergent behaviors, etc. Robots 

are a class of Cyber‐Physical Systems.  

System design is facing several difficulties, mainly due to our inability to predict the behavior of an 

application software running on a given platform. Other difficulties stem from current design 

approaches, often empirical and based on expertise and experience of design teams. Naturally, 

designers attempt to solve new problems by reusing, extending and improving existing solutions 

proven to be efficient and robust. This favors component reuse and avoids re‐inventing and re‐

discovering designs. Nevertheless, on a longer‐term perspective, this may also be counter‐productive: 

designers are not always able to adapt in a satisfactory manner to new requirements. Moreover, they 

a priori exclude better solutions simply because they do not fit their know‐how. 

 

 

 

Limitations of V‐like models of traditional Systems Engineering processes can also be observed in this 

context. Indeed, V‐like models:  

1. assume that all the system requirements are initially known, can be clearly formulated and 

understood.  

2. assume that system development is top‐down from a set of requirements. Nonetheless, 

systems are never designed from scratch; they are built by incrementally modifying existing systems 

and by component reuse. 

3. consider that global system requirements can be broken down into requirements satisfied by 

system components. Furthermore, it implicitly assumes a compositionality principle: if components 

are proven correct with respect to their individual requirements, then correctness of the whole system 

can be inferred from correctness of its components.  

4. rely mainly on correctness‐by‐checking (verification or testing)  
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To overcome limitations of current approaches, a novel rigorous approach for system design is then 

needed, promoting the following principles:  

‐  Separation of Concerns 

‐  Component‐based approach  

‐  Semantic Coherence 

‐  Correct‐by‐construction; 

while rising three Grand Challenges:  

‐ Marrying Physicality and Computation. We need theory and models encompassing 

continuous and discrete dynamics to predict the global behavior of a system interacting with its 

physical environment. The development of application software and its implementation must take 

into account constraints from: the physical resources and the physical environment of the system. 

‐ Component‐based Design. We need theory, models and tools for the cost‐effective building 

of complex systems by assembling heterogeneous components 

‐ Adaptivity. Systems must provide a service meeting given requirements in interaction with 

uncertain environments. Uncertainty can be characterized as the difference between average and 

extreme system behavior. Non‐determinism of physical environments increases uncertainty. 

and meeting the following objectives:  

‐ Productivity. This can be achieved by system design flows providing high level domain‐

specific languages for ease of expression, allowing reuse of components and the development of 

component‐based solutions, integrating tools for programming, validation and code generation.  

‐ Performance. The design flow must allow the satisfaction of extra‐functional properties 

regarding optimal resource management. This means that resources such as memory, time and 

energy are first class concepts encompassed by formal models.  Moreover, it should be possible to 

analyze and evaluate efficiency in using resources as early as possible along the design flow. Design 

space exploration should be promoted to resolve choices such as reducing parallelism (through 

mapping on the same processor), reducing non‐determinism (through scheduling), fixing parameters 

(quality, frequency, voltage).  

‐ Correctness. This means that the designed system meets its specifications. Ensuring 

correctness requires that the design flow relies on models with well‐defined semantics. The models 

should consistently encompass system description at different levels of abstraction from application 

software to its implementation. Correctness can be achieved by application of verification techniques.  

To meet these objectives model‐based and component‐based design should be merged in a 

uniform formal framework with the following characteristics:  

‐ Adopt a model‐based design. Model‐based design means that software and system 

descriptions used along the design flow are based on a single semantic model. This is essential for 

maintaining the overall coherency of the flow by guaranteeing that a description at step n meets 

essential properties of a description at step n ‐ 1. This means in particular that the semantic model is 

expressive enough to directly encompass various types of component heterogeneity arising along the 

design flow.  

‐ Adopt a component‐based approach. Component‐based design promotes composability and 

compositionality principles. The key issue is how to build systems from a set of given atomic 

components (behavior) that meet a given property. This is a hard problem. Nevertheless, it is 
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important to have a framework for tackling this problem and decomposing it into simpler problems. 

That is to have a construction methodology. 

Build a component C satisfying a given property P, from  

1. C0  a set of atomic components modeling behavior  

2. GL ={gl1, …, gli, …} a set of glue operators on component 

Glue operators:  

‐ model mechanisms used for communication and control such as protocols, controllers, buses. 

‐ restrict the behavior of their arguments. 

 

The formal framework should offer a minimal set of constructs and principles for guaranteeing 

correctness by construction, such as decomposition and flattening as depicted in Figure 1.  

 

 

Figure 1: Decomposition and Flattening 

 

The framework enjoys a generalization of associativity. Any n‐ary glue operator is the composition of 

binary glue operators ‐  This is very important for systems with dynamically changing structure. Dually, 

hierarchically structured components can be flattened – single glue operator applied to the atomic 

components. To achieve flattening some composition operation on glue is needed.  

Component‐based construction is based on two important properties, namely composability and 

compositionality. Composability is about composing components without breaking their properties 

after composition. Composability guarantees preservation of a component property across 

integration. 
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Figure 2: Composability 

 

Compositionality allows deduction of the composed global properties from its component 

properties; this property enables correctness‐ by‐construction. 

 

Figure 3: Compositionality 

To make an example Figure 4 shows two kind of compositions. The first one is a composition in 

which the composed components satisfy a certain property (no deadlock), and the property is 

preserved at the level of the composite component thanks to a proper operator. In the second 

composition, components do not satisfy any deadlock‐free property, but the composite satisfies a 

Mutex property thanks to a Mutual Exclusion operator. 

 

 

Figure 4: Examples of Compositions and Related Properties 

‐ The formal framework should also be expressive enough to encompass heterogeneity of 

execution (synchronous and asynchronous components); interaction (function call, broadcast, 

rendez‐vous); abstraction levels (hardware, middleware, application software).  

‐ The formal framework should as well provide automated support for efficient 

implementation on given platforms and automated support for validation and performance analysis 

following the design flow suggested in Figure 5. 
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Figure 5: Design Flow 

2.2 Arne Hamann: Essential Analysis and QoS management 

Arne Hamann pointed out that model driven methods are key to boost design efficiency and 

confidence. What makes model‐driven methods fundamental is their suitability to compose 

functionalities on system level and then derive/predict system‐level properties. However, finding the 

right models & abstractions is extremely hard and requires in‐depth domain knowledge. Many bad 

examples are out there, which lead to the bad reputation of model based methods, like for instance 

using UML for modelling software. UML models often either lack a meaningful level of abstraction or 

lack clear semantics. UML models are, therefore, perceived to be only of little help by many software 

engineers. 

2.2.1 Essential Analysis for Functional Domains 

In order to deal with composition and issues on an underlying ontology supporting meaningful 

semantic connection among components, the suggestion here is to refer to morphological and 

essential system analysis1. These tools give help identifying right abstractions and concepts with 

respect to a given functional domain.  

Essential Analysis (Figure 7) systematically decomposes the overall problem space according to 

discrete “situations” in the system context. The objective is to identify sub‐problems called system 

modes that can be solved independently. The obtained system modes can be used as blueprint to 

structure the implementation in later development stages. In the final implementation this 

automatically leads to the separation of control flow and the data flow. The decomposition of the 

problem space and the identification of system modes is based on a light‐weight formalisation of 

system knowledge, i.e. a compact and unambiguous specification. This approach allows to check two 

fundamental properties during system design: 

• Completeness: all possible states in problem space have been analysed 

• Consistency: each part of the problem space belongs exactly to one system mode 

Obviously, the decomposition of the functional domain can be carried out only through a dialogue 

between the System Expert that has a specific domain knowledge and the Methodologist that has a 

specific knowledge about the method. Essential analysis (including consistency and completeness 

checks) can be performed thanks to a tool proposed by ETAS2. 

                                                                    

1 https://en.wikipedia.org/wiki/Morphological_analysis_%28problem‐solving%29 

Essential System Analysis ‐  Stephen M. McMenamin, John F. Palmer, 1984 
2 Available solution in the Embedded/Control Systems domain is the Scode tool by ETAS: 

https://www.etas.com/download‐
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Figure 6: Essential Analysis Method 

2.2.2 QoS management and link between composition and certification  

The key factor to correct manage QoS and certification issues for the expert is the separation of 

concerns between function and implementation. This aspect is also corroborated by the method 

suggested for the functional domain (see previous section), which of course can be used only if 

function and implementation are distinguished in the overall design process. Once again separation 

of concerns is of primary importance since SW components are often polluted by implicit assumptions 

that only hold for a specific target platform / middleware. More concretely the separation of concerns 

principle can be successfully pursued developing implementation‐agnostic specifications, i.e. 

developing applications against Abstract Interfaces that are guaranteed on the target platform by 

Platform Specific Implementations.  

In the context of QoS management those Abstract Interfaces usually rely on tailored platform 

mechanism matching specific Models of Computation, i.e. they explicitly refer to an execution 

model. Another important aspect is that the Abstract Interfaces must expose stable unambiguous 

semantics including non‐functional properties.  Obviously, to be useful in practice, the Abstract 

Interfaces must be verifiable and efficiently implementable. 

Example 1. Logical Execution Time  

The Logical Execution Time (LET) paradigm (Figure 7) decouples logical timing structure from 

physical execution resulting in portability, composability and deterministic communication between 

concurrent functional units. The LET paradigm solves the problem of software distribution on multi‐

core platforms and represent a strong‐base argument for certification3.  

 

Figure 7: Logical Execution Time 

                                                                    

center/files/products_RTA_Software_Products/Whitepaper_SCODE_2016_12_19.pdf 
3 Derler et al.: Simulation of LET Models in Simulink and Ptolemy Monterey. Workshop 2008: Foundations of 

Computer Software. Future Trends and Techniques for Development pp 83‐92. 
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Example 2. Reservation-based Scheduling 

In robotics, most approaches are agnostic to OS mechanisms laying below the middleware layer, so 

that temporal behaviour is accidental and difficult (or impossible) to predict. As a matter of fact, 

standard scheduling approaches used in the embedded systems domain (such as Rate Monotonic 

Scheduling) are not adequate for robotic applications with dynamic resource requirements, leading 

to strongly varying or unknown response times. In the current state of practice, system integration 

in robotics is often achieved by drastic overprovisioning of computational resources. While such an 

approach is adequate for research prototypes, product engineering must rely on more systematic 

approaches leading to provably guaranteed temporal properties (for cost and certification reasons). 

Reservation‐Based Scheduling (RBS) naturally extends the LET paradigm to the execution 

management domain. RBS represents a comprehensible abstraction for handling computing 

resources enabling composability. With RBS, processor capacity is viewed as a quantifiable resource 

that can be reserved like physical memory. A task receiving a fraction U (<1) of the processor capacity 

behaves as if it were executing alone on a U times slower processor. Composability is achieved by 

temporal isolation: an application has access to reservation regardless of the other application 

executed in the system. Interestingly RBS can be dimensioned for average case (avoiding worst‐case 

design) while improving overall utilization (no idling of cores like with time‐triggered approaches). 

 

 

Figure 8: Reservation Based‐Scheduling using the example of the Constant Bandwidth Server (CBS)4 

RBS allows to develop applications independently and integrate them at the end, since reasoning 

about functional and non‐functional properties is possible before integration. This leads to a huge gain 

in productivity and a string base for certification. 

 

2.3 Jan Broenink : Multi‐Paradigm Modelling for Cyber‐Physical Systems 

Robots can be viewed as a specific class of Cyber‐Physical Systems, where the total system (cyber and 

physical) must be integrally treated and where safety aspects are relevant. The combination among 

the physical design (mechanical and electrical) and the cyber part (control software) must be handled 

properly, taking into consideration that after the transformation of signals to data a communication 

network is in general involved (Networked CPS). To handle such complexity a multi‐paradigm 

modelling is proposed. Different kind of models must be then used to treat the total system. Used 

models differentiate each other in terms of modelling principles and Models of Computation. In the 

realm of Discrete Event models for instance different types of models can be found such as State 

Machine‐like models, Process diagrams (block diagrams‐like) and hardware description formalisms. 

Discrete Time models can either consider fixed Time Events or Variable Time Events. Other aspects 

define the model of computation such as the Communication model i.e. asynchronous (buffer) vs 

                                                                    

4 Luca Abeni, Giorgio Buttazzo : Integrating multimedia applications in hard real‐time systems, Real‐Time 

Systems Symposium (RTSS), 1998. 
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synchronous (rendezvous) and the level of synchronicity between calculations (asynchronous vs 

synchronous). 

 

Figure 9: Combined Modelling 

Figure 9 shows the different modelling paradigms chosen for the different parts of a cyber‐physical 

system, ranging from Discrete Event (DE) to Continuous Time (CT).  

Figure 10 specifies the combination of models used for the different activities involved in the design 

process. The software architecture (I‐a), includes logic for decisions (sequence control) and strategy 

algorithms (supervisory). To model a software architecture Discrete Event/Time modelling is used, 

e.g. finite state machines for decisions and software modules (data‐flow) for strategy algorithms. 

Control algorithms (I‐b) endows a tighter notion of real‐time, so that Discrete Time is used for loop‐

control algorithms and Continuous Time is used for plant modelling. These models are used in 

combination for verification and simulation (II) before software implementation synthesis (III). 

 

Figure 10: Combined Modelling and Design Process 

Jan Broenink presents his specific choice for models, targeting graphical languages: 

‐ Cyber part relies on a graphical representation of Communicating Sequential Processes 

(gCSP). One of the fundamental features of CSP is that it can serve as a notation for describing 

concurrent and communicating processes at different levels of abstraction, using different 

communication models as for instance Rendezvous communication.  

‐ Physical part relies on Bond graphs.  A bond graph is a graphical representation of a physical 

dynamic system. It allows the conversion of the system into a state‐space representation.  

Both graphical representations are similar to a block diagram or signal‐flow graph; with the major 

difference that the arcs in bond graphs represent bi‐directional exchange of physical energy, while 

those in block diagrams and signal‐flow graphs represent directional flow of information.  

Several modelling principles 

DE DT DE RL CT
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Models are then support for a concurrent design flow where software, electronics, control and 

mechanics design run concurrently. 

 

Figure 11: Concurrent Design Flow 

The models are then refined step‐wise 

1. Architecture and Dynamic Behavior 

2. Model‐based control‐law design 

3. Software, functional co‐simulation and real‐time specification/simulation of the 

implementation 

4. First‐time right realization 

While the importance of models is undeniable, it is important to make a distinction between 

languages vs techniques/methods vs tools to correctly use them during the design flow. 

Formalisms/Languages are instruments to exploit models: they provide expressiveness to write down 

models (syntax and semantics). Techniques, pertaining to the realm of model‐driven engineering 

techniques, fall into two main categories: transformation techniques to transform models (expressed 

in a given formalism) to other models (possibly expressed in a different formalism) and techniques to 

give insights or retrieve information captured by the models. Methods have a larger scope than 

techniques, they pertain to reasoning frameworks or design approaches (e.g. the BIP framework 

presented by Saddek Bensalem). Tools, finally, support methods and implements techniques. 

Decoupling techniques/methods from tools allows focusing on methods instead of getting lost in 

tools implementation.  

The link between languages and so‐called meta‐models is of paramount importance. A meta‐model 

is a model of models, i.e.  a meta‐model defines the language used to write a model. A meta‐model 

indeed specifies rules for checking the correctness of models and represents a basis for tools, 

specifically for editors and compilers. Common ground between different meta‐models can be found 

in meta‐meta‐models (a meta‐model conforms to a meta‐meta‐model), while transformations 

between models are ruled by a transformation among corresponding meta‐models. 
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Figure 12: Models Pyramid and Model transformations 

2.4 Jurgen Bock: Industry 4.0 as paradigm of digitally connected components.  

Industry 4.0 (I4.0) is a term coined in Germany to refer to the fourth industrial revolution. This is 

understood as the application of concepts such as Internet of Things (IoS), Cyber‐physical Systems 

(CPS), the Internet of Services (IoS) and data‐driven architectures in the real industry. 

2.4.1 Background: The I4.0 component and the reference model 

The Reference Architecture Model for Industry 4.0 (RAMI 4.0 describes fundamental aspects of the 

Industry 4.0: it illustrates the connection between IT, manufacturers/plants and product life cycle 

through a three‐ dimensional space. Each dimension shows a particular part of these worlds divided 

into different layers as depicted in Figure 13. Left vertical axis represents IT perspective which is 

comprised of various layers such as business, functional, information, etc. These layers correspond to 

the IT way of thinking where complex projects are decomposed into smaller manageable parts. In the 

left hand, horizontal axis is displayed the product life cycle where Type and Instance are distinguished 

as two main concepts. The model allows the representation of the data gathered during the entire life 

cycle. Along with the right hand horizontal axis the location of the functionalities and responsibilities 

are given in the hierarchical organization. The model broadens the hierarchical levels of IEC 62264 1 

by adding the Product or a workpiece level at the bottom, and the Connected World goes beyond the 

boundaries of the individual factory at the top. 

 

Figure 13: The reference model of Industrie 4.0 

A component is a basic concept in Industry 4.0. It is used as a model for representing the properties of 

real objects in a production environment connected with virtual objects and processes (a CPS system). 

It is comprised of two foundational elements: one or more assets and Administrative Shell 

surrounding the assets (Figure 14). 

 

Refers to Refers to

Conforms to Conforms toExecutes

Reads Writes

Transformation engine Target model

Target metamodelTransformation
definition

Source metamodel

Source model

MM

m T(m)T

IMMD
T



 ROBMOSYS 6.4 H2020—ICT—732410 

PAGE 16  31.12.2017 

 

Figure 14: I4.0 component 

An I4.0 component can be a production system, an individual machine, an assembly inside a machine 

or a software platform. Indeed, I4.0 component can be on different hierarchy levels (product, field 

device, …, enterprise, connected world). A basic prerequisite is that I4.0 components are able to 

communicate and understand each other for cooperation scenarios. To this end I4.0 components need 

to have self‐X properties (starting off with self‐description) and need to interact. Implementation of 

interaction is often based on OPC‐UA concepts. 

 

Figure 15: I4.0 components interaction 
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2.4.2 Interaction model and message‐based communication 

I4.0 components shall be able to interact with each other following an interaction model Figure 16. 

Within this model, we can find a set of typical interaction patterns, namely:  

• Identification 

• Negotiation of security measures 

• Request for a task (is a particular task executable?) 

• Negotiation of a task 

• Order and execution of a task 

• Report of errors 

 

Figure 16: Interaction model5 

The point‐to‐point communication is message‐based. Both base ontology and domain specific 

ontologies are considered. Base ontology provides a vocabulary for message format description 

while the domain ontology provides a vocabulary for message content description. 

                                                                    

5 Bock, J.; Diedrich, C.; Hänisch, R.; Kraft, A.; Neidig, J.; Niggemann, O.; Pethig, F.; Reich, J.; Schulz, T.; Vollmar, F. & Vialkowitsch, J. 

Weiterentwicklung des Interaktionsmodells für Industrie-4.0-Komponenten Plattform Industrie 4.0, 2016 
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Figure 17: Message‐based Communication5 

2.4.3 OPC‐UA 

OPC‐UA is often the preferred choice to implement communication between I4.0 components. OPC‐

UA has a client‐server architecture, but a publish‐subscribe architecture is currently under 

specification. One of the fundamental concepts in OPC UA is information modelling that can be used 

to describe the component (provide a structured access to data and methods). The semantics of 

information models is not formal, but there are companion standards that describe common 

structures for information models in specific domains or for specific purposes (e.g. Companion 

Standard “Device Integration” for field devices). OPC UA offers various services, such as security and 

discovery services. 

2.4.4 Composition of Industry 4.0 components 

Assets can be arranged freely (Figure 18); different composition patterns might be possible.   

Composition must obey to the following rules: 

• Components to be composed should be Industry 4.0 components 

• The Asset Administration Shell should be a standardized interface 

• There should be an interaction model for Industry 4.0 components 

• Asset Administration Shells can contain sub‐models and are thus flexible 

• Sub‐models can be used for various composition‐related aspects, e.g. self‐description, 

negotiation (QoS, tasks, etc.) 

• The implementation should be based on OPC UA 

The priority to start off with Asset Administration Shells based on OPC UA and subsequently 

implement sub‐models. 

 

Figure 18: Composition of assets and components 
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2.4.5 Semantics and Vocabularies 

The asset administration shell (AAS) is a generic interface to anything that has a value (asset) for an 

owner. Every AAS provides a basic set of information about the asset. An added value is only 

generated if the basic set of data is extended with domain specific data. Therefore, in the header of 

the AAS a statement is made that the AAS supports a specific model. 

 

In a first step, semantics will be based on shared vocabularies. Current parameters and states are 

provided by “properties”, more precisely, by property value statements. Every property is defined in 

a dictionary, e.g., ecl@ss or Common Data Dictionary (CDD). In these dictionary, it is actually defined 

what for example a “pipe diameter” is. 

Expressive formal semantics is currently missing but AAS offer a way to incorporate expressive formal 

semantics: Messages in an interaction model can refer to externally declared properties, e.g. in 

eCl@ss, or more expressive ontologies. At implementation level this is immediately reflected through 

OPC UA information models linking to expressive ontologies, OWL, etc.  

Currently, different groups are looking for domain specific properties (e.g., drive engineering) in order 

to insert them into dictionaries like ecl@ss. 

2.4.6 QoS management  

Let a formal description for QoS be part of the Asset Administration Shell through the definition of a 

sub‐model, then use the interaction model in combination with the sub‐model to negotiate QoS 

properties.  

2.4.7 Tooling  

While the AAS specification is pretty advanced, tools are not yet available. 

 

3 Current design methodologies assessment 

In this section, we report the assessment that each expert provided on current development 

methodologies. The assessment pertains to the methodologies presented by each expert. For each 

methodology, the consortium asked for potential risks in applying the methodology, current pain‐

points, the focus and priorities covered, the suggested good practices, tooling and what in the opinion 

of the expert are bad practices. Recommendations for the RobMoSys projects are then presented in 

the last column. 
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Figure 19: Saddek Bensalem's Assessment 

 

Figure 20: Jan Broenink’s Assessment 

Risks Pain 
Points

Priorities Bad practices/wasted time Good Practices Tools Recommendations

SADDEK

Verifica
tion
comple
xity

State 
space 
explosio
n

‐ Correct‐
by‐
construct
ion
Design

‐ Composa
bility 
rules

Existing development 
methodologies are of limited 
interest for systems. They 
prescribe only general 
principles and fail to provide 
rigorous support and 
guidance. 

Correctness‐by‐checking 
contributes to trustworthiness 
but it is limited to 
requirements that can be 
formalized and checked 
efficiently (mainly verification 
of functional properties for 
application software). For the 
same reasons, its application 
to optimization requirements 
is limited to the validation of 
scheduling and resource 
management policies on 
abstract system models. 

‐ Component/m
odel‐based 
design

‐ Compositional 
Verification

‐ Assume‐
Guarantee 
approach

‐ Incremental 
Verification

‐ Model checking 
is applied only 
to medium size 
systems when 
it is possible to 
make 
automated 
proofs or when 
the cost of 
faults is high. 

‐ BIP 
framew
ork

‐ Metrop
olis 
Framew
ork

Putting Correctness‐by‐Construction 
into Practice:
‐ Horizontal correctness: the 

construction process of component C 
is bottom‐up. Increasingly complex 
composite components are built 
from atomic components by using 
glue operators. Two principles can be 
used in this process to obtain a 
component meeting P: property 
enforcement and property 
composability.

‐ Vertical correctness, we need to 
develop component‐refinement 
tools to allow downstream 
movement in the abstraction 
hierarchy from application software 
modeled in the chosen component 
framework. 

‐ The requirement to deal with a small 
number of types of components is 
essential for the formalization of the 
composition rules between 
components. Frameworks with a 
large number of types of 
components are badly amenable to 
formalization.

Risks Pain Points Priorities Bad practices/wasted 
time

Good Practices Tools Recommendations

JAN

Unbalanced solutions 

due to unawareness of 
capabilities and 
restrictions of 
computing resources

Not appreciating / 

understanding the 
value of composition / 
architecture from a 
reusability point of 
view.

Application experts 
and component 
providers still have 
difficulty 
understanding each 
other.

Vocabulary / ontology;

Explain stacks / 
concerns such that 
both application 
experts and 
component providers 

can understand each 
other and benefit from 
each other;

Provide instruments to 
let roboticists get 
benefit from the 

above

Ignore the effect of 

implementations (i.e. 
non‐idealness of 
computers / networks).

Ignore the viewpoint of 
the roboticists whose 

focus is primary on 
computation

Use declarative models: 

Bond Graphs,
Communicating 
Sequential Processes in 
my case

Verification and Co‐

simulation, especially 
during design.

Step‐wise refinement as 
design “guide”

gCSP model checker / 

co‐simulation

20‐sim for bond‐graph 
models and control law 
design.

Automatic code
Generation from block 
diagrams

Execution lib providing 
concurrent execution

ROS etc, DDS

Separate the language, and 

methods from  the Tools

Push way of working as:
Model declarative; Refine 
stepwise; Automatically 
generate procedural code;

Verify / Co‐simulate during 
design…
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Risks Pain Points Priorities Bad 
practices/wasted 
time

Good Practices Tools Recommendations

ARNE

Artificial
Complexity

Demonstrator 
driven 
implementation, 
lack of systematic 
engineering 
practices following 

predefined 
structures

Reuse/portability 
of SW 

components not 
widely recognized 
as design goals in 
robotics

SW components 
implemented with 
implicit 
assumptions 
which are only 
true on specific 
platforms (e.g. 
ROS) � SW 
components not 

portable among 
target platforms

No separation of 
concerns: SW 

component 
implementations  
are overly complex 
because they 
cannot assume 

any guarantees 
(e.g. QoS) from 
the underlying 
platform

Missing link (or 
mutual ignorance) 
between function 
and performance

Consistent vocabulary 
of the different 
domains, the 
structuring of the 
motion stack serves 
as guiding example

Right Abstractions
e.g. Abstract Machine 

Interfaces to handle 
QoS attributes on 
application level. 
Thereby most 
importantly, 

abstractions for 
handling 
computational / 
communication 
resources

Definition of the 
computational model 
on system level (i.e. 
how and when do 

components 
exchange data, when 
are computations 
executed, etc.)

Definition of  end‐to‐
end timing 
constraints for cause‐
effect‐chains 
spanning multiple SW 
components

Configuration and 
variability of SW 
components (context: 
using a generic 
component in the 
context of different 
robots)

Safety handling

Models with non‐
adequate 
abstraction level: 
e.g. Code
Generation from 
UML models (too 
concrete), Boxes 
and Lines (too 
unconcrete)

Non‐constructive 
approaches (too 
many iterations)

Approaches by‐
passing 
architectural
patterns (e.g. 
complex drivers in 

AUTOSAR)

Morphological
method to 
structure a 
functional domain

Logical  Execution 
Time for 
composability and 
portability on 

communication 
level
(good 4 
certification)

Reservation Based 
Scheduling 
Schemes for 
composability on 
computational 

level
(good 4 
certification)

Methodology 

driven structured 
engineering 
approaches such 
as AUTOSAR in 
automotive 
(freedom from 
choice)

Declarative 
models including 
methods/tools to 
derive procedural 
realizations

GALS structure on 
system level. 
Ignore “minor” 
coupling effects 
on functional level 
to derive flexible 
implementation 
with sufficient 
degrees of 
freedom: 
“approximate 
refinement”. 

Essential 
Analysis 
Tool

LITMUS^R
T as 
backbone 
for 
execution 

container

Tool for  
specifying 
cause‐

effect‐
chains: as 
link 
between 
the 

functional 
domain and 
the 
execution 
domain

Real‐time 
analysis 
tools like 
SymTA/S, 
Inchron

Ask to extension to 
existing implementations 
e.g. LINUX extension for 
RBS

Developed concept 
should be technology 
agnostic but show cased 
using concrete 

technology like ROS, 
ROS2.0

Different aspects in the 
call should be illustrated 

with concrete problems 
(cf. end‐2‐end latency 
with CFS vs RBS)

Prefer declarative 

approaches over 
procedural approaches, 
since the former better 
supports composability

Search for executable 
models (i.e. defining clear 
computational models) 
on component level.

Ask explicitly for 
quantitative evaluation of 
the proposed 
method/tool/approach 
compared to the current 
state of practice (i.e. 
show the benefit)



 ROBMOSYS 6.4 H2020—ICT—732410 

PAGE 22  31.12.2017 

 

Figure 21: Arne Hamann's Assessment 

Risks Pain Points Priorities Bad 
practices/wasted 
time

Good Practices Tools Recommendations

ARNE

Artificial
Complexity

Demonstrator 
driven 
implementation, 
lack of systematic 
engineering 
practices following 

predefined 
structures

Reuse/portability 
of SW 

components not 
widely recognized 
as design goals in 
robotics

SW components 
implemented with 
implicit 
assumptions 
which are only 
true on specific 
platforms (e.g. 
ROS) � SW 
components not 

portable among 
target platforms

No separation of 
concerns: SW 

component 
implementations  
are overly complex 
because they 
cannot assume 

any guarantees 
(e.g. QoS) from 
the underlying 
platform

Missing link (or 
mutual ignorance) 
between function 
and performance

Consistent vocabulary 
of the different 
domains, the 
structuring of the 
motion stack serves 
as guiding example

Right Abstractions
e.g. Abstract Machine 

Interfaces to handle 
QoS attributes on 
application level. 
Thereby most 
importantly, 

abstractions for 
handling 
computational / 
communication 
resources

Definition of the 
computational model 
on system level (i.e. 
how and when do 

components 
exchange data, when 
are computations 
executed, etc.)

Definition of  end‐to‐
end timing 
constraints for cause‐
effect‐chains 
spanning multiple SW 
components

Configuration and 
variability of SW 
components (context: 
using a generic 
component in the 
context of different 
robots)

Safety handling

Models with non‐
adequate 
abstraction level: 
e.g. Code
Generation from 
UML models (too 
concrete), Boxes 
and Lines (too 
unconcrete)

Non‐constructive 
approaches (too 
many iterations)

Approaches by‐
passing 
architectural
patterns (e.g. 
complex drivers in 

AUTOSAR)

Morphological
method to 
structure a 
functional domain

Logical  Execution 
Time for 
composability and 
portability on 

communication 
level
(good 4 
certification)

Reservation Based 
Scheduling 
Schemes for 
composability on 
computational 

level
(good 4 
certification)

Methodology 

driven structured 
engineering 
approaches such 
as AUTOSAR in 
automotive 
(freedom from 
choice)

Declarative 
models including 
methods/tools to 
derive procedural 
realizations

GALS structure on 
system level. 
Ignore “minor” 
coupling effects 
on functional level 
to derive flexible 
implementation 
with sufficient 
degrees of 
freedom: 
“approximate 
refinement”. 

Essential 
Analysis 
Tool

LITMUS^R
T as 
backbone 
for 
execution 

container

Tool for  
specifying 
cause‐

effect‐
chains: as 
link 
between 
the 

functional 
domain and 
the 
execution 
domain

Real‐time 
analysis 
tools like 
SymTA/S, 
Inchron

Ask to extension to 
existing implementations 
e.g. LINUX extension for 
RBS

Developed concept 
should be technology 
agnostic but show cased 
using concrete 

technology like ROS, 
ROS2.0

Different aspects in the 
call should be illustrated 

with concrete problems 
(cf. end‐2‐end latency 
with CFS vs RBS)

Prefer declarative 

approaches over 
procedural approaches, 
since the former better 
supports composability

Search for executable 
models (i.e. defining clear 
computational models) 
on component level.

Ask explicitly for 
quantitative evaluation of 
the proposed 
method/tool/approach 
compared to the current 
state of practice (i.e. 
show the benefit)
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Figure 22: Jurgen Bock's Assessment 

4 Synthesis on recommendations for RobMoSys 

In this section, we provide a synthesis of the Experts recommendations relevant for the RobMoSys 

Project.  

A first aspect pertains to the nature of the models employed. From experts’ recommendations, we 

can derive the following conclusions:    

• Prefer declarative models (including methods/tools to derive procedural realizations) over 

procedural models since declarative models better support composability; 

• Definition of a model of computation (MoC) on system level, i.e. how and when do 

components exchange data, when are computations executed, etc. The use of a MoC enables 

verification and co‐simulation during design.  

• Enable refinements to allow downstream movement in the abstraction hierarchy. GALS 

(Globally Asynchronous and Locally Synchronous) is a paradigm on system‐level allowing refinements 

with a certain degree of freedom towards implementations.  

• Small number of types of components in order to manage the formalization of 

composition/composability rules and properties.  

 

A second aspect is related to good practices to employ during the development process: 

• Put correctness by construction into practice supporting both bottom‐up construction 

(component built out of atomic components) and top‐down approaches (refinements) via 

composition rules and step‐wise correct refinement of components 

Risks Pain Points Priorities Not Relevant Bad 

practices/waste
d time

Good Practices Tools Recommendations

JURGEN

Being too
abstract for 
system 
integrators, end 

users, 
component 
providers, …, to 
transfer into real 
systems

Currently it’s a 
difficult ongoing 
discussion, on 
where and how 

the asset 
administration
shell is being 
implemented. 
There should be 

a distinction 
between the 
role, type, 
instance, and 
real physical 

asset of any I4.0 
component. 
Strictly speaking, 

the role “robot 
with properties 

123, type “KUKA 
KR6”, instance 
“KUKA KR6 with 
S/N 987”, and the 
real physical 

robot, are three 
assets, but do 
they all need 
administration 
shells? (These 
are ongoing 
discussions in 
I4.0 consortia 
and projects.)

Detailed
specification and 
implementation of 
the Asset 

Administration Shell

Base Ontology for 
interactions 
(Messages)

Abstract 
communication 
primitives

Semantic 
interoperability
Coordination

(interaction models 
specified as state 

machines)

Safety and security

Real‐time (in
many higher 
level 
coordination 

tasks)

Lower levels 
(Hardware, 
OS, Exec. 

Cont.) might 
not have to 
be seen as 
I4.0 
components, 

as they are 
managed by 
the asset 

providers

Trying to be too 
disruptive on the 
shopfloor (legacy 
systems) will not 

be accepted

Quickly get to 
the point of 
having an
implementation 

(with 
quantifiable 
analysis)

Agreeing on a 

particular 
standard 
toolchain is 
essential (e.g. 
OPC UA in 

Industry 40)

OPC UA 
(SDKs and 
software 
stacks), 

tools for 
authoring 
OPC UA 
informatio
n models 

(e.g. 
UaModelle
r)

Tools for 

creating / 
configurin
g I4.0 

concepts, 
e.g. AAS, 

Interaction 
Manager, 
etc.

Focus on small  and 
concrete use cases

(concrete use case 

requested!)
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• Push verification and co‐simulation activities during design; use model‐checking only on small 

models, composable/incremental verification 

• Push the concept of concurrent design (e.g. mechanical, electronical, software) 

• Handle safety and security aspects as soon as possible and not as an afterthought 

 

A third aspect pertains to tooling 

• Separate the language from the methods and from the tool 

• Agree on a standard tool‐chain and a common vocabulary for interoperability: at least syntax, 

better to have semantic interoperability 

• Make use of tooling to formalize and assess the structuring of domain knowledge: low 

dependency/overlapping between concepts  

Final remarks have been also provided for use‐cases  

• Focus on small and concrete use cases 

• Developed concepts should be technology agnostic but show‐cased using concrete 

technology (e.g. real OS, middleware, etc.)  

• Provide assessments to show the benefit of the concept/method/tool with respect to current 

state of the art 


