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Executive Summary

This deliverable provides the first contribution on the modelling of the so-called motion, perception
and world model stacks, since these are foundations of any digital platform for robotic systems.

The first part of the modelling focuses on the generic foundations, that the domain of robotics
shares with a lot of other domains. More in particular, we need formal representations of (i)
entities, relations and property graphs, (ii) at the levels of abstraction of mereology, topology, ge-
ometry, and dynamics, (iii) with separation of the concerns of mechanism (structure & behaviour)
and policy, and (iv) with an explicit ambition to support grounding into software implementa-
tions, and processes of validation and certification of components and systems. Two core aspects
are: the omnipresence of the Block-Port-Connector meta meta model to represent all structural
relationships and compositions, and the introduction of a formal model to represent the data
structures, functions and control flow schedules of algorithms.

The second part of the modelling brings in robotics-specific material, more specifically about
motion and perception. Both share the same formalisation of their mathematical, numerical and
digital representations, as well as the connection to meta data for physical dimensions and units.
The motion stack core consist of models of geometrical entities, relations and constraints, from
points and lines upto kinematic chains with shape, inertia, actuators and sensors. The major
“behavioural” functionality to be modelled explicitly is that of the hybrid dynamics solvers that is
the generic basis of all instantaneous motion and force transformations between the joint space
and the Cartesian space of all kinematic chains. Similarly, perception is composed of models
of sensors, sensing features, data association to object features, and constraints imposed by the
task, the environment and the object properties; message passing is the solver which plays a
similar foundational role in adding behaviour to the models in perception as the hybrid dynamics
algorithm does for motion. The world model stack is a knowledge-based system, backbone of the
information infrastructure around the motion and perception stacks.
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1. Introduction

“Motion” and "Perception” are two essential functionalities in any robotic system, and both have
a rich and mature history. In other words, there is more than enough understanding about what
constitutes a solid basis of theory and algorithms to include in a digital platform for robotics. For
the motion part, this basis is given by the generic algorithm to solve the “hybrid” instantaneous
kinematics and dynamics relationships that hold between the forces and the motions on ideal,
lumped-parameter, kinematic chains. For the perception part, a similar role is played by Bayesian
graphical model templates that relate raw sensor data to the task-centred features of objects
involved in the robots’ tasks.

This Deliverable makes concrete suggestions about how to turn those state-of-the-art insights
into a concrete set of (meta) models, on which to base any concrete implementation for any
concrete application in robotics. Because the ambition of the Robmosys project is to (help)
build the platform only, a lot of attention was given to creating the “right” modularity, the
“right” levels of detail, and the “right” separation of concerns, and the “right” approach towards
composability, such that the development of models, tools, implementations and applications
becomes methodological, transparant and scalable.

1.1 Goal of First Call

This deliverable contains the drafts of the Motion Stack and the Perception Stack as examples
for Tier 2 domain-specific models within the RobMoSys structure. These drafts will be subject
to changes and refinements over the course of the project, not in the least because achieving
the envisaged “right” set of models is probably a never ending process of community-driven
improvements. The latest versions can always be found on the RobMoSys Wiki. Constructive
feedback from the community is welcome and encouraged and can be subject of projects in the
first call.

For the first call we consider the following subjects for project proposals:

e (Meta-)Models. Creating or refining Tier 2 domain-specific models. This includes refine-
ments of the presented motion or perception stack as well as proposals for neighbouring
domains such as control, estimation, planning, visualisation, data acquisiation and manage-
ment, or decision making. This also includes work on how to encode these formal models
(e.g. with domain-independent host languages such as JSON-LS, OWL, XML, etc.), so that
they can be used in tooling prototypes. Finally, multiple user-friendly domain-specific lan-
guages are sollicited, to facilitate the specification of the usage of the models to a particular
type of users, in a particular type of application domain.

e Software Modules. Building new modules, or refactoring already existing software mod-
ules, such that they conform to the RobMoSys modeling approach. This means that these
modules have to be composable with all assumptions being explicated by modelling. Ver-
ification of of composability is required, e.g. by reusing the same module(s) within two
different demonstrations by just reconfiguring them (according to their models).

Note that “software modules” will be, both, algorithms provided as standalone libraries, and
components that come ready to be deployed in a component framework.
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e Tools. Tools should make use of the meta-models and models to help building systems.
This means that they offer (one or more) specific views to the different roles! foreseen
by the project. While some of the meta-models of the motion stack are mature enough
such that tooling is possible for them up to the application level, that is, various motion
control modes, this is more difficult for the perception stack due to the enormous variety in
applications, sensors and estimators.

Please note that components have to be delivered together with their corresponding models
that have to conform to the RobMoSys meta-models; not conforming to these models needs to
be motivated, meaning that a project outcome could lead to a refinement of the meta-models.
Concrete examples of tooling to make effective use of the models are also expected, to make sure
that suggested models and implementations have a complexity trade-off that warrants the cost of
developers and users to go through the inevitable learning curve.

1.2 Generic modelling foundations

This Section is a brief summary of the modelling concepts, and of the various relevant “levels of
abstraction”, that this document inherits from the broader RobMoSys context. (More complete
and updated versions of the following paragraphs can always be found on the RobMoSys Wiki
pages.) For the kinematic chain purposes of this document, (only) the five levels of abstraction
described in Sec. 1.2.2 are relevant, together with an explicit partial ordering on these five levels.
But before we go there, the following Section summarizes the axiomatic role played in the Rob-
MoSys modelling approach by the concepts of Entity (representing “stuff”, “things”, "primitives”,
“atoms”,...) and Relation (representing dependencies between Entities).

1.2.1 Entities, Relations and Property graphs

Modelling boils down to making an artificial language to represent, in a formal way, the properties
of real-world entities for which one needs "digital twins", together with the relationships that
govern the interaction between the entities. For all but the most simple models, the result is a
set of graphs, where the nodes represent entities, the edges represent relations, and both have
a set of properties (like name, identity, type, provenance, etc.). Very often, one also needs to
include constraints in the language, to express some limits on the values of the properties of
entities and relations; hence, one needs higher-order models (or reification), by which relations
become entities themselves, to become arguments in other relationships or constraints. The result
of computer representations of all the “digital twins" and their interconnections will be a so-called
graph database, which provide semantic query interfaces.

This Section introduces the mereological and topological (Sec. 1.2.2) representations of the Entity
and Relation concept that underly all modelling. The generic and seemingly obvious textual
representation of a relations looks like this:

Relation ( Argumentl, Argument2, Argument3 ). (1.1)

Each Argument has a specific Role in the Relation. For example, a kinematic chain is a rela-
tionship representing motion constraints between rigid body links and (typically) one-dimensional

http://robmosys.eu/wiki/general _principles:ecosystem:roles


https://en.wikipedia.org/wiki/Digital_Twins
https://en.wikipedia.org/wiki/Provenance
https://en.wikipedia.org/wiki/Reification_(computer_science)#Reification_on_Semantic_Web
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Semantic_query
http://robmosys.eu/wiki/general_principles:ecosystem:roles
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revolute or prismatic joints; the role of the links is to transmit mechanical energy (motion and
force), while the role of the joints is to constrain or alter that transmission.

Equation (1.1) is a so-called mereological model, since the only thing it models is that a relation
is a “whole” has-a argument as a “part”, three times. And the type of the has-a is that of
“being an argument with a particular role.” Mereological models might seem overly simplified
and obvious, but they have already a very important role to play in large-scale modelling efforts
like RobMoSys: to determine what the models and reasoning tools can “talk about”, or, more
importantly, can not talk about because of a lack of formally represented entities. So, a first
agreement between the model developers in a particular domain is to get agreement about what
terms are “in scope” of the effort, and which are not, and what kind of dependencies between these
terms will be covered by the models. And that effort is exacty what this document is kickstarting,
for the robotics sub-domains of motion and perception; the document uses the terms “stack” to
represent the RobMoSys project’'s ambition to find, together with the community, an agreement
about how to structure all the required modelling, from the “bottom™ up, until there is enough
to serve as a platform for all robotics applications to build upon.

(Rel)
(oD €rad o)

Figure 1.1: A directed graph representation to model relations.

Figure 1.1 depicts the directed graph model to represent a Relation. Such directed graphs are
commonly supported by graph database sofware to implement property graphs [3], that is, a graph
with property data structures attached to both node and edge.

At this mereology level (Sec. 1.2.2), queries are possible about what arguments are used in what
relations, which argument are correlated, etc. Such queries can be answered by graph traversal
tools, like Gremlin or SPARQL.

JSON-LD, RDF or XML, are choices of host languages, which are supported by rich ecosystems
of tools, developers and users. The examples below use JSON-LD because it has (for the time
being) a somewhat better support for our purposes, that is, representing named directed graphs,
with built-in keywords for unique identifiers, conformance to meta models, possibility to represent
higher-order relations, and inter-linking of model files. In order to be used in such a context
of higher-order and interlinked models, the simple representation of Equation (1.1) needs more
technical details to be modelled in JSON-LD:

"Qcontext": {
"generatedAt": {
"@id": "http://www.w3.org/ns/provi#generatedAtTime",
"Q@type": "http://www.w3.org/2001/XMLSchema#date"
3,
"Entity": "IRI-of-Metamodel-for-EntityRelation/Entity",
"Relation": "IRI-of-Metamodel-for-EntityRelation/Relation",
"EntityPropertyStructure": "IRI-of-Metamodel-for-EntityRelation/Properties",

"RelationName": "IRI-of-Metamodel-for-Relation/Name",


https://en.wikipedia.org/wiki/Mereology
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Gremlin_(programming_language)
https://en.wikipedia.org/wiki/SPARQL
http://json-ld.org/
https://www.w3.org/TR/rdf-schema/
https://en.wikipedia.org/wiki/XML
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1,

"RelationType": "IRI-of-Metamodel-for-Relation/Type",
"RelationRole": "IRI-of-Metamodel-for-Relation/Role",
"RelationNoA": "IRI-of-Metamodel-for-Relation/NumberOfArguments",

"MyTernaryRelation": "IRI-of-Metamodel-for-MyTernaryRelations/Relation",
"MyTernaryRelationType": "IRI-of-Metamodel-for-MyTernaryRelations/Type",
"MyTernaryRelationRolel": "IRI-of-Metamodel-for-MyTernaryRelations/Rolel",
"MyTernaryRelationRole2": "IRI-of-Metamodel-for-MyTernaryRelations/Role2",
"MyTernaryRelationRole3": "IRI-of-Metamodel-for-MyTernaryRelations/Role3",

"TypeArgumentl": "IRI-of-MetaModel-for-Argumentl-Entities",
"TypeArgument2": "IRI-of-MetaModel-for-Argument2-Entities",
"TypeArgument3": "IRI-of-MetaModel-for-Argument3-Entities",

"@id": "ID-Relation-abcxyz",

"@type": ["Relation, "Entity","MyTernaryRelation"],
"RelationName": "MyRelation",

"RelationType": "MyTernaryRelationType",
"RelationNoA": "3",

"generatedAt": "2017-06-22T10:30"

"@graph":

3

L
{
"@id": "ID-XYZ-Argumentl",
"@type": "TypeArgumentl",
"RelationRole": "MyTernaryRelationRolel",
"EntityPropertyStructure": [{key, value},... ]
3,
{
"@id": "ID-XYZ-Argument2",
"Qtype": "TypeArgument2",
"RelationRole": "MyTernaryRelationRole2",
"EntityPropertyStructure": [{key, valuel},... ]
3,
{
"@id": "ID-XYZ-Argument3",
"@type": "TypeArgument3",
"RelationRole": "MyTernaryRelationRole3",

"EntityPropertyStructure": [{key, valuel},... ]
}

The following model represents a constraint on the previous model (using the constraint language
ShEx), namely the equality between the numeric value of the RelationNoA property and the actual
number of arguments in the Relation:

{
II@

})

context": {

"RelationNoA": "IRI-of-Metamodel-for-MyTernaryRelations/RelationNoa",
"MyTernaryRelation": "IRI-of-Metamodel-for-MyTernaryRelations/Relation"
"length": "IRI-of-Metamodel-for-the-lenght-function/length"


http://shex.io/shex-primer/
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"@id": "ID-RelationConstraint-u3u4d8e",
{ "@context": "http://www.w3.org/ns/shex.jsonld",
"type": "Schema",
"shapes": [
{ "id": "MyTernaryRelation",
"type": "Shape",
"expression": {
{ "type": "TripleConstraint",
"predicate": "RelationNoA",
"value": { "type": "NodeConstraint", "datatype": "http://www.w3.org/2001/XMLSchema#
131}
13
}

The topological level of representation (Sec. 1.2.2) introduces a formal representation of the
connectivity structure. This formal representation extends the generic Block-Port-Connector
(BPC) meta model?:

e Block: every Relation is a Block, so has-a number of Ports.

e Port: each Port represents an argument in the Relation, and the properties of the Port
represent the type of the argument, and the role the argument plays in the relation.

e Connector: this connects a concrete instance-of an argument with a concrete instance-of
the Block and Ports mentioned above. Its types must, of course, match with those in the
Ports.

What is described above is the outside view on the Relation; the internals of the Block can be
again a composition of Blocks and Ports and Connectors, then representing the “algorithm "that
realises the behaviour of the Relation.

To link the outside and inside, the Ports much get an extra modelling primitive, the Docks:
each Port must have exactly one inside Dock and one outside Dock, and both have a Connector
between them. The constraints on both ends of this Connector are just(?) type compatibilities.

1.2.2 Mereology, topology, geometry, dynamics

A first reason to introduce explicit structure is to provide, to human developers, an explicit context
to their modelling efforts and discussions, because experience has shown that such context can
prevent most “religious wars” that tend to arise between developers, about whether or not a
particular feature or property has to be included in a particular model. For example, at the
geometrical level of abstraction, models of a “Rigid body” must somehow represent the fact that
the distance between any two points on the body must remain constant. Only at the dynamical
level, the weight of the body, and forces on the body, become relevant concepts; also at this
level only, deformations (i.e., non-constant distances between points on the body) are introduced,
together with the concepts of force and elasticity.

A second reason to bring structure in abstraction levels is to support efficient automatic reasoning
in the software tools that developers will want to use to build robotic software systems: the higher
level of abstraction that can be used in the reasoning that is required to answer “queries”, the more
efficiently the query answering can be implemented. For example, only the topological properties

2see also Deliverable D2.2


http://robmosys.eu/wiki/modeling:principles:block-port-connector
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of a kinematic chain are needed to answer questions about connectivity between links, or about
the kinematic family that a particular chain belongs to (e.g., serial or parallel robots); the bigger
geometric models only come into play when the magnitudes of motions must be computed.

1. Mereology: this is the abstraction level where only the "whole” and its "parts” are modelled.
The relevant relations are has-a, collections

2. Manifolds & Objects: all the "wholes” and “parts” in a particular context most often are
further detailed in two complementary ways: as “discrete” things (“objects”) or as “continuous”
things (“manifolds™). Note that the same mereological Entity or Relation can have more detailed
models that have both discrete and continuous parts. For example, a kinematic chain has a
continuous motion space, but also a discrete set of actuators and sensors.

3. Topology: for both the manifold and object types of Entities and Relations, there is a
need to introduce extra concepts with topological meaning, to represent “neighbourhood”, more
in particular the contains and connects relations. Each type has its own extra topological
relations.

3.1. Spatial topology: near-to, left-of, on-top-of,...
3.2. Object topology: block, port, connector, and dock; or the taxonomy relationships of

hypernyms/hyponyms of objects and verbs.

4. Geometry: this is the next level of modelling abstraction (for the manifold type of Entities
and Relations only!), that introduces more concrete semantic types of Entities and Relationships.
Also within the geometry context, sub-categories with commonly accepted names and meaning
can be identified.

4.1. Affine geometry: point, line, hyperplane; intersect, parallel, ratio.

4.2. Metric geometry: rigid-body, shape, orientation, pose, angle, distance, orthogonal,
displacement,...

5. Dynamics: the last level of modelling abstraction brings in the interactions between “motion”

and “force”.

5.0. Differential geometry: this is the domain-independent representation of physical sys-
tems, that is, all features that are shared between the mechanical domain, hydraulic domain,
electrical domain, thermal domain, etc. The most fundamental concepts are: tangent-space,
linear-form, vector field, and metric.

5.1. Mechanics: mass, force, elasticity, damping, gravity, momentum, potential-energy,
kinetic-energy,...

5.2. Electrics: resistor, inductance, capacitance,...

1.2.3 Mechanism (structure & behaviour) versus policy

Because RobMoSys is a platform project, it has a high emphasis to separate the “mechanism”
aspects from the “policy” aspects:

10
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e mechanism: what does a piece of functionality do? Irrespective of the application in which
it is used. Often, “mechanism” is subdivided into:

— structure: how are the parts of the model/software connected together?

— behaviour: what “state changes” does each part realise?

e policy: how can that piece of functionality be used to serve a particular application? In its
simplest form, a policy just configures some “magic number” parameters in the model/code
of a library or component system; in more complicated forms, the whole architecture of an
application is optimized towards the particular application context..

1.2.4 Grounding, validation, certification

Note that none of the models above is a complete formal representation of all relevant knowl-
edge. mechanism or policy: they refer to other models that provide that “context”. Of course,
this interlinking of models must stop somewhere; in the case of robotics software systems, this
“grounding” takes place when a piece of concrete software is composed with a set of models, and
a human expert has validated that this implementation is correctly realising what is represented
in the models. It is a community responsibility to decide what grounding it will expect, for what
kind of purposes. For example, formal verification expectations are a lot lower for ROS-based
educational robotics systems than for ESA’s planetary rovers and manipulators; hence, also the
accepted level of grounding will be more stringent in the latter case.

From a modelling point of view, validation, verification, certification etc. are processes that do
something with models and software, and produce a metadata model that documents the process.
This is, in principle, fully covered by composition of models.

11



2. Motion Stack Overview

The RobMoSys project has two major ambitions: to create a (effective, efficient and fair) digital
platform for robotics, and to do so in a composable way. Hence, this chapter focuses on the well-
understood basis of how to make robot kinematic chains “move”, with a structural methodology
and a feature set that can cover the motion needs in all mainstream applications, cut in pieces
that are small enough (but not smaller!) to make sure that no specific set of applications is
(implicitly) served better than other sets of applications, because some of the structure, “magic
numbers”, functions, or terminology are biased towards the former. The result might be, to some,
a surprisingly large set of small models (Fig. 2.1), with a lot of composition requirements before
anything close to useful functionality can be realised. In other words, the focus is on reusability of
the platform creation results; the wusability must, hence, be realised by adding tools and domain-
specific languages that target specific developers, users and/or application domains. These design
ambitions pose a difficult exercise to trade-off flexibility and generality on the one hand, versus
user friendliness and efficiency on the other hand. Constructively critical suggestions from the
community, to improve this trade-off, are sollicited throughout the duration of the RobMoSys
project.

Robot Kinematics Task Model

- MoveTo

- MoveCartesian
- MoveParallel

Monitors

Tolerances

Geometric Model

Geometric Relationships
- Parallel - Perpendicular

- Distances (Pose)

- Angles

Solver Models

Constraints
- keep distance
- keep parallel

Attachment
Foints \

Uncertainties - - Mechanical Model | ( Sensor Shape
- PDFs [Cnordmate representation } - Dynamic Properties: - Force Sensors - Box - Sphere

- Parametric - vector - Elasticity/Stiffness - Encoders - Cylinder - Mesh

- Interpolation - quaternion Ipl\:::.mity
- - frame - Cameras

- Damping/Friction
- Inertia
- Transmission Model

Actuators
- Electrical

- Hydraulical
- Pneumatic

[ Digital Representation ] [ Physical Units ]

Figure 2.1: Overview of the model structure of the “motion stack”. Each of the arrows represents
a composition of complementary aspects of eventual software implementations.

Figure 2.1 gives an overview of the various models that are to be composed in any given robot
application. Although there are already dozens of sub-models in the Figure, it is still incomplete: it
focuses on the modelling of kinematic chains, on the implementations of the functionalities that
come with such kinematic chains, and on the role that kinematic chains play in the specification
of robotics tasks.

At the highest level of abstraction, the entities, constraints and relations connected to kine-
matic chains are: rigid links whose relative motions are constrained by joints, driven by actuators
and measured by (proprio) sensors; a kinematic chain is an instantaneous mechanical energy
transformation relationship between joint space and Cartesian space, which can be redundant,
underactuated and/or singular.

Developers of robotics applications have to add a lot more concrete details to the just-mentioned
abstract concepts, and the Figure structures the dependencies in the various models that are

12
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involved: geometry, mathematical and digital representations, and physical units are necessary data
structure whose semantics must be made 100% clear for all developers and users of the functions
(“solvers”) that implement the abstract properties of kinematic chains. The generic solver is that
of the so-called hybrid dynamics: it computes the instantaneous joint torques required to generate
the motion of the kinematic chain that is the result of a set of given Cartesian forces on some of
the links, given “posture control” torques on some of the joints, and motion constraints on joints
and/or links.

Important parts that are not in the Figure (but will be added to the RobMoSys project later on)
are:

e task specification: any application requires the kinematic chain to generate motion of
task-specific tools or sensors.

e control: specified motion must be realised via control.

e estimation: the desired motion of the kinematic chain is often specified relative to (the
motion of ) objects in the environment, whose position and motion must be estimated at
runtime.

e planning: the motion, shape and workspace properties of the kinematic chain are important
constraints to take into account in the planning of the tasks in a particular application.

13



3. Motion Stack Models

This chapter proposes a set of explicit models, meta-models and meta-meta models as fundamental
requirements for any composable, usable and re-usable motion and perception stack implemen-
tations. The purpose of those models is to describe—eventually in an exhaustive and formal
way—any software entity (e.g., a functionality, a component, a task specification, etc), such that
motion and perception algorithms can be re-used, composed, verified and validated by means of
design-time and run-time tools, used by human developers and, eventually, robot systems them-
selves. While the latter ambition is not for the immediate future, the effort of creating formal
models is expected to be a primary contribution to the improvement of human-centered software
documentation as well.

The RobMoSys project promotes the usage of explicit model instances to describe kinematic
chains, physical objects, algorithms (and their properties) that conforms to a set of specific meta-
models. The aim is not to propose a single meta-model that tries to cover all the aspects of a
software implementation; instead, the aim is to propose a composable meta-meta-model, that is a
meta-meta-model that describes all the complementary aspects of a software implementation by
means of composition of several, dedicated meta-meta-models. The result is expected to become
a platform that covers all generic aspects of robotics applications, and has the structure and the
tools to allow composition of of platform-level domain-specific meta-models and software with
new application-specific models and software , as long as they conform to one or more of the
meta-meta-models that compose the motion and perception stack meta-meta-model.

For example, a company introduces a new actuator, kinematic chain design, or sensor processing
algorithm, and the platform tools and models help that company to identify, first, exactly those
properties and functionalities of its innovation that are really innovative and unsupported. After
that, the platform supports the software development by the company in such a way that it can
focus on those innovative aspects only. Of course, existing robotics software frameworks already
provide a preliminary version of such platforms, but they lack in (i) formal models that can be
used in tools to support the process, and (ii) sufficiently fine-grained granularity of the models and
the tools to allow very customaized composition, down to the level of generating new composite
compile-time algorithms (instead of “just” composing compiled software components).

The concrete models improve the overall composability and re-usability in different ways, also
depending on the application and the design phases of the application itself. In general, at least
the following approaches exist:

e developer discipline - models are used as a formal documentation, and all the development
is performed manually, in-code, by means of previous agreements among the developers that
cover a different role in the RobMoSys ecosystem (see deliverable D2.11);

e design and deployment time tools - models are used by offline tools that help the
developers to deliver error-free applications;

e runtime features - the software components provide functionalities to dynamically adapt
themselves and compose with new or replaced components, at runtime. In this scenario,
models are shared among the components, describing their properties and enabling runtime

! see http://robmosys.eu/wiki/general _principles:ecosystem:roles
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introspection and (re)configuration, hence facilitating the adaptability and composability of
the overall application, at runtime and by the robots themselves.

Further hints related to specific implementation details will be provided in this deliverable and
during the overall duration of the project (by means of deliverables D3.2, D3.3 and D3.4).

The following Sections of this Chapter provide detailed descriptions of various sub-sets of the
overall modelling picture, as sketched in Figure 2.1.

3.1 Numerical Entity Model

The numerical entity model is a composition of models that ground concepts with their numerical
representation in a machine-readable form. In the context of the motion and perception stack,
special attention is given to the grounding of geometric concepts since they are the backbone of
any robotic application.

Geometric Entities

- Versor - Frame
- Vector - Line
- Point - Plane
- Orientation - ...
Uncertainties ) -
- PDFs Coordinate representation
- Parametric - vector
- Interpolation - quaternion
T - frame

Digital Data
Representation

Physical Units
and Dimensions

Figure 3.1: The grounding of geometric entities models by means of composition of models. Each
of the arrows represents a composition of complementary aspects of eventual software implemen-
tations.

The grounding of a geometric entity as a numerical entity is expressed in Figure 3.1, as the
composition of the following models:

e a Coordinate Representation model defines the mathematical representation of a geomet-
ric entity;
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e a Digital Data Representation model specifies how numerical values are hold and man-
aged in-memory (as part of algorithms), or in a communication object (as part of software
component architectures);

e a Physical Units and Dimensions model to attach to the numerical values;
e a Uncertainty model to attach to the description of a geometric entity.

While a digital data representation is present in any implementation, the physical units and coor-
dinate representation models are often forgotten or taken as implicit choice in the implementation
itself. The RobMoSys approach considers the usage of explicit models as a necessary condition
to achieve better composability and compatibility among functional software elements, especially
when (i) the latter are to be developed by distributed and independently operating teams, and
(i) the end product must pass validation or certification processes, again by independent third
parties.

3.2 Digital Data Representation

Definition A digital data representation model is a machine readable description about how a
certain piece of information is represented and manipulated digitally, with the purpose of sharing
and storing that data in all its variants (in memory, marshalling/serialising, etc).

Details Commonly, a digital data representation model is defined as a datatype, often con-
strained by the programming language used in a specific implementation. Examples are built-in
types as integer values, floating-points values, string and their composition, e.g., data struc-
tures and unions in the C language. A digital data representation model may include specific
hardware-dependent information, such as byte order (i.e. endianness), numerical precision over
the representation of a number (e.g., number of bits of a floating-point value, cf. IEEE 754, Q
format number over fixed-point values), bit alignment and padding information (e.g., C-structs).
The level of expressivity of the precision type also depends on the language that implements a
certain functionality. For instance, the C language is more versatile than the JavaScript language,
since the latter uses the JavaScript Object Notation (JSON) that allows to distinguish only be-
tween floating-point values and integers. Another example is the Lua language that provides only
the concept of number. This affects not only numerical values, but also strings. For example, the
Python language distinguishes between strings and Unicode strings.

A digital data representation model may provide constraints over the single datatype or field,
e.g., an integer value bounded within a defined range. However, a digital data representation
model do not provide constraints over multiple fields, since that constraint typically depends on
the semantics that a specific structure represents. As an example, a digital data representation
of a versor (also called normalised vector) defined in a three-dimensional space can be described
by means of three floating-point values constrained by having an unitary euclidean norm. Since
a digital data representation model does not provide any semantics about the meaning of the
manipulated data, the data itself should be augmented with meta-data information, providing a
specific field in the data structure that holds a reference to its semantic model, or enconding (part
of) the meta-data in the data structure itself for runtime reflection property. This concepts is
further explained in Section 3.4, while further examples are given in Section 3.2.1.
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Composability requirements A digital data representation model is a necessary but not suffi-
cient condition to guarantee composability and re-usability of an existing software component. A
digital data representation shows up naturally in any implementation of a software functionality,
whether such an entity is a well-defined software component, an APl or another interface type.
Since the choice over one specific digital data representation influences the implementation of an
application, the existance of an explicit digital data representation model must be considered a
key-element towards composability of systems-of-systems.

The digital data representation concerns all the roles defined in the RobMoSys ecosystem, among
which:

e the Function Developer must consider which digital data representation to use in the type
signature of the developed function, class member, or abstract interface. This is particularly
true for implementations based on statically typed languages;

e the Component Supplier must provide a digital data representation to inform about the
types handled by a specific component;

e the System Builder should rely on predefined digital data representation chosen by domain
experts, and he/she must take care that digital data representation between components
are compatible, providing a transformation of the data among different models if necessary
(i.e., datatype conversion).

3.2.1 Digital Representation (meta-)Models and Examples

Including specific built-in datatypes provided by different programming languages, there are several
digital data representation models (and tools) available, each one covering a (set of) specific
features or use-cases. In most cases, a digital data representation model can be described by means
of an Interface Description Language (IDL), with the purpose of being cross-platform, and/or
decoupling from the programming language that implements a certain functionality, thus allowing
communication between different software components. In fact, it is common to find a digital
data representation format (meta-model) dedicated to a specific framework or communication
middleware (e.g, CORBA, DDS); in the latter case, the digital representation instance is also
called Communication Object. Nevertheless, the relationships between the data, its digital data
representation model, and the meta-model used to define a specific data represention holds among
the different alternatives, as depicted in Figure 3.2; a concrete example is discussed in Figure 3.3.
To evaluate the positive impact of a digital data representation meta-model (and its underlying
tools) as bones of a composable software solution, the following aspects must be evaluated:

e expressivity of a meta-model to describe different properties over the data, including:

— basic, built-in data types available;
— possibility to indicate constraints on the data structure;

— customisation over the memory model to store the data (instance of the model);

¢ validation: availability of a formal schema of the digital data model, meta-model and tools
to validate both data instance and model schema;

e extensibility: the possibility to extend (by composition) the expressivity level of a digital
data representation model;
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Instance Model Meta-model
x is number ASNL1 language
concrete dafa 4 is number rOSMsG format
X=1, 4=7, 2=3 2 is number JSON Schema

conforms-to

Figure 3.2: Digital Representation Models: the concrete data is instance of a digital data rep-
resentation model, which is a description conforming to a meta-model. A concrete example is
shown in Fig. 3.3.

e language interoperability (also called neutrality): the capability of a model of being
language-indipendent; this requires a specific compiler to generate code-specific form of
the digital data representation model;

e self-describing: optional capability of injecting the model in the data instance itself (meta-
data), or at least a reference to it; this enables reflection and run-time features.

The follow is a non-exhaustive list of those models, with a special attention to existing models
used in Robotics.

Abstract Syntax Notation One (ASN.1)

ASN.1 is a IDL to define data structures in a standard, code-agnostic form, enabling the expressiv-
ity required to realise efficient cross-platform serialisation and deserialisation. ASN.1 models can
be collected into “modules”, which can be composed between themselves as well. This feature
of the ASN.1 language allows better composability and re-usability of existing models. However,
ASN.1 does not provide any facility of self-description, if not by means of the naming schema
used by the compiler to generate a data type in the target programming language. Originally de-
veloped in 1984 and standardised in 1990, ASN.1 is widely adopted in telecomunication domain,
including in encryption protocols, e.g., in the HTTPS certificates (X.509 protocol), VolP services
and more. Moreover, ASN.1 is also used in the aerospace domain for safe-critical applications,
including robotics applications. For example, an ASN.1 compiler is included in The ASSERT
Set of Tools for Engineering (TASTE), a component-based framework developed by the European
Space Agency (ESA). Several compilers exists, targeting to different host programming languages,
including C/C++, Python and Ada.

JSON/JSON-Schema

The JSON-Schema [1] is a schema to formally describe elements and constraints over a JavaScript
Object Notation (JSON) document [14]. Instead of relying on an external DSL, a JSON-Schema
is also defined as a JSON document. In turn, the JSON-schema must conform to a meta-schema,
which is also defined over a JSON document. A concrete example is provided in Figure 3.3.
JSON-Schema is considered a composable approach, since (i) JSON supports associative array
(only strings are accepted as keys) and (ii) JSON-Schema supports JSON Pointers (RFC 6901)
to reference (part of) other JSON documents, but also objects within the document itself. This
allows to compose a schema specification from existing ones, and to refer only to some specific
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Model

"id": "http://robmosys.eu/schemas/geometry/point-entity#",
{ "$schema": "http://json-schema.org/draft-04/schema#",
1.2 "type": "object",

e ! "description" : "Point Entity",
y" 0.5, "properties": {

: 5.6 " {
} "type" : "number",
"description" : "coordinate along x-axis"

1,
e g
"type" : "number",
"description" : "coordinate along y-axis"

instance-of b

z" A
"type" : "number",
"description" : "coordinate along z-axis"
}
"additionalProperties": false,

"required": [ "x", "y", "z" ]
L} J
conforms-to
Meta-model
http://json-schema.org/draft-04/schema#
Figure 3.3: A valid data instance of a JSON-Schema Model representing three coordinates. The
schema includes few constraints on the data structure, such as the values required for the validation

of the JSON document. Moreover, the schema conforms-to a specific meta-model of JSON-
Schema (draft-04).

definitions. JSON-Schema is used in web-technologies and it is very flexible in terms of require-
ments needed to be integrated in an application. However, it is verbose with respect to other
alternatives, as well as not efficient in terms of number of bytes exchanged with respect to the
informative content of a message. In fact, JSON-Schema does not provide native primivites to
specify hardware-specific encodings of the data values. However, it is possible to compose a
schema that cover that roles, in case that the backend component can deal with them.Figure 3.3
shows a example of a typical workflow with JSON-Schema. As a final remark, JSON-Schema is
not limited to describe JSON documents, but also language-dependent datatypes.

XML Schemas

Similarly to JSON-Schema, XML Schemas (e.g., XSD) are models that formally describe the
structure of a Extensible Markup Language (XML) document. XML schemas are very popular in
web-oriented application and ontology description, but also in tooling and hardware configurations
(e.g., the EtherCAT XML Device Description).

Hierarchical Data Format (HDF5)

HDF5 [28] is a data model (and relative reference implementation) designed for large, distributed
datasets and efficient |/O storage. Mainly adopted for scientific data storage and analysis, HDF5
implementation allows to select, filter and collect specific information from the distributed data
storage thanks to its model. In details, a HDF5 model can be distributed as attachment of the
data, specifying its provenance as well. Currently HDF5 is a technology not widely used in the
Robotics domain, but its model meets those requirements of composability needed for both stor-
age systems and in-memory datasets.
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Google Protocol Buffers

Google protocol buffers are another digital data representation meta-model dedicated for serialis-
ing structured data. The features that distiguish the Google protocol buffers from other solutions
are: (i) efficient encoding mechanism to have a small impact in terms of memory required (or mes-
sage size); (ii) an optional mechanism to include self-describing messages, that is the digital data
representation model can be packed together with the data (instance of the model). Moreover,
the availability of dedicated compilers allows the support to a large variety of host programming
languages, while the extensibility is in line with other alternatives.

ROS Messages

ROS message is a digital data representation meta-model developed for the ROS framework, aimed
to describe structural data for serialisation and deserialisation within the ROS communication
protocol, namely ROS topics, services and actions. Precisely, the (non formalised) meta-model is
strongly coupled with the chosen ROS communication pattern:

e ROS messages (msg format) for streamed publish/subscribe ROS topics;
e ROS services (srv format) for blocking request/reply over ROS;

e ROS actions (action format) for ROS action pattern.

The need of having a different data model for each communication mechanism provided reduces
the degree of composability of the overall system, enforcing the component supplier to a prema-
ture choice. However, it is possible to compose message specifications from existing ones, such
as services and action models are built starting from messages models. The expressivity of a ROS
message description is limited with respect to other alternatives (e.g., ASN.1, JSON-Schema):
it allows to specify different types for numerical representations, (e.g., Float32, Float64 for
floating-point values) but there is no support for constrains over a numerical value, nor specific
padding and alignment information. Moreover, there is no built-in enumeration values, which
is usually solved with few workarounds®. However, default values assignment is possible in the
ROS message models. ROS messages are self-describing by means of a generated ID (MD5Sum)
based on a naming convention schema of the message name definition and a namespace (pack-
age of origin). Language-neutrality is provided by the several compilers available within the ROS
framework. However, there is no efficient encoding mechanism applied, reducing the compilation
process to a mere generation of handler classes for the host programming language. Despite the
technical shortcomings of the ROS messages, they are the likely most used digital data represen-
tation model in the robotics domain, due to the large diffusion of the ROS framework (which does
not allow another data representation mechanism?).

RTT/Orocos typekits

The RTT/Orocos typekits are digital data representation models directly grounded in C++ code,
which are necessary to enable sharing memory mechanisms of the RTT framework. However, it is
possible to generate a typekit starting from a digital data representaiton model if a dedicated tool is
supplied. For example, tools that generate a typekit starting from a ROS message definition exists.

2An UInt8 type with unique default value assigned for each enumeration item.
3 It is possible to have other representations over ROS messages, e.g., JSON documents, by using a simple
std_msgs/String message.
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SmartSoft Communication Object DSL

The SmartSoft framework provides a specific DSL based on the Eclipse Xtext to describe a digital
data representation for the definition of data structures. This DSL allows definition of primitive
data types and composed data-structures. The DSL is independent of any middleware or program-
ming language and provides grounding (through code generation) into different communication
middlewares, including CORBA IDL, the message-based Adaptive Communication Environment*
(ACE), and DDS IDL. Moreover, the tool designed around the SmartSoft Communication Object
DSL allows to extend the code-generation to other middleware-specific or language-specific rep-
resentations.

3.2.2 Why digital data representation models are important?

Any software implementation makes use of a digital data representation, often implicitly defined as
a language-dependent data structure used in the application. An explicit, language-independent
model of a digital data representation enables better composability and re-usability of any software
entity (e.g., functions, components, kinematic models, task specifications, etc) by means of the
following approaches:

e developer discipline: digital data representation models serve as documentation for devel-
opers (mainly system builder and component suppliers®). The developers agree upon one
(or more) digital data representation to be used in an application. Composability is possible
but tedious and error-prone: for any change in the application (e.g., replacing a component
with another providing similar functionalities), developers must check the used digital data
representation manually, along with the required glue-code in case that a data conversion
is needed;

e design-time tooling: digital data representation models can be used effectively to perform
many tasks otherwise obtained by developer discipline, among which datatype compatibility
checks and glue-code generation for datatype conversions. This approach is less error-prone
than an approach driven by developer discipline, and it enables automatic unit testing,
so it is a step towards software certification of an application. Moreover, the tools may
allow different forms of optimisation, as a compromise between the resources required (e.g.,
required memory and computational power) and efficiency with respect to the concrete
use of the data (e.g., different models can be used for communication%, storage, or for
computational purposes). However, optimisations and choices taken at design-time (or
deployment-time) are static, thus they limit further composability at runtime.

e runtime negotation: at runtime, two (or more) software entities (i.e., component in-
stances) initialise a negotation phase to decide which digital data representation to use.
This approach represents the ultimate interpretation of flexibility and composability, some-
times despite the resource requirements necessary for the negotation phase. This approach
should be adopted if the application requires composability at runtime, and in those cases
where a design decision could not have been taken upfront at design-time. Moreover, this
scenario implies that both software entities uses the same protocol/middleware for the ne-
gotation phase.

4 see http://www.cs.wustl.edu/~schmidt/ACE. html
5 see http://robmosys.eu/wiki/general_principles:ecosystem:roles
Ssee http://robmosys.eu/wiki/modeling:metamodels : commobject

21


http://www.cs.wustl.edu/~schmidt/ACE.html
http://robmosys.eu/wiki/general_principles:ecosystem:roles
http://robmosys.eu/wiki/modeling:metamodels:commobject

G

RobMosys RobMoSys - D3.1 H2020-1CT-732410

3.3 Physical Units and Dimensions Model

The digital data representation (see Section 3.2) expresses only how a set of numerical values
are managed, in-memory, but still no semantics representation is attached to the values. A
physical units and dimensions model is a first of those models that give semantic information over
plain data. The correct usage of this models enables the following features, which are necessary
composability conditions for any motion and perception stack:

e unit compatibility, which consist in checking the compatibility over the data shared between
functional components, if possible, to perform the necessary conversions that guarantee
compatibility;

e dimensional analysis over the declared inputs and outputs of a functional component
model.

The RobMoSys project promotes the use of ontologies to describe physical units and dimensions.
In particular, the RobMoSys consortium suggests as primary reference the QUDT ontology [31]
by NASA; however, equivalent ontologies are also accepted.

3.3.1 Role of the physical units and dimensions

This model can assume different roles, depending on the development approach:

e developer discipline: there is an agreement between the component suppliers, and for each
datatype/communication object exists an informative documentation about the physical
units and dimensions adopted. To reduce complexity, it is common practice to use the same
units and dimensions where applicable in the whole application. However, this makes the
system highly not composable, since each functional component must be manually validated
before being used. Sometimes this requires extra development efforts to realise the necessary
conversions.

e tooling: it is possible to perform checks over connected components automatically, and
generate glue-code for conversions, if applicable. Moreover, this is a requirement towards
code certifications and reduces the possibility to introduce a bug in the underlying imple-
mentation.

e runtime adaptation, possible if the digital data representation includes meta-data about
the physical units and dimension used. In this scenario, the component implements several
conversion strategies to adapt the incoming/outcoming data to its internal functionalities.

As a final remark, an explicit physical units and dimensions model enables a sort of numerical
localisation, analogous to language localisation features (e.g., i18n), most of the time available in
a software product.

3.4 Coordinate Representation

Coordinate representations express how a geometric concept is mathematically represented, as-
signing to a concept a symbol value, a vector or a matrix with a semantic value. In the contex of
a motion and perception stack, the basic geometric concepts are those relationships that describe
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a motion over physical bodies, such as: position, orientation, pose, linear and angular velocities,
torques, forces, etc. However, there is no unique coordinate reprentation that describes the same
geometric semantics. This implies that the (sometimes) arbitrary choices over the coordinate
representation can be source of uncompatibility and composability issues over a complex system
of systems. Moreover, the choice over the coordinate representation can include additional con-
straints on the semantics of geometric relation itself; this is the case for rotation matrixes and
homogeneous transformation matrixes [15].

Table 3.1 resumes common choices of coordinate representation indexed by the coordinate seman-
tics that they express. Those geometric relationships, backbones of the motion and perception
stack, are further formalised and discussed in Section 3.7 and [15].

Coordinate Semantics | Coordinate Representation
Position | Position vector

Euler-axis angle

Rotation vector

Rotation matrix

Euler angles

RPY-angles

Quaternions

Homogeneous transformation matrix

Pose | Finite displacement twist

Screw axis

Orientation

Linear Velocity | Linear velocity vector

Angluar velocity vector
Rotation matrix time derivative
Angular Velocity | Euler angle rates

RPY angle rates

Quaternion rates

Homogeneous transformation matrix time derivative
six-dimensional vector twist
Pose twist

Screw twist

Body-fixed twist

Instantaneous screw axis

Twist

Table 3.1: A collection of commonly used coordinate representations associated to relative coor-
dinate semantics.

3.5 Coordinate Representation, digital data representation and phys-
ical Units

Similarly to the relationship between coordinate semantics and coordinate representation, a coordi-
nate representation has no unique digital data representation, indipendently from the meta-model
used to specify the digital data representation model. This variability is related on the ordering
of the values of the coordinate representation, which is decoupled from how the data access is
performed, e.g., by means of a named key or by means of an anonymous indexing.

Moreover, the concept of the geometric relationship is associated to one (or more) physical unit
representation (e.g, Sl or imperial system), and each single value must be interpreted accordingly
to the associated dimension.
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Figure 3.4: From geometric relationship to digital data representation: choices for the grounding
of the concept of Position.

The grounding of a geometric concept as Position is a sum of multiple choices, as shown in
Figure 3.4:

which coordinate representation to use, and its symbolic definition? For position
relationship, the choice is unique and it is a position vector, defined as 3 numerical symbols
x y and z. In general, this choice is not unique, as shown in Table 3.1;

which system measurement to adopt, and which unit to associate with? A position
covers the concept of linear distance, which is measured in meters if the Sl is adopted; this
choice is not unique;

which dimensions the numerical values represent? In general, this choice is made
by convenience of the specific application, for example: (i) an application can be indoor
or outdoor; (ii) precision required (by the task), or (iii) provided by the measurements
(combination of sensing and estimation);

which digital data representation meta-model to use? This choice opens up on different
possibilities, and it is a convenient choice which depends on the framework/middleware in
which the functional component is targeted;

Choice on indexing: how to index a particular data? e.g, by named key, ordered values,
etc;

Digital data representation: how the data is managed?

All the above are concrete questions that a component supplier, system builder and application
developer answers, implicitly or explicitly, when developing a new functionality, or deploying an
existing component in an application-dependent architecture. Solving those by discipline for any
change in the application is thus tedious and cumbersome, and it is one of the main reasons that
the RobMoSys consorium promotes model-driven engineering to enable a systematic and error-free
solutions.
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3.6 Models of Uncertainties

The purpose of an uncertainty model is to describe the variability over the numerical entity rep-
resentation of a geometric entity. Similar to the geometric entities it provides semantic structures
(e.g. probability distributions and their constraints), which are then grounded in an numerical
representation composed from a digital data representation and a chosen physical unit and dimen-
sions.

An example would be a Gaussian distribution, which can be numerically represented by its mean
vector and its covariance matrix (see Figure 3.5). Please note, that this model is also a composition
of mathematical models (vector and matrix) that are defined in other JSON Schemas. Additional
constraints, like that the covariance matrix must be symmetric, are not modelled in this example.
Similarly, a Gaussian mixture model can be created by composing an array of the presented
Gaussian models with the constraint used for scaling them appropriately.

Model
{
Data J "id": "http://robmosys.eu/schemas/uncertainties/gaussian#",

{

"$schema": "http://json-schema.org/draft-04/schema#",
"Mean" : [2.1,5.72], “iype“: "objectg,//J 9/ /
"Covariance" : [[0.14,1.2], "description" : "Gaussian Distribution",
[]_ 2,2.3711 "properties": {
"Mean" : {
$ref": "http://robmosys.eu/schemas/math/vector#",
"description" : "mean vector"
Iz
"Covariance" : {
"$ref": "http://robmosys.eu/schemas/uncertainties/cov_mat#"
"description" : "covariance matrix"

mstance of 3

"Dimension" : {

"type" : "integer",
"description" : "dimension of the mean vector and the
covariance matrix"

"Dimension"

}

"additionalProperties": false,
"required": [ "Mean", "Covariance", "Dimension" ] y

A

conforms-to
Meta-model
http://json-schema.org/draft-04/schema#

Figure 3.5: A valid data instance of a JSON-Schema Model representing a Gaussian distribution.
The schema is a composition of other schemas (for vectors and covariance matrices) and includes
a few constraints on the data structure, such as the values required for the validation of the JSON
document. Moreover, the schema conforms-to a specific meta-model of JSON-Schema (draft-04).

Sources of uncertainties can be, but are not limited to:

e uncertainties by construction, which are those uncertainties that represent approximations
over the description of the geometric entity attached to it. This is the case for mechanical
constraints, such as the coupling tolerance in a joint;

e sensor noise, which is a property of the sensor but can be influenced by other factors such
as environmental condition or robot motions;

e process noise, which represents the uncertainty in the modelling of a behaviour.
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3.7 Geometric Semantics of Relations between Rigid Bodies

Physical bodies and their relationships assume a primary role within the motion and perception
stack, defining the semantics of geometric relations such as relative position, orientation, pose,
etc. Those are used in many models, among which:

e Kinematic Chain Models, where links are physical rigid bodies having a mechanical motion
constraint between each other (i.e., the joints) whose ideal properties are well represented
by geometric relations;

e Task Specifications, where geometric relations are primary ways to express the intention of
the robots’ motion as a set of artificial motion constraints. A typical example is a positioning
behaviour, i.e., a task defined as a to-be-obtained relative position between two objects in
the environment;

e in the World Models, where geometric relations add metric information to the topological
information of connectivity. For example, a topological description such as “the ball is
contained inside the box” can be grounded in sensor processing algorithms as a geometric
relation of type position, constraining the position of the ball within the box dimensions.

It is important that the models of geometric entities and their relations add semantic interpretation
to their metric information. This means that geometric relations must also be expressed in a
symbolic form, with links to (one of the many possible) numerical entity models whenever a
numerical evaluation of the expressed metric is required. To this end, it is relevant to define the
semantics of commonly used geometric relationships, thus removing any ambiguity sources related
to a different coordinate representation or implicit definitions.

The overview presented in this section updates the work presented in [15], which proposes a stan-
dardisation for expressing the semantics of geometric relations, limited to rigid bodies. Moreover,
the definitions of geometric primitives are extended considering the work presented in [12]. Further
details about the overview presented in this section can be found in [15, 12].

3.7.1 Geometric Primitives

The following primitives and their notions are defined by means of axioms, which are valid in the
context of Euclidean geometry (three-dimensional Euclidean space). For the sake of clarity, a
nomenclature and conventions are proposed, but they are not unique; other equivalent solutions
are in fact possible.

Spatial Point

A spatial point refers to an element which belongs to an Euclidean space. Points are adimen-
sional, and as such they have no geometric or physical properties, such as a volume, shape, area,
length, and weight. A three-dimensional point is represented mathematically by means of three
free parameters, typically represented numerically by an ordered triplet of scalars (z,v,z), and
this is called its “coordinate representation”. For the sake of clarity, the symbols a, b, ... are used
to indicate spatial points.

Vector

A vector is a geometric primitive that connects a point source to a point target. A vector has
(i) a magnitude (distance between the points), (i) and a direction (from source to target).
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There is no unique coordinate representation of a vector. For example, a vector can be represented
by its source point, magnitude and direction (e.g., a versor), without the need of specifying its
target point; in the same vein, the source point can be omitted if the target point is given.

Versor

A versor (or normalised vector) represents a direction. In a three-dimensional Euclidean space, a
possible coordinate representation is an ordered tripled of scalars (z, y, z) such that their Euclidean
norm is unitary (i.e., || - || = 1). A suggested symbol to represent a versor is 7.

Orientation Frame

An orientation frame represents an orientation by means of three orthonormal vectors which de-
note the frame's X-axis X, Y-axis Y and Z-axis Z. Multiple coordinate representations exists.
For sale of clarity, the symobols [a], [0],... are used to denote orientation frames.

Displacement Frame

A displacement frame is a composite primitive that represents an orientation and position, by
means of an orientation frame and a point; the latter acts as orientation's frame origin). For the
sake of clarity, the symbols {a}, {b},... indicate displacement frames.

Line

A (straight, one-dimensional) line is another well-known composite geometric concept with ax-
iomatic connotations. The ambiguity not only lies in the implicit assumption of the chosen
coordinate representation, but also on the geometric primitives chosen to define a line. For exam-
ple, a couple of points define uniquely a line, as well as a point defined as “origin” and a versor
that indicates the direction where the line lies. In the latter case, an implicit information is added
(i.e., the line is directed), which can be an handful representation in certain applications (e.g., to
express constraints for a task specification, see Section 3.11). As a coordinate representation, a
line defined in the Euclidean space can be expressed by means of the parameters of a system of
parametric equations (three equations in a three-dimensional Euclidean space, or two constrained
equations), but also by a non-minimal choice of five free parameters (this is the case if the line
is defined by a origin point and a direction); other equivalent solutions are possible. A suggested
symbol to represent a line is .

Plane

A plane is a geometric concept that indicates a flat surface described as two-dimensional geometric
element. In fact, a plane can be interpreted as two-dimensional version of a line, and as such,
the observations reported about the line applies to a plane as well. A possible description can be
formulated as composition of a point (origin) and a versor; the latter denotes a normal (and not
a direction, as reported for the line). A suggested symbol to represent a plane is 25.

Rigid Body The term “body” denotes a solid, physical object, which is formally represented by
the following (equivalent) relations:

e deformations are neglected, that is, the distance between any of its points remains invariant
over time;

e the pose relation between any of the points fixed to the body is constant.
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The latter statement used the concept of pose relation, which is modelled later in Section 3.7.2.
For the sake of clarity, the symbols A, B, ... are used to denote rigid bodies.

All the geometric primitives above are relative concepts, that is they are not fully defined without
a definition of a geometric reference. For example, a point is not completely defined without a
displacement frame used as a reference (also called coordinate frame); in this case, the symbol
Py} indicates that a point p is defined upon the coordinate frame {w}. Moreover, a body can
serve as geometric reference as well, that is a point can be arbitrarily attached to a specific body
instance; in this case, the symbol p|.A denotes that the point p is attached to the body .A.

3.7.2 Geometric Relations

This section resumes some of the most useful geometric relations that are possible to express by
means of the geometric primitives listed in Section 3.7.1. In particular, geometric relations between
rigid bodies are reported in Figure 3.6 (excerpt from [15]), while other “body-free” relationships
are extracted from [12], including higher order relationships and metric definitions such as linear
and angular relative distances between line-point and versor-plane primitives (see Section 3.7.2.)
The following description helps to provide a semantic meaning of these relationships, and to pro-
pose a symbolic representation.

Position

A position expresses a relative metric (distance) between two points, and this denoted with
Position (e, f), where e and f are point primitives; position relationship is directed, that is, the
previous notation is semantically equivalent of “position of point e from point f". If those two
points are attached to different rigid bodies, namely C and D, then the relative position between
the rigid bodies can be expressed by means of the attached points, and this is denoted with
Position (e|C, f|D). Moreover, an orientation frame [r], instantaneously fixed to a reference body
(an arbitrary choice between the two bodies C and D) is required, such that the coordinates can
be expressed with respect to a coordinate frame; this is denoted as PositionCoord (e|C, f|D, [r]).

Orientation

Similarly to the position, an orientation is a relative metric between two orientation frames, e.g.,
[a] and [b], and it is expessed as Orientation([a], [b]). When each of the orientation frames is
attached to a different rigid body, namely C and D, the relationship also expresses a relative
orientation between the two rigid bodies, and it is denoted with Orientation ([a]|C, [b]|D); instead
OrientationCoord (e|C, f|D, [r]) expresses explicitly the chosen orientation frame [r] to express
the coordinates in the coordinate frame.

Pose

A pose is a geometric relationship that expresses a composite metric between two displacement
frames, e.g., {g} and {h}, or between an equivalent couple of pairs of position and orientation
primitives, e.g., (e, [a]) and (f, [b]); this is denoted with Pose({g},{h}) or Pose((e, [a]), (f,[b])).
If those primitives are attached to different rigid bodies C and D, the pose relationship between
the two rigid bodies is expressed as Pose ({g}|C,{h}|D) or Pose ((e,[a])|C, (f,[b])|D). The
choice over a coordinate representation imposes an explicit notation of the orientation frame
[r] used to express the coordinates in the coordinate frame, that is Pose ({g}|C,{h}|D,[r]) or

Pose ((e, [a])|C, (£, [b])|D; [r]).
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Geometric Relation (Coordinate) semantics

Geometric primitives Graphical representation

Position Position (e|€, f|D)
PositionCoord (|€, f|D, [r])
Orientation Orientation ([a] |€, [b] |D)
OrientationCoord ([a] |, [b] |D, [r])
Pose Pose ((e, [a]) |€, (£, [6]) |D)

PoseGoord (. [a]) |€. (£. 16]) | D, [r])

Pose ({g} |€, {h} |D)
PoseCoord ({g} |€. {A} |D. [r])

LinearVelocity (e|€, D)
LinearVelocityCoord (¢|€, D, [+])

Linear velocity

Angular velocity AngularVelocity (€, D)

AngularVelocityCoord (2, D, [r])

Twist Twist (e] €, T)
TwistCoord (| €, D, [r])
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Figure 3.6:

Minimal semantics and coordinate semantics (expressed in coordinate frame [r]) between

the two rigid bodies C and D, including the minimal but complete set of geometric primitives for position,
orientation, pose, twist, linear and angular velocity, and their graphical representation. This is an excerpt

from [15].

Linear Velocity

A linear velocity is a relationship expressed between two point primivites, that is LinearVelocity(e, f).
In case that the points are fixed to different rigid bodies C and D, then the velocity between the
two rigid bodies is denoted as LinearVelocity(e|C, D); in this case, the specific point f fixed to D

(i.e., the reference body) is not indicated since any choice of the point primitive is arbitrary and

equivalent, as long as it is fixed to D.

Angular Velocity

An angular velocity is a relationship between two orientation frames, expressing their relative
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Table 3.2: Summary of linear distance relationships between point and line primitives.

point line

point point-point distance

distance btw lines
projection (pl-fl)
projection (p2-f2)

line-point distance

line — - :
projection of point on line

plane point-plane distance

Table 3.3: Summary of angular distances relationships between versor and plane primitives.

versor plane

versor | angle btw versors

plane incident angle angle btw planes

angular velocity, that is AngularVelocity([a], [b]). Semantically, the angular velocity between two
rigid bodies is simply indicated as AngularVelocity(C, D), since it is invariant from the choice of
the orientation frames fixed to each rigid body. The notation AngularVelocityCoord(C, D, [r])
indicates the choice over the coordinate orientation [r| to express the coordinates.

Twist

Similarly to the pose relationship, a twist relationship combines the semantics of the linear and an-
gular velocities. For example, a twist between two rigid bodies is denoted as Twist(e|C, D), and it
combines a LinearVelocity(e|C, D) and an AngularVelocity(C, D). The notation Twist(e|C, D, [r])
indicates the choice over the coordinate orientation [r| to express the coordinates.

Forces, Torques and Wrenches

From screw theory and algebra of pairs of vectors, there is an analogy between twists, which
are composed by linear and angular velocities and wrenches, which are composed by force and
torque vectors. This analogy reflects directly their semantics and the relative notation, that is:
Force(e|C, D), Torque(C,D), and Wrench(e|C, D).

Linear and Angular Distances

Another useful geometric relationship is the concept of distance, which is a higher-order relation-
ship among the primitives/relationships described above. In fact, the concept of distance implies
a definition of a metric that holds within the Euclidean space; while (linear) distances between
points and (angular) distances between orientation frames are uniquely defined, this is not the
case between poses. Moreover, there might be ambiguities related to different interpretations of a
distance relationship between certain primitives. An example is depicted in Figure 3.7a: a distance
between a point p, and a line I can be interpreted as shortest distance between p, and another
point lying on 11, or as length of the projection of p, on I;. To remove any ambiguity, Table 3.2
and Table 3.3 resume the different interpretations of linear distances and angular distances, re-
spectively, considering some geometric primitives enumerated in Section 3.7.1; these relationships
are also shown in Figure 3.7.
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{0?}, respectively.

Figure 3.7: Graphical representations of the five possible relations between a point and a line 3.7a,

and between two lines 3.7b.

3.7.3 Coordinate Representations for Geometric Semantics

As reported in Section 3.4, the choice of a coordinate representation is not unique for expressing a
geometric concept. Moreover, this choice often implies hidden assumptions or ambiguities. To this
end, Figure 3.8 resumes most of commonly used coordinate representations and their properties,
such as uniqueness of the representation, ambiguity, introduction of singularity representation,
minimality and more. Further details can be found in [15].
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Coordinate representation Symbol Coordinate semantics %] o =] o = @

Position vector ! 12ele PositionCoord (|, f|D, [r]) 0 0 X X X X
Euler-axis angle el [alle OrientationCoord ([a] |€, ] |D,[]) | O X8 0 X 0 0
Rotation vector E,r[i'“ﬂ[“”“ OrientationCoord ([a] |€, [6] | D, [r]) 0 X8 0 X X 0
Rotation matrix ﬁ,lgn OrientationCoord ([a] €, [b] |D.[8]) | X X X X 0 X
Euler angles Egﬁ;n(wa abc)  OrientationCoord ([a] €, 8] |D,[8]) | X X6 X78 X X 0
RPY-angles 0 I®R(RPY,rpy)  OrientationCoord ([a] |€,[5] |D.[8]) | X  X© x78 X X 0o
Quaternions gl eI OrientationCoord ([a] |€, [b] | D, [r]) 0 X X X 0 X
Homogeneous transformation Hgll;T PoseCoord ({g} |€, {h} | D, [h]) X 0 X X 0 X
matrix
Finite displacement twist {adlch, PoseCoord ({g} |€, {i} | D, [A]) X 0o X8 X X
Screw axis [{5]' SA(uy PoseCoord ({g} |€, {h} |D,[r]) X 0 X8 X o0
Linear velacityRotationVelocity — [,45%+<I¢ LinearVelocityCoord (e|C, D, [r]) X 0 X X X X
vector
Angular velocity vector Fr]u.::p AngularVelocityCoord (€, D, [r]) 0 0 X X X X
Rotation matrix time derivative [‘1”1,}? AngularVelocityCoord (€, D, [6]) X 0 X X 0 X
Euler angle rates ﬁ;“‘lﬁR (ABC‘._ dBc‘) AngularVelocityCoord (€, D, [b]) X 0 X8 X X 0
RPY angle rates B (RPY . ipi)  AngularVelocityCoord (€, D, [¢]) X 0 X8 X X 0
Quaternion rates d" AngularVelocityCoord (€, D, [r]) 0 0 X8 X 0 X
Homogeneous transformation [L;;I]‘f:L:T TwistCoord (e|€, D, [b]) X 0 X X 0 X
matrix time derivative
six-dimensional vector twist “'l‘ftg TwistCoord (e|€, D, [r]) 0 0 X X X X
Pose twist [,j]“ptD TwistCoard (g|€, D, [h]) X 0 X X X X
Screw twist E;J]esty TwistCoord (k|€, D, [k]) X 0 X X X X
Body-fixed twist fg']“ptB TwistCoord (g|€, D, [g]) X 0 X X X X
Instantaneous screw axis [l“-r]ISAl, TwistCoord (s|@, D, [r])? X9 0 X8 X 0 0

Figure 3.8: Some commonly used coordinate representations and properties, linked to their coordinate
semantics. This is an excert from [15], and it expands Table 3.1.
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3.8 Kinematic Modeling

Section 3.7 introduced the geometric elements and their semantic value required to model a
kinematic chain, which is topic of this section.

Robot Kinematics )

i Geometric Model — > m

L] k J
i Numerical Entity

Figure 3.9: A kinematic model is defined as a graph of link and joint elements, which are them-
selves defined as composition of a geometric semantic model (see Section 3.7) and its numerical
description (see Section 3.1). On the link, attachment points can be defined to allow exten-
sions by model composition, such as, for example, geometric shape, dynamical properties, sensors,
actuators, or handles for task specifications.

A kinematic chain can be modeled as a set of physical links mechanically connected between each
other; in detail:

e alink is a physical rigid body”;

e any geometric primitive (e.g., points, orientation frames, displacement frames, etc) fixed to
a link can be used as an attachment point, that is used to define geometric relationships,
but also to extend by composition the kinematic model with other domain-specific data;

e the mechanical coupling is a higher-order concept (that is, a relationship of relationships),
more in particular it consists of one or more geometric constraints defined over the geomet-
rical relation between pairs of links, and expressed by means of attachment points on those
links. The set of these higher-order relations is typically called a joint.

The main geometric relationship exploited to define a joint is a pose expression, followed by
linear and angular velocity relationships (depending on the type of joint described). To each of
these relationships, a joint constraint value (Jcstrval) is applied. The coordinate representation of
the constraining value must be compatible with the coordinate representation of the geometric
relationship, and it can be either a constant or another expression; typically, this expression is a
function of one or more variables which identifies the state of the joint (e.g., joint position (g),
joint velocities (¢), and so on).

The role of an attachment point is not only to aid the definition of geometric relationship, but
also to “connect” to other domain-specific models which characterise and enrich the kinematic
models, such as (i) a shape model (useful for collision detection and avoidance algorithms, and
for visualisation purposes); (ii) a mechanical model; (iii)) a model of a sensor physically attached
to a link.

"Flexible links are not treated in this document; however, this modeling description still applies.
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joint constraining value

POSG({j}’LQ, {@H»Cl) =|Tcstrval

geometric relationship

Figure 3.10: A kinematic model example. The displacement frames {i} and {j} are fixed to
the links £1 and Lo, respectively. A joint is defined as a single kinematic constraint, imposing a
constraining value Jestrval to the pose relationship defined between {i} and {j}.

Figure 3.10 shows a kinematic model example, where the links £; and Lo are mechanically
constrained by a joint defined by means of a single kinematic constraint (i.e., pose between the
links). In this example, the joint is defined only by a single, pose-based kinematic constraint.
However, it is possible (i) to define a joint by means of a single velocity-based (or another type
of ) kinematic constraint; (ii) to define a joint as a combination of kinematic constraints, including
inequality constraints; for instance (iii) constraint inequalities based on linear or angular velocity
relationships can express the boundaries of the minimum and maximum velocity achievable by the
joint, and (iv) constraint inequalities based on pose relationships can express the limited working
range of a revolute or linear joint.

Obviously, a equivalent descriptions of the model depicted in Figure 3.10 exist; for example, replac-
ing the kinematic constraint based on a pose relationship with couple of constraints on position
and orientation relationships (decomposition) describes the same the mechanical constraint.

3.8.1 Describing a kinematic model with the Block-Port-Connector meta-model

The kinematic model previously defined fully conforms to the Block-Port-Connector meta-model®
(BPC). In fact, the proposed kinematic model adds domain-specific knowledge to a structural de-
scription (topology) of a kinematic chain (link-joint-link pattern). The derivation of the kinematic
model from its structural description is described in Figure 3.11:

e a mechanical link conforms to a block entity in the BPC meta-model,

e adisplacement frame is attached to a rigid body (e.g., {j}|£2), conforming to a port entity
in the BPC meta-model; this modeling choice is motivated since the frames (e.g., {i}, {j})
are used to express a (geometric) relationship between links (e.g., L1, L2);

8 see http://robmosys.eu/wiki/modeling:principles:block-port-connector
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(BPC) (geomefric primitives
and vrelations)

POSE({iHﬁQ, {]}‘[,1, [W]) = jcnstrval

- _/

Figure 3.11: A topological model and a metrical model of a two link robot. The topological model
conforms to the BPC meta-model, while the metrical model introduces the geometric primitives
and relations that allows to define a metric for the computation over the kinematic chain.

e any other attachment point is structurally defined as a port, since it allows to establish a
connection between a domain-specific entity (represented as a block) with another;

e a joint expresses a set of kinematic constraints, and it is represented as a connector entity
of the BPC meta-model. Precisely, a joint is a relationships of relationships, that is, it
constrains geometric relationships previously defined. The connector hosts the properties
of the joint relationship, among which(i) a joint type (e.g., prismatic, revolute, etc), (i) a
least one geometric expression (e.g., position, orientation, pose, angular velocities, etc), (iii)
one or more values (or its symbolic representation) that constraint (iv) further attachments
to refine, thus linking with other domain-specific models (e.g., transmission model, actuator
model, etc)

The connector (the joint) in Figure 3.11 connects only two blocks (the links) by means of
their ports (the attached frames); in general, it is possible to connect more than two blocks
(links) to the same connector (joint).

Moreover, the choice of modeling a joint as a connector entity in the BPC model is related to the
(arbitrary) level of abstraction that the joint describes; in this case, "simply” a set of kinematic
constraints. In the case there is the need of express more details of a joint, nothing prevents to
“extend” the structural description of a joint as a full block BPC entity, allowing to model its
internals.

3.9 Composing the joint model with rigid body dynamics

The modelling up to now has been geometrical, and this Section adds the primary mechanical
dynamical entities and relations, namely those determined by the mass of the bodies involved, and
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the forces acting on the bodies (external forces on the links as well as internal forces generated
on the joints by means of actuators). From a structural point of view, a mass model is easily
composed with the already described geometric models, using an attachment point to which an
inertia matrix is connected. The mathematical and coordinate representations of force, and of the
time derivates of relative pose, are all well understood. The semantic meta data that is needed for
an unambiguous interpretation is completely similar to the geometric case, with only the physical
dimensions and units being different.

Figure 3.12: The fundamental entities involved in the dynamic behaviour of a (revolute) joint
constraint.

Figure 3.12 depicts the essential dynamical behavioural relationship for a joint. In the case at
hand, the simple example of an unactuated revolute joint is used, but the modelling for all types
of joints is based on the same principles expressed below. The forces F'1, F'5 on both links are
connected to their accelerations Xl, Xg, their inertias M 1, M5, and to the versor Z representing
the joint axis, by the following constraint relation:

F,=MiX,, (3.1)
- a T -1 r
with M¢$ =M+ (1-MZ(2"MsZ) Z (3.2)
MY the so-called articulated body inertia [18], i.e., the increased inertia of link 1 due to the fact
that it is connected to link 2 through an “articulation”, that is, the revolute joint in this case.

M¢ of link 1 is the sum of its own link inertia M and the “projected” part of the inertia of the
second link.

3.10 Composing joint models into a kinematic chain model

Figure 3.13 depicts all entities that form a kinematic chain. The whole collection has a structural
composition which is a systematic repetition of the single-joint motion constraint model, with some
extra semantic tags that are specific to the composite entity of the kinematic chain: end-effector,
root, branches, tree structure, etc.

3.10.1 Hybrid dynamics solvers

Figures 3.14 and 3.15 depict the entities that have to be added to the kinematic chain model
for any algorithm (“solver™) that computes the kinematic and dynamic state of a given kinematic
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Figure 3.13: The entities that form a kinematic chain.

chain. Classical mechanics, since the time of Gauss [20] already, offered all insights and semantics
for even the most advanced modern-times algorithms; all of the relevant entities have already been
introduced, except for one: any link in the mechanical system can be subjected to acceleration
constraints. These can be of physical nature, such as contacts or kinematic loops, or artificial, as
part of task specifications. Note that only acceleration-level constraints have physical meaning,
and the (often used) velocity-level constraints are always a composition of an acceleration-level
physics with a constraint controller [7]. In other words, the most generic “conservation principle”
in mechanics is that of Gauss, which states that the mechanical system follows the path of
“least constraint” where the latter is measured in terms of the “acceleration energy”; that is
the acceleration-level alternative to the better-known velocity-level “kinematic energy” and is
represented as the product of acceleration and inertia. In the Figures, the matrix A represents the
matrix of the acceleration basis, that is, versors that indicate the spatial directions on acceleration
constraints.

All of the solver algorithms introduce, one way or another, an ordering in the functional compu-
tations that they need, which is based on the structural model of the kinematic chain. These
schedules are commonly referred to as “sweeps”. Figure 3.15 depicts the necessary sweeps for the
generic example of a tree-structured kinematic chain, together with the entities that are being
computed.

While most solver libraries offer programming interfaces that are only solving the kinematic and
dynamic state entities, most robotics applications need to “fuse” those computations with per-
ception, control and planning computations. For example, a visual servoing task (depicted as one
of the many types of task specifications) in Fig. 3.17, requires a perception algorithm that has
access to the instantaneous pose and velocity of the camera, when that is attached somewhere
on the kinematic chain. Hence, the RobMoSys models for kinematic chains and their algorthmic
solvers have a high level of decoupling, in order to allow all relevant compositions with the other
types of solvers mentioned above (control, estimation, etc.).
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Figure 3.14: A hybrid dynamics solver processes the types of inputs depicted above.

T e°

N+1 N+1 N+1

3rd outward sweep:
Constraint Force,
Acceleration Twist

1st outward sweep:
Poses, Twists

2nd inward sweep:
Inertia, Bias Force,
Acceleration Energy

Figure 3.15: A hybrid dynamics solver uses the topological structure of the kinematic chain to
schedule all the behavioural functions required to answer a particular query.
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Figure 3.16: Overview of the models involved in the composition of a task specification meta-
model.

3.11 Task Specification in the Motion Stack

The instantaneous kinematics and dynamics behaviour of kinematic chains play an essential role
in all robotics activities, but obviously they are only one of the many necessary behavioural
components. In the context of the motion stack goals of this document, the instantaneous force
and motion transformations described by the hybrid dynamics solver must be composed with other
types of robotics domain behaviour, such as controllers, estimators, planners, decision makers,
etc. The models of such robotics domain behaviour, however, can themselves be composed of,
on the one hand, domain-independent behavioural models (Figure 3.16), which are then, on the
other hand, configured and specialised with robotics-specific extra semantics; Figure 3.17 sketches
a variety of the latter which are directly coupled to the hybrid dynamics aspects of kinematics
chains. That means that we can model the interaction structure via the attachment point Entities
in the kinematic chains models, and that the interaction behaviour can be modelled in terms of
link and joint forces, and of acceleration constraints; position and velocity constraints are more
specific instances of the latter since they require additional constraint solving.

The mereological modelling of the “motion stack” platform is the one with the highest level of
abstraction, that is, it just represents that any “whole” robot application will necessarily have
“parts” from the following complementary domains:

e Robot: these contribute capabilities of motion control and (robot-mounted) perception,
which are the focus of this document. More in particular, this domain brings performance
constraints on what an application can expect as capabilities of robots.

e World: one or the other form of (distributed) “database” of what objects and activities
whose presence in the world the robot application has to be aware of, and of where, at what
time and how they can influence the robot’s motions. More in particular, this domain adds
safety constraints to the robot platform capabilities.

e Task: these represent the application requirements, and the relations to how the robot's
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Figure 3.17: Various types of task specifications for which solvers can be built on top of a generic
hybrid dynamics solver.

motion capabilities are expected to contribute to realising these requirements. More in
particular, this domain adds in quality and progress constraints.

e Object: representations of the properties of shape, size, functional parts,. .. of the objects
that the robot has to interact with. More in particular, this domain adds affordance
constraints to the motion platform.

The robot motion capabilities stack, that is, the various kind of robot motions, grows in
complexity as follows:

e move: this is just the already modelled robot's instantaneous hybrid dynamics, hence the
task provides “queries” to the robot's hybrid dynamics solver. For example, the motion
resulting from pushing at the end-effector of the kinematic chain; or the forward kinematics;
etc.

e moveGuarded: this kind of tasks, adds proprio-sensing perception to the robot's
hybrid dynamics move capabilities by using its own sensors to determine when the ongoing
motion must stop. This is typically realised by monitoring contact transition estimators
using current, force, tactile or IMU sensors mounted at various attachment points on the
kinematic chain.

e moveTo: this kind of tasks composes the move or moveGuarded models with extero-sensing

perception: the sensors localise and track object features in the environment, and adapt
the move /moveGuarded properties accordingly.

e moveConstrained: this kind of tasks composes the moveTo odels with object features
in the world, that are not contributing to the motion's utility, but only bring in “cost”
constraints, because the robot must adapt its motion to avoid or control the interactions
with these objects.

When more than one robot is being composed into a Task, the following “system of systems”
coordination models must be added to the motion stack’s models:
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e moveCoordinated: one motion specification sub-system provides all other motion sub-
systems, online, with (i) individual motion specifications, and (ii) the events for the coordi-
nated execution.

For example: dual-arm tasks performed by an ABB Yumi, two KUKA iiwas, a PR2,...

e moveOrchestrated: all motion subsystems have already the motion specifications on-
board, and only the coordination events must be communicated.

For example: a robotic manufacturing cell, where all robots gets the assembly programs
from the cell supervisory system, together with the events to trigger their execution and
(re)configuraiton.

¢ moveChoreographed: all subsystems generate coordination events themselves based on
their sensor-based observation of the other platforms; hence no communication is needed.

For example: human-aware robotic manufacturing cells, where the reactions of the robots to
the presence of humans in their neighbourhood are pre-programmed (or, better, modelled),
but the coordination events inside and between robot control systems are to be generated
by the latter control systems themselves.

We repeat that the modelling suggestions above are only mereological, hence lots and lots of more
detailed models must be provided, topological, geometrical, dynamical, etc.

3.11.1 The relevance of the Task Monitoring during Execution

All the motions above-mentioned require continuous monitor capabilities to determine, at run-
time, if the execution of the task specification model is progressing correctly. Such online moni-
toring allows to react to modeled conditions, both desired (i.e., the task execution obtained the
desired outcome) and undesired (e.g., foreseen cases of non-nominal execution), and then to
modify the behaviour of the robot.

The moveGuarded example in Figure 3.18 is probably the simplest possible model of a task spec-
ification that is composed with an online monitoring; the example specifies a nominal termination
condition, which fires a task accomplished successfuly event as soon as the condition is met.

~

(move compliantly {
with task frame directions
xt: velocity 0 mm/sec
yt: velocity 0 mm/sec
zt: velocity v _des mm/sec
axt: velocity 0 rad/sec
ayt: velocity 0 rad/sec
azt: velocity 0 rad/sec

|} until zt force <- f _max N

Figure 3.18: Example of a guarded-motion task definition from [13].

However, the task specification in Figure 3.18 does not specify:

e Non-nominal conditions, which enable to react to non-nominal situations. In general,
at least one non-nominal termination condition should be indicated, and it is denoted as
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a maximum deviation over the expected execution time of a motion task. Moreover, non-
nominal conditions are not only used to evaluate a possible failure after the end of a motion,
but also during the execution of the motion itself (i.e., continuous monitoring, and not only
discrete monitoring);

e Tolerances, both on the condition of nominal and non-nominal task execution.

In literature, there are few task specifications that include a monitor specification as a primitive
(e.g., [2]). In the RobMoSys approach, a task specification language must include a monitor spec-
ification language, which will be developed during the duration of the project. Further information
on this topic can be found in [26].

3.11.2 Constraint-based Task Specifications

A way to formulate a task specification is by means of a constrain-optimisation problem that is
defined by:

e objective function(s), e.g., minimise the energy consumption of the robot;
e constraints that must be satified during the execution of a task.

The role of the solver is then to generate a control action (joint position, velocities, accelerations or
torques) required to realise the task. The above holds both for control-based approaches [2, 22]
(which are online, reactive but they may suffer of local minima problems) and for plan-based
solvers [21] (which are typically offline, and less reactive since they explore a bigger search space).
Example of constraints used in a task specification are the ones imposed by a robot platform, thus
constraints defined along the kinematic model (e.g., position and velocity limits, see Section 3.8).
Other examples of constraints are: i) additional joint limits constraints, if the application requires
specific limitiations, ii) obstacle avoidance constraints, for those objects that the robot must not
interact with, Jii) constraints that express the desired outcome of an action in the environment.
The latter are the most intuitive, since they conceptually describe what the robot must realise.
Section 3.7 introduces geometric primitives and semantic relations between rigid bodies, then used
to describe a kinematic model; these constraints are physical, related by the mechanical coupling
of the robot platform. Additionaly, the very same primitives can be used to describe desired
relationships between the robot and other objects (physical and virtual), allowing to specify which
operations the robot must perform. As an example, it is possible to specify: to keep a certain
distance from a wall (a plane, whether it is physical or virtual); to approach a certain object by
constraining its pose relationship; to constraint the robot motion to follow a desired trajectory
(feedforward component of the control algorithm); and more. In the last decade, this promising
approach is becoming popular in research literature; however it is still not a mainstream approach
in industrial scenarios. For further reading, please refer to [21, 26, 16, 12, 5, 25, 24].

3.12 Models of Algorithms

The previous sections introduce models of necessary elements to compose a motion stack: kine-
matic chains, solvers, numerical entities and the semantics of geometric relationships. Additionally,
a motion (and perception) stack requires models (and related implementations) of algorithms to
enable a robot to act, more in particular the solvers that compute a control action from the state
of the robot, the state of the environment and a given task specification.
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Typically, the implementation of an algorithm in software is distributed as a library with compile-
time type checking, and its documentation is often reduced to an Application Programming
Interface (API) description, without much support to help developers i) to (statically) compose
an algorithm with others (e.g., planning, control and sensing), /i) to support runtime interactions
with other functionalities, iii) or to deploy an algorithm (e.g., in a software component). Moreover,
during the realisation of a concrete software library, the function developer? is often enforced to
take design choices and assumptions which later on could prevent composability and reusability of
the library itself in a different application than the one in the developer’s original focus. A typical
example of these choices is information hiding often caused by object encapsulation in object-
oriented programming: in some applications it is desired to hide or protect certain data, but in
others this could be a main issue (this is particularly true in case of not well-designed libraries).
For kinematic chain solvers, one of the most composition-limiting factor in existing API-based
libraries is the fact that users of the libraries do not have access to how the “sweeps” have been
implemented, and they can not add attachment points to the chains for other purposes such as
collision detection or visual servoing; hence, the same sweeps computations must be redone several
times, within subsequent method calls.

In short, composability and reusability is not only required at component level, but also at function
level, and a formal, composable model to describe an algorithm implementation must be provided.
The complementarity between the component-based parts of a system'’s software architecture and
its function parts is a key concept of the RobMoSys approach: components'? allow the compo-
sition of activities and services, including “inter-process” communications of various forms, thus
covering the following set of system development issues: i) scheduling and managing (computa-
tional) resources, ii) dealing with realtime operations, iii) enabling synchronous and asynchronous
communications, iv) serialisation and deserialisation needed for communication. Instead, com-
position at the function level is all about sharing data structures, with explicitly formalised data
access constraints, and about the correct execution order of all the functions that act on those
data structure, and that, all together, compose a specific algorithm. The implementation of these
algorithms ends up inside the above-mentioned components, to realise the components’ internal
behaviour.

A key design-time responsibility for algorithm developers is to provide a design that is as com-
posable as allowed by the desired behaviour, with respect to concurrency, that is, minimizing the
amount of constraints on the order of execution of sub-parts of the algorithm while still guaran-
teeing the correctness of the intended behaviour. This allows more freedom in (compile time or
run time) configuration of the control flow (“scheduling”) in the implementations that are actually
deployed in components.

Note that it is not relevant to let the algorithm designers take decisions about the parallelization of
their functions. Indeed, the amount and form of parallelism at runtime depends on the resources
available in terms of activities, as well as the deployment model of the application and the division
of the different functionalities into activities and components. Of course, the algorithm designers
can reduce the amount of parallelism by providing design with a high amount of (often implicit!)
concurrency constraints, because concurrency is a necessary condition for parallelization, but not
a sufficient one.

This Section drafts a modelling language to describe the data + function + control flow design
aspects of algorithms, independently of how the algorithm is deployed in different components,

® http://robmosys.eu/wiki/general _principles:ecosystem:roles
Ohttp://robmosys.eu/wiki/modeling:metamodels : component
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of its implementation mechanisms, and of the programming language used. The Entities and
Relations in that meta model are:

e D-block: the Entity to represent data, via a concrete instance of a digital data representation
(or data structure).

e F-block: the Relation that represent a function, that is, the computational element that has
D-blocks as its arguments, with some of them having the role of “inputs” and other having
the role of “outputs”. (It is possible that one argument in the relation has both roles). The
F-blocks should be pure functions, that is, without any side-effects.

e S-block: the Relation that represents the scheduling constraints (or control flow)—that is,
the correct execution order—of a collection of F-blocks.

All the above-mentioned entities are composable: i) a D-block can contain D-blocks; ii) a F-block
can contain other F-blocks and D-blocks; iii) a S-block can contain other S-blocks, thus defining
higher-order relationships (or relationships of relationships). Obviously, F-blocks and D-blocks are
connected to each other, because the data serves as arguments in the functions; hence, there is a
need to be able to represent the data access constraint relations, to model the requirements that
the order of execution of two or more functions must satisfy to guarantee correct behaviour of the
composition. The composition “architecture” above requires its own primitive in the modelling
language, and we call that the C-block.

F-blocks can be easily mapped to a function prototype (“signature”) of a procedural or functional
programming language: arguments and return value of the function are ports (in Block-Port-
Connector terms) connected to D-blocks; Figure 3.19 shows an example.

(D—b\ock

id:retvalFnc Type® retval|Fnc(Typel argl, Type2 arg2, ...)
type:TypeO
-

D—block
id: argl
\type:Typel
F—block
D—block id: Fnc

id: arg2
ktype:TypeZ

Figure 3.19: A function prototype and its graphical representation as a F-block connected to a
set of D-blocks.

Not surprisingly, the above-described composition of data and functions conforms to the Block-
Port-Connector meta-model (BPC): the domain is the description of an algorithm implementation,
and it is obtained by specialising the entity block to F-block, D-block and S-block, and intro-
ducing domain specific constraints (and meaning) to the connects entity. As an example, ports
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represent the arguments of a function, and they are typed; that is they can be connected to a
D-block under the constraint that the digital data representation model of the D-block and the
port are compatible. The connector that hosts a data access constraint has an extra property
which indicates if the access to the data represented by the D-block is read-only, write-only or
both (i.e., if the argument is input or output of a modeled function). Since multiple F-blocks
can share a data access constraint to a D-block, the latter influences the execution order of the
F-blocks: the execution of an F-block that has write access to a D-block prevents other F-blocks
from being executed if they are also connected to the same D-block. Therefore, the data access
constraint is a declarative form to define concurrency properties of the modeled algorithm.
Another modeling principle is that F-blocks should not have side effects, thus no internal state
should be allowed, or in other words, an F-block must expose any internal D-block through ports.
This prevents hiding information, thus enabling better composability and reusability of the mod-
elled algorithm. Finally, the representation of data protection is possible by dedicated constraints
on the accessibility of the D-blocks. An advantage of this approach with respect to a classical API
definition is that composite functions (represented by F-block) can be connected/disconnected
from D-blocks even at runtime; the data represented by a D-block can be protected by not having
any relationship with it, or by adding a read-only data access constraint. In short, the closure of
the algorithm is not defined by the functional developer, at design-time, but by the component
supplier, which evaluates the concrete context in which a functionality is used.

In the context of the “basic building blocks” (WP3) of the RobMoSys project, a formal language to
describe algorithms (and the underlying mechanisms and tools to implement their composability)
is under development, in collaboration with the RobMoSys community, starting from the principles
described in this section; this language will be fully conformant to the BPC model to represent
the structural aspects.
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4. Perception and World Model Stacks

4.1 Introduction

The previous Sections focused on the “Motion Stack”, and several paragraphs already made
clear that, in a robotics context, motion often requires perception, and both require access to
information about how “the world looks like" at any given moment. Examples of such integrated
features are visual or force-based tracking of the interaction between a moving robot and its
environment. So, it does not make much sense to develop all stacks independently: the way
how things are perceived by robots, how robots are perceived by other agents, or how robots
can/should move, depends to a large extent about how the world around the robots looks like,
and what aspects of that world can be detected by the sensors.

This Section explains the similarities that exist between modelling the motion stack and the
perception stack, and where they are linked via world models. There are many such similarities,
already starting with the fact that also perception has a large set of platform functionalities (e.g.,
Kalman or Particle Filters, Butterworth filters, clustering, etc.). There is also a “stack” structure,
that is, a partial order of meta models, with various levels of abstraction, and various sensor data
processing dependencies. There is an important difference between “motion” and “perception”,
and that is that the former contains a lot less design freedom and a lot less relevant features:
there are just only that limited number of ways to make kinematic chains move, while there is
an infinite amount of sensors, sensor features, object properties to estimate, interpretations of
actions to support decisions, etc. So, as with the motion stack material in this document, this
Section provides a draft of the platform-centred aspects of the perception/world modelling stacks.
That draft is supposed to be refined during the course of the project by the consortium, not in
the least by means of its interaction with the community. But it is less clear where the perception
“platform” stops and the “applications” start.

The perception and world model stacks consist of structural parts and behavioural parts. A struc-
tural model describes the parts of a system, their relationships, and the constraints between these
two. The perception stack conforms to the Block-Port-Connector meta-meta-model® and uses
hierarchical hypergraphs to represent the n-ary relations between its meta-models. Behavioural
models describe the functionality deployed inside of software component blocks and can be con-
tinuous, discrete, or hybrid. Knowledge models describe the n-ary Relations between Entities, and
both have Property data structure parameters.

4.2 Modelling

The perception stack is an example of a tier 2 domain-specific model? within the RobMoSys
structure. The meta-model of the perception stack can be seen in Figure 3.2. At the mereo-
topological level of abstraction, It has the following Entities and Relations:

e Sensor Models describe sensors and their properties. The Sensor Model is itself composed
of a semantic model of the sensor and its properties, as well as the numerical entities to
ground the data it produces in a numerical representation of sensor data. This allows for
compatibility checks, automated type conversion, and all the advantages discussed in the

"http://robmosys.eu/wiki/modeling:principles:block-port-connector
2http://robmosys.eu/wiki/general_principles:ecosystem:start
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Figure 4.1: The meta-model of the perception stack.

previous chapter. Currently, this is mostly solved by developer discipline with some tooling
support, but the ambition of RobMoSys is to replace most of the discipline with structured
tooling.

Models of Perception Algorithms, which describe the actual (set of) algorithm(s), their
constraints, properties, etc. The message passing algorithm in factor graphs [9] plays a
similar role in perception as the hybrid dynamics solver of Sec. 3.10.1 does for motion.
Currently, most algorithms come only with a human readable manual, which makes tooling
support and runtime negotiation difficult.

Environmental Conditions are often relevant for parametrizing perception algorithms (e.g.
camera parameters due to lighting conditions) or to select appropriate sets of sensors (e.g.
during fog or rain outdoors or when encountering a dark indoor area during night or in
the basement). Obviously, this part of the perception stack contains the links to world
modelling; an important development within the project will be the “right” separation and
composition of perception modelling and world modelling.

Models of Objects and their properties are typically used as an input and output. Properties
of the objects require matching sensors, e.g. color typically requires a camera while shape
can be detected also be laser scanners and other sensors. Sometimes properties are used to
parametrize perception algorithms. And typically perception algorithms are used to detect
a state of one or more objects.

Features are extracted from sensor data and/or belong to objects. However, there are
algorithms that link sensor data and objects directly without (explicitly) computing features.
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e Data Association algorithms are required if an algorithm first extracts features from sensor
data and then needs to associate sets of detected features with objects.

e The Task plays a crucial role in constraining the selection of all other entities ranging from
limiting object types that are relevant during that task to the selection of the perception
algorithm based on what needs to be detected during the task. Especially in this Task mod-
elling, the links between perception, motion and world modelling occur most prominently, so
that a large amount of development efforts (including community-centred discussions and
iterations) will be required before an “industry-grade” result will have been achieved.

Please note that this figure holds also for a pipeline of several perception algorithms applied one
after the other (see example section). RobMoSys does not suggest one large meta-model but
instead aims for small, composable meta-models (in the context of tier 2 also known as Domain
Specific Languages or DSLs). Concrete examples for the composition of such DSLs were given in
the previous chapter.

These entities of the perception stack structure the interaction between the different roles are:

e the Function Developer writes the perception algorithm and defines what paramters it
requires, data formants accepted, etc;

e the Service Designer models the services the perception algorithm provides and requires;
interdependency with function developer and component supplier;

e the Component Supplier models bahviour fo function supplied by function developer and
uses the services from the service designer to package a component;

e the System Builder needs to solve constraint satisfaction problem between requirements
of components, task, hardware, etc;

o the Behavior Developer integrates perception into his task plot and also defines constraints
given by the task.

The perception stack discussion provides guidelines for structuring components and applications
such that they are composable in a larger application. Due to the heterogeneity of perception
algorithms the perception stack is currently only modelled at a high, mereo-topological, level of
abstraction. When going to the (geo)metric and dynamic levels of abstraction, multiple new meta-
models need to be composed onto that generic basis, each covering certain approaches or sets of
algorithms. For the perception stack one important constraint is to be able to express dependencies
between sensor types and object properties as mentioned above. Similarly, constraints on the
applicability of perception algorithms on given tasks, objects, or sensors need to be expressed.
The following section will provide an example that conforms to the abstract perception stack
meta model.

4.3 Example

This section provides an example for modelling an application conforming to the perception stack
(see Figure 4.2). It will use the tracking of the 3D trajectory of a ball with with a single RGB
camera.

At the bottom there is a model of the used RGB camera. Part of this model is composed with units
and math/numerics to obtain the digital representations of the data that the sensor produces. For
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Figure 4.2: Example of the various models that must be composed to represent the functionalities
of detecting and tracking a ball with an RGB camera.
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this camera this is a matrix with dimensions defined by the sensors resolution property. Each of
the values in this matrix is a vector containing the RGB values, which are in turn chosen to be
represented as integers between 0 and 255.

This digital representation of the camera image is used by a color segmentation algorithm. This
algorithm in turn is configured with the color property of the the ball (green) and only looking for
green regions. While the system architect would only choose the type of algorithm, the system
builder needs to choose a specific implementation here (e.g. in which color space to look for
“green”). Also the grounding what “green” means in terms of regions in a color space needs to
be grounded in a digital representation (potentially by linking to an ontology describing colors in
various spaces); in addition, also the environment conditions play a role, because the perceived
color depends not only on the object properties but also the lighting conditions. The output is a
set of green regions, which some algorithms might use as prior knowledge for the next iteration.

Next, a Hough transform is applied on the identified regions to find circular regions. The latter is
configured from the shape property of the ball. Since “shape” can have many meanings in different
contexts and can be digitally represented in various ways, it is important that it is explicated to
which meta-model this property conforms in this application such that the choice of components
can be constraint accordingly.

To simplify the data association problem, it is assumed that only the circle with the highest
probability will be used. This circle has a state which is represented as its centroid and diameter.
By only looking at the numbers shown in Figure 4.2 it is difficult to say that these numbers are in
image or pixel coordinates. Therefore, it is again important to point at the meta-model describing
the digital representation and the semantics of the data.

This centroid and diameter found in the camera image are then used as an input to a Kalman
Filter (some additional pre-processing is not displayed). A Kalman Filter is a generic, “platform”,
algorithm that needs to be configured with a process and a measurement model, initial conditions,
as well as noise parameters. These are configured from the sensor model, task model, and object
model. Please note that, in contrast to the perception stack, the task is not explicitly shown in
this figure since it is influencing the overall architecture and choices. A Kalman Filter requires
a state to work on, which is a (dynamically changing) property of the ball. Again, its digital
representation is important as is the semantical context like the frame its position is expressed in
(see motion stack).

The ball, an objects in general typically have many properties that can also change with every
new application. Therefore, the suggested structure allows them to be composed with the ball
while keeping their semantic context by pointing to the models they conform to. The number of
possible object properties is huge and will have to grow over time.

While this full application is already possible today, it typically requires the discipline of the pro-
grammer and system architect for making consistent choices on implementation and configuration
details. In contrast, if all mentioned models exist, tooling can be built to support the persons
by linking the corresponding values together or even to support reasoning by the system itself,
enabling it to react to changes or performance deficits at runtime.

4.4 World Model
This section briefly introduces the principles and the specifications for an explicit World Model

description and its implementation, as the necessary glue between “motion” and “perception”,
when building any robotic application. The role of the world model is to store a concrete repre-
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sentation of the environment, interacting with the motion and perception stack: the perception
stack updates the world model with the latest information available from sensing and estimation
algorithms; the motion stack updates the robot state information, the internal state of the im-
plemented algorithms and it makes the data previously acquired by the perception stack available
to compute robot control actions, which modify the environment state, hopefully according to
the task specification. While this description implicitly focuses on the instantaneous state of the
world, the ambition is to design world models in such a way that the world modelling platform
also supports memory and predictions, with various degrees of resolution and horizon in both
time and space. For example, a navigation application needs to know more details about the
immediate past, future, space and objects than about the more distant ones, and the platform
should support continuously sliding “windows” over time, space and resolution. This technology
is less mature than that of perception and, especially, than that of motion, hence the project’s
ambitions are adapted accordingly: the expectation is to lay a first foundation for the envisaged
world modelling scope, but full community agreement, let alone “standardisation”, is considered
less likely than for the motion stack; the perception stack is somewhat in between with respect to
expected community-wide agreement and consilidation.

Anyway, world modelling implies a lot of relations between a lot of objects, hence any implementa-
tion will result in a knowledge-based system of a significant complexity, not in the least because
it has to be seemlessly composable/integrated with the the motion and perception stacks. The
data stored in the world model should not cover all the aspects of the environment as a whole,
but only those application-dependent information needed for the correct execution of the tasks.
Or, expressed differently, many applications are expected to require several world models to run
asynchronously, because the different sub-systems in the application have different needs. Hence,
all modelling efforts should take into account the technological challenges of distributed synchro-
nisation and (eventual) consistency. These challenges make the need for composability of all the
modelling efforts extremely important, so the project will give preference to composability quality
over feature quantity, when measuring its progress in the domain of world modelling.

In literature, domain-dependent world model representations have been investigated for specific
applications: manipulation control [32], haptics [33], rescue applications [4, 23], management of
robocup soccer teams [27] and more. On the top of “functional” world models, recently semantics
and specific anchoring with the perception stack has been introduced [6, 30, 17].

Due to its importance, a world model representation can be found in any robotics applications,
often implicitly within the source code (e.g., as a particular data structure to be updated by a
certain process) or explicitly and a separate software component (in the form of a “process”, as
well as of set of functions and data structures); the RobMoSys approach advocates the latter
approach for better composability, reusability and usability. In the context of world modelling,
“usability” refers to the capability of inquiring different views on the same object(s), as will be
explained later in the text.

In robotics, the most obvious examples of world modelling can be found in applications that rely
on Simultaneous Localisation and Mapping (SLAM) functionalities. That is, they consists of i) a
motion stack that implements navigation functionalities, including trajectory planning and sensor-
based feature tracking; ii) a perception stack to determine the “distance” between the robot and
the “static” environment, as well as the identity and value of tracked features; iii) specific data
structures to store the map, i.e., the world model which is the outcome of the SLAM activities.
Of course, the semantics of “distance” vary depending on the SLAM methodology and on the
type of sensor used for the localisation.
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Multiple levels of abstraction can already be identified from the example above, that is: the
outcome of a SLAM process (i.e., the map of the environment) can be a two-dimensional or three
dimensional representation; the chosen digital representation of the map may be a probabilistic
occupancy grid model; there might be an integration between topological and metric versions of
the map; etc. It is important to notice that the “right” level of abstraction choice depends on
the application, and it influences the choice over the concrete data structure that represents the
map (e.g., probabilistic grid, octomap, etc); obviously, multiple models having different levels of
abstraction of the same entity are possible within the same application.

To this end, a RobMoSys compliant world modelling must support multiple view models to offer
a different aspect, interpretation and/or level of abstraction, of the same entity. Examples of the
latter are structured along the same lines already used to represent levels of abstraction in the
motion and perception modelling:

e mereology: describes the has-a (and collections) relationships between entities (and
the world model instance itself). All entities represented in a world model must be uniquely
identified by an uid (by means of a IRIl, URI or other forms), which is sufficient to describe
the existence of a certain entity instance in the world model, in a symbolic form;

e topology: evinces the connectivity of different elements in the scene, e.g., connected rooms
in an map environment. Topology can also be expressed symbolically by means of spatial
descriptors, such as left-of, near-to, on-top-op, inside to, etc;

e geometry: including affine geometry (e.g, point, line) metric geometry (e.g., displacement,
distances, dimensions). Geometric entities can be expressed by means of the geometric
semantics described in Section 3.7, whether they are physical objects or virtual artifacts
that describes a feature used in the task specification;

e dynamics: this view is offered to those motion and perception stack algorithms that are
capable of dealing with kinematic motion models (differential geometry) and their interaction
with the environment (in terms of “physical forces”, deformations, etc).

These view models help to structure the selection of motion and perception algorithms in many
ways:

e a reasoning algorithm, e.g., symbolic planner, can inference a concrete plan (sequence of
tasks) only exploiting symbolic information and connectivity (mereology and topological
view); an inference example is to trace the location of one object contained in a box, even
after that the box has been moved,;

e a motion planner uses geometrical property of the map, but different levels of abstraction
can be used (two-dimensional map or three-dimensional map) depending on the application
(mobile navigation in a pre-dominantly flat environment, or 6 DOF manipulation);

e the concrete properties of an entity modeled in the world model can be available in different
phases of an application, sometimes only after that a certain perception task has been
performed. For instance, in the example of Section 4.3, a task specification can indicate the
presence of a ball, but its location and pose ball can still be unknown (or are not relevant
to the task, yet): in this case, the entity “ball” is modeled only at the “symbolic level”
(mereology). Additional topological information can be used as “first guess” of a perception
algorithm: if “the ball is on top of a table” and the geometric properties of the table are
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known (i.e., geometry view), the location of the ball can be roughly determined by inference
reasoning. In a later phase, the visual tracking/servoing task of the ball is possible, updating
the geometry view of the ball in the world model,

e in many applications, different views and levels of abstraction are needed to reduce the
search space. It is the case for touch-based active sensing tasks, which combines the “act”
(motion stack) with the purpose of localising (perception stack) a physical object (and its
properties). For instance, in [29] an object is localised by decoupling the active sensing
activity in different sub-tasks, each one working on a different configuration space of the
world model;

e two or more robotic systems can share the same environment, sometimes accomplishing
cooperative tasks, sometimes acting as competitors on sharing the environment resources.
In this scenario, the world model is distributed and plays a crucial role in the success of the
application, since i) the models of the robotic systems (the “agents”) must be included in
the world model; ii) the negotiation of the resources happens on the basis of the information
available in the world model, which must be (“sufficiently”) coherent for all the “agents”;
iii) each agent may have different limitations in terms of available computational, memory
and communication resources; iv) each agent may have a different local world model, man-
aging only relevant information for its own tasks, without being aware of the needs of the
overall application; v) the previous challenge is even larger in case of communication issues,
e.g., in rescue scenarios where the communication interferences can be very high.

4.4.1 World Model Specifications

The implementation of the world model is a fully-fledged knowledge-based system that stores all
the information required for the correct execution of a robotic application, and must memorize
all what is relevant for later applications. The main features that a world model implementation
must support are domain-specific in the context of robotics, such as:

e responsive to “real-time” queries, both for fast manipulation of the database (inser-
tion/update) and data requests (inference); the real-time boundaries are given by the ap-
plication itself and the latency requirements from the motion and perception stacks;

e composability: views and levels of abstraction. Each view must be defined by a proper
meta-model supported by the world model implementation. That is, each view can provide
a specific Domain Specific Language (DSL) to perform dedicated queries;

e distributed: a world model must be distributed and deployed in different robot platform;
each local world model must not be “complete” as at whole, but focus on the concrete data
exploited by the Jocal motion and perception stacks, with special attention to the present
limitations in each single system;

e history and logs: a world model should not contain only instantaneous information, but also
previous states of the environment. This enables task execution analysis a posteriori, as well
as the application of (online and offline) learning algorithms to improve future executions;

e framework-agnostic: the world model should be independent of the component framework,
or of any communication middleware used to interact with it; instead it should be trivial to
integrate world model functionalities within a component.
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Once again, the structural aspects of all domain-specific models used in the the RobMoSys world
model will be based on the Block-Port-Connector (BPC)? meta-model. In this way, the BPC
(and the tools built around it) is used as a common (infra)structure. The features of supporting
queries with multiple views and levels of abstraction can be defined by specialising common queries
performed over a BPC model instance that represents the structural parts of a world model instance
with added domain semantics. This approach is, for example, adopted also in the OpenStreetMap
ecosystem, where the relation and the way are the two only structural primitives that are needed
at the platform level.

Recently, some implementations have been provided as base for a world model stack. A primitive
form of a world model is the Transform Library (ROS-TF) [19], which is a distributed way to
share poses between different software components (deployed in different computational units).
This solution is rather error-prone by design: i) there is no guarantee of consistency and coherence
between the local world models, which are reconstructed on the consumer-side; ii) TF implemen-
tation mechanism cannot be decoupled from the ROS communication infrastructure; iii) there is
no guarantee of uniqueness in the uid system adopted (plain names with scope support), thus
the same pose could be published by multiple components; iv) there is no support for adding
semantics to the pose, or any other additional information that could be attached to the pose;
v) many applications require other geometric primitives than poses, for example points, not in the
least because any representation of uncertainties on poses introduces mathematical non-invariance
problems.

Other attempts to provide a world model solutions are [10, 11], (with a focus on critical rescue
situations), or the open-ease project [8], which proposes as knowledge-based infrastructure for
inference over previous task executions.

The principles introduced in this section should be considered propaedeutic only, since the first
RobMoSys third-party funding focuses on the consolidation of the motion stack and perception
stack as main priorities. Nevertheless, it is important to start the community discussions about the
topic of world modelling, as quickly and broadly as possible, so that the descriptions and sugges-
tions of this Section can further evolve into concrete and consolidated models and specifications.
As always in the RobMoSys context, special attention will be paid to meta-models, and to the
different views over the stored data. This discussion should ideally not remain the exclusive effort
of the RobMoSys project, but a joint effort driven by the whole robotics community. The actual
status of this evolution will be updated on the RobMoSys wiki website.

3 http://robmosys.eu/wiki/modeling:principles:block-port-connector
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